首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transient expression of the maize streak geminivirus virion-sense proteins V1 and V2 (movement protein, MP, and coat protein, CP, respectively) in maize leaves allowed investigation of their roles in inter- and intracellular movement. Bombardment of a construct directing expression of a V1:green fluorescent protein (GFP) fusion product resulted in significantly increased spread of fluorescence from the bombarded cell to adjacent cells compared to that obtained following expression of free GFP. A mutant V1:GFP fusion product exhibited markedly less movement than the V1:GFP protein. Thus, the MSV V1 protein moves from cell to cell in the absence of other viral proteins. However, V1:GFP did not localize to plasmodesmata in maize or tobacco leaves although a tobacco mosaic virus MP:GFP fusion protein was shown to do so in tobacco. The CP:GFP fusion product targeted exclusively to the nucleus and did not move from cell to cell or exit the nucleus when expressed alone. When coexpressed with V1, some CP:GFP fluorescence was seen at the cell periphery in a proportion of cells, but in no case was cell-to-cell movement of CP:GFP detected. The likely roles of V1 and CP in MSV movement are discussed.  相似文献   

3.
Wege C  Pohl D 《Virology》2007,365(1):173-186
Different Nicotiana benthamiana lines stably transformed with Abutilon mosaic virus (AbMV) dimeric DNA B were capable of systemically spreading complete bipartite AbMV genomes, following agroinoculation of DNA A alone. Constitutively expressed viral movement protein (BC1) did not induce any persistent disease phenotype, but plants developed transient morphological abnormalities such as radially symmetric leaves after kanamycin withdrawal. Systemic AbMV infection produced symptoms and virus titers indistinguishable from those in non-transgenic plants. In systemically invaded leaves, the begomovirus remained phloem-limited, whereas the plants' susceptibility to mechanical transmission of AbMV was enhanced by a factor of three to five, as compared to non-transgenic controls. Hence, DNA B-encoded movement functions can complement local movement to the phloem after mechanical transmission, but fail to support viral invasion of non-phloem cells in systemically infected organs, indicating that the phloem restriction of AbMV does not result predominantly from a lack of transport competence in mesophyll tissues.  相似文献   

4.
We have investigated the ability of satellite DNA beta to complement mutations in the CP, V2 and C4 genes of the monopartite begomovirus, tomato leaf curl virus, which are potentially involved in movement. A mutation in the coat protein was not complemented by DNA beta. Mutations of the C4 and V2 genes attenuated and abolished symptoms, respectively. In the presence of the C4 mutant, but not the V2 mutant, DNA beta induced typical symptoms, confirming that the satellite encodes a dominant symptom determinant. In contrast to the C4 mutant, DNA beta did not enhance the viral DNA levels of the V2 mutant, suggesting that V2 is required for this phenomenon. The significance of these findings is discussed based on our present understanding of the functions of the viral genes and DNA beta.  相似文献   

5.
P. Sharma  M. Ikegami 《Virus research》2009,144(1-2):145-153
Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of geminiviruses. Capsid proteins (CPs) of geminiviruses are multifunctional proteins thought to be involved in this process. The CP of monopartite geminiviruses is absolutely essential for virus movement. To more precisely examine the role of CP, we have constructed a series of single and double deletions into the coding sequence of Tomato leaf curl Java virus (ToLCJAV) CP and examined sub-cellular localization using transient expression of GFP fusion proteins. In this report, the domains of the CP encoded by ToLCJAV localized in the nucleus/nucleolus and cytoplasm in transfected cells were mapped. Deletion analysis revealed that the Arg-rich cluster from amino acids (aa) 16KVRRR20 in the N-terminal region of CP functioned as nuclear/nucleolar localization signals (NLSs). The region from aa 52RKPR55 contained basic amino acid cluster was capable to redirect the CP to the nucleus. Further, both transient expression and yeast hybrid assays demonstrated that CP was capable of shuttling between the nucleus and cytoplasm of the cell. Deletion mutant analysis revealed that this property was attributed to a nuclear export signal (NES) sequence consisted of aa (245LKIRIY250) reside at C-terminal part of CP. This hydrophobic region caused transport of GFP to the cytoplasm. However, ToLCJAV CP NLSs and NES show peculiarities in the number and position of basic residues. Taken together, these results demonstrated that ToLCJAV CP shuttles between the nucleus and cytoplasm, such an activity homolog to bipartite geminivirus BV1 ORF.  相似文献   

6.
Q Yin  H Yang  Q Gong  H Wang  Y Liu  Y Hong  P Tien 《Virus research》2001,81(1-2):69-76
The complete DNA sequence (2734 nucleotides) of the monopartite genome of tomato yellow leaf curl China virus (TYLCCNV), a begomovirus transmitted by the whitefly Bemisia tabaci, was determined. The circular genomic DNA contains six open reading frames (ORFs) encoding proteins of molecular weights >10 kDa, of which two (V1 and V2) are located on the virion-sense strand and four (C1, C2, C3 and C4) on the complementary-sense strand. The ORFs are comparable to those of other whitefly-transmitted begomoviruses with a monopartite genome and to those encoded by DNA-A of bipartite begomoviruses. Sequence comparisons with other geminiviruses showed that TYLCCNV belongs to Begomovirus from the Old World. No putative DNA-B genome was found. Nicotiana species and tomato plants agroinoculated with the TYLCCNV monopartite genome developed typical yellowing and leaf-curling symptoms. The cloned molecule carried all the information needed for virus replication and systemic infection of plants.  相似文献   

7.
Summary Some (perhaps all) plant viruses transmitted in a circulative manner by their insect vectors avoid destruction in the haemolymph by interacting with GroEL homologues, ensuring transmission. We have previously shown that the phloem-limited begomovirus tomato yellow leaf curl virus (TYLCV) interacts in vivo and in vitro with GroEL produced by the whitefly vector Bemisia tabaci. In this study, we have exploited this phenomenon to generate transgenic tomato plants expressing the whitefly GroEL in their phloem. We postulated that following inoculation, TYLCV particles will be trapped by GroEL in the plant phloem, thereby inhibiting virus replication and movement, thereby rendering the plants resistant. A whitefly GroEL gene was cloned in an Agrobacterium vector under the control of an Arabidopsis phloem-specific promoter, which was used to transform two tomato genotypes. During three consecutive generations, plants expressing GroEL exhibited mild or no disease symptoms upon whitefly-mediated inoculation of TYLCV. In vitro assays indicated that the sap of resistant plants contained GroEL-TYLCV complexes. Infected resistant plants served as virus source for whitefly-mediated transmission as effectively as infected non-transgenic tomato. Non-transgenic susceptible tomato plants grafted on resistant GroEL-transgenic scions remained susceptible, although GroEL translocated into the grafted plant and GroEL-TYLCV complexes were detected in the grafted tissues.  相似文献   

8.
The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5′-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.  相似文献   

9.
Kumar P P  Usha R  Zrachya A  Levy Y  Spanov H  Gafni Y 《Virus research》2006,122(1-2):127-136
Bhendi yellow vein mosaic disease (BYVMD) is caused by a complex consisting of a monopartite begomovirus BYVMV and a satellite DNA beta component. BYVMV represents a new member of the emerging group of monopartite begomoviruses requiring a satellite component for symptom induction. Here we report the results of the transient expression of green fluorescent protein (GFP) fused with the betaC1 and coat protein (CP) coding regions, in the epidermal cells of Nicotiana benthamiana. GFPCP was found to be targeted into the nucleus whereas GFPbetaC1 was localized towards the periphery of the cell. The sub-cellular localization of the betaC1 protein has been compared with that of the CP in yeast cells using a genetic system for detection of protein nuclear import and export. Expression of betaC1 ORF in transgenic N. benthamiana under the control of the Cauliflower mosaic virus 35S promoter produced severe developmental abnormalities in the plant, like distorted stem, leaves and stunting of the plant. We also present the results on the interaction of CP and betaC1 proteins using yeast two hybrid analysis, suggesting a collaborative role in the inter- and intracellular dynamics of BYVMD.  相似文献   

10.
Zhang SC  Wege C  Jeske H 《Virology》2001,290(2):249-260
Two movement proteins (BV1 and BC1) facilitate the intra- and intercellular transport of begomoviruses in plants. In contrast to other geminiviruses the movement protein BC1 of Abutilon mosaic virus (AbMV) remained in the supernatant after centrifuging plant extracts at 20,000 g. To test whether this unusual behavior results from a distinct intracellular distribution of the protein, the BC1 gene has been fused to the gene of green fluorescent protein (GFP). The resulting plasmids were delivered into nonhost plants (Allium cepa) as well as into mature and immature cells of host plants (Nicotiana tabacum, N. benthamiana) by biolistic bombardment for transient expression in planta. BC1 directed GFP to two different cellular sites. In the majority of nonhost cells as well as in mature cells of host leaves, BC1 was mainly localized in small punctate flecks at the cell periphery or, to a lesser extent, around the nucleus. In sink leaves of host plants, GFP:BC1 additionally developed disc-like structures in the cell periphery. Cobombardment of GFP:BC1 with its cognate infectious DNA A and B did not change their subcellular distribution patterns in source leaves but led to the formation of peculiar needle-like structures in sink leaves. The nuclear shuttle protein (BV1) of AbMV accumulated mainly inside the nuclei as shown by immunohistochemical staining and GFP tagging. In sink cells of host plants it was mobilized to the plasma membrane and to the nucleus of the neighboring cell by coexpressed BC1, GFP:BC1, BC1:GFP, or after cobombardment with the cognate viral DNA. Only under these conditions were GFP:BC1 and BC1:GFP also found in the recipient cell.  相似文献   

11.
Zhang SC  Ghosh R  Jeske H 《Archives of virology》2002,147(12):2349-2363
Summary.  Abutilon mosaic geminivirus (AbMV) encodes two movement proteins, BV1 and BC1, which mediate the intra- and intercellular transport of viral DNA in plants cooperatively. It has been shown previously that singly expressed BC1, fused to green fluorescent protein (GFP), accumulates preferentially either at the cell periphery or around the nucleus in separate plant cells. To define the BC1 domains responsible for understanding the subcellular sorting, deletion mutants were fused to GFP and expressed transiently in epidermal cells of non-host (Allium cepa) as well as of host (Nicotiana benthamiana) plants with basically the same results in both species. BC1-mediated intracellular sorting was dependent on two protein domains, an “anchor domain” (amino acids 117 to 180) which is necessary and sufficient to fix GFP:BC1 at the cell periphery and the nuclear environment, and a “pilot domain” (amino acids 1 to 49) in the absence of which the fusion proteins were found at both sites in the same cell simultaneously. Received March 13, 2002; accepted July 1, 2002  相似文献   

12.
Lacatus G  Sunter G 《Virology》2008,376(1):79-89
  相似文献   

13.
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Both cell-to-cell and long-distance movement of White clover mosaic virus in which individual, combinations, or all movement functions were mutated could be rescued by transgenic Nicotiana benthamiana expressing complementary viral products. To address the importance of TGB functions in vascular transport, we used an experimental system based on grafted plants and trans-complementation, to define co-translocated viral products and the minimal requirements for viral exit from the plant vasculature. Evidence is presented that TGBp1 is co-translocated with viral RNA and CP and that, once viral RNA is loaded into the phloem translocation stream, it can exit in sink tissues and replicate in the absence of TGBp2-3. These results are discussed in the context of the recent finding that TGBp1 can mediate the suppression of signaling involved in systemic gene silencing.  相似文献   

14.
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown—U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein–protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.  相似文献   

15.
16.
Rothenstein D  Krenz B  Selchow O  Jeske H 《Virology》2007,359(1):137-145
In order to establish defined viruses for challenging plants in resistance breeding programmes, Indian cassava mosaic virus (ICMV; family Geminiviridae) DNA clones were modified to monitor viral spread in plants by replacing the coat protein gene with the green fluorescent protein (GFP) reporter gene. Comparative in situ hybridization experiments showed that ICMV was restricted to the phloem in cassava and tobacco. GFP-tagged virus spread similarly, resulting in homogeneous fluorescence within nuclei and cytoplasm of infected cells. To analyze viral intercellular transport in further detail, GFP was fused to AV2, a protein that has been implicated in viral movement. Expressed from replicating viruses or from plasmids, AV2:GFP became associated with the cell periphery in punctate spots, formed cytoplasmic as well as nuclear inclusion bodies, the latter as conspicuous paired globules. Upon particle bombardment of expression plasmids, AV2:GFP was transported into neighboring cells of epidermal tissues showing that the intercellular transport of the AV2 protein is not restricted to the phloem. The results are consistent with a redundant function of ICMV AV2 acting as a movement protein, presumably as an evolutionary relic of a monopartite geminivirus that may still increase virus fitness but is no longer necessary in a bipartite genome. The fusion of ICMV ORF AV2 to the GFP gene is the first example of a reporter construct that follows the whole track of viral DNA from inside the nucleus to the cell periphery and to the next cell.  相似文献   

17.
Monopartite begomoviruses comprise DNA-A as the main genome and associated satellite DNAs. Viral DNA extracted from guar (Cyamopsis tetragonoloba) showing leaf curl symptoms exhibited positive amplification of coat protein (CP) gene of DNA-A component, suggesting the presence of begomovirus. Full length DNA-A was amplified by primer pair re-designed from CP gene nucleotide sequence. The associated alphasatellite and betasatellite DNA molecules were amplified and sequenced, confirming the presence of monopartite begomovirus. Sequence comparisons showed 89% identity with other begomoviruses. The Neighbor-Joining tree based on full length DNA-A nucleotide sequence showed that the guar infecting begomovirus clustered separately from other known begomoviruses. The betasatellite shared a high (96%) nucleotide identity to Cotton leaf curl Multan betasatellites. The alphasatellite showed 91% nucleotide identity to alphasatellite associated with begomovirus infecting Okra. Recombination analyses showed three recombinant fragments in DNA-A, two in betasatellite, and four in alphasatellite. The results suggest that the begomovirus identified in this study was a new recombinant virus. Its name was proposed as Cyamopsis tetragonoloba leaf curl virus (CyTLCuV).  相似文献   

18.
Betasatellites are commonly associated with tomato leaf curl disease caused by begomoviruses in India. This study demonstrates the role of a betasatellite in the pathogenesis of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus affecting tomato in India. For infection, accumulation, systemic movement and disease induction by ToLCNDV, co-infection by the associated betasatellite was not essential, as the DNA A alone of ToLCNDV could infect tomato and Nicotiana benthamiana and induce mild symptoms, but DNA B or Cotton leaf curl Multan betasatellite (CLCuMB) was required for development of typical leaf curl symptoms. The symptoms were most severe in plants infected with all three components, indicating a role of the betasatellite in the pathogenesis of ToLCNDV. The plants infected with ToLCNDV DNA A alone had limited accumulation of viral DNA, which increased by many times in plants co-infected with DNA B or/and betasatellite. However, the plants infected with all three components accumulated 20 times less betasatellite DNA than the plants infected with DNA A and betasatellite. The increase in the amount of viral DNAs was also reflected in the commensurate increase in symptom severity and transmissibility by whitefly, Bemisia tabaci.  相似文献   

19.
Bosco D  Mason G  Accotto GP 《Virology》2004,323(2):276-283
The transovarial transmission of two species of begomovirus, Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV), through generations of Bemisia tabaci of the B and Q biotypes has been investigated. Different life stages of the progeny of viruliferous female whiteflies have been analysed by PCR detection of viral DNA and infectivity tests. Our results indicate that TYLCSV DNA can be detected in eggs and nymphs, and to a lesser extent adults, of the first-generation progeny. Infectivity tests using a large number of adult progeny of the first, second, and third generation indicate that even when viral DNA is inherited, infectivity is not. For TYLCV, neither viral DNA nor infectivity were associated with the progeny of viruliferous female whiteflies. Because the inherited viral DNA is unable to give rise to infections, the transovarial transmission of TYLCSV DNA appears to have no epidemiological relevance.  相似文献   

20.
The causative agent of cotton leaf curl disease has previously been shown to be transmissible by the whitefly Bemisia tabaci (Gennadius) and a begomovirus (Geminiviridae) was shown to be associated with the disease. This virus was provisionally called cotton leaf curl virus (CLCuV) although no causal relationship between virus and disease was shown. In the present study full-length clones of CLCuV, equivalent to the DNA A component of bipartite begomoviruses, were obtained. The clones of CLCuV were systemically infectious to both Nicotiana benthamiana and cotton. Infected plants did not exhibit symptoms characteristic of cotton leaf curl disease, producing mild leaf curling, yellowing and some stunting. Efforts to identify a second genomic component were not successful. These findings suggest that the begomovirus, CLCuV, is not or not the sole cause of cotton leaf curl disease. The transmission of cotton leaf curl disease by B. tabaci, however, may indicate that the begomovirus plays a part in the transmission of the disease. The implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号