首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal experiments recently suggested that administration of anti-C5a, anti-C5a receptor or soluble complement receptor type-1 may be of value in the treatment of septic shock. Because results regarding C5a receptor expression (C5a-R, CD-88) have been found to differ between septic animals and patients, the aim of this study was to investigate the neutrophil and monocyte receptor expression of CD-88 and complement receptor-1 (CR-1, CD-35) after stimulation with lipopolysaccharide (LPS) ex vivo. Whole blood or isolated neutrophils and monocytes from healthy people were incubated with LPS in a dose range of 0.1-1000 ng/ml. The expressions of CD-88 and CD-35 were analysed by means of flow cytometry. For comparison, the expressions of complement receptor-3 (CR-3, CD-11b/CD-18), Fc-gamma receptor type-I (CD-64) and CEACAM-8 (CD-66b) were also investigated. In whole blood, CD-88 expression on neutrophils was reduced (P < 0.05). The expressions of CD-35 and CD-11b were increased both on neutrophils (P < 0.001; P < 0.05) and on monocytes (P < 0.001; P < 0.001). No effect was observed on isolated cells. In agreement with the findings in septic patients, LPS reduced the neutrophil C5a-R expression, whereas the expressions of CR-1 and CR-3 were increased. The effects of LPS were indirect and were mediated via factors in the blood. The clinical significance of this is not known, but may be associated with decreased chemotaxis.  相似文献   

2.
Immunologically, the septic shock is a natural model of immunomediated vascular pathology where the interaction between cytokines and the endothelium mediates the syndrome and lethality. Tumour necrosis factor (TNF), a non-species-specific cytokine, has outstanding pleiotropic activities as an important mediator of the septic shock syndrome. In rabbits, passive immunization with anti-lipopolysaccharide (LPS) polyclonal antibodies prior to the intravenous (i.v.) injection of LPS inhibits the haemorrhagic necrotic lesion characteristic of the local Shwartzman reaction (an excellent localized in vivo correlate of the septic shock). Paradoxically, tested in an ex vivo assay (short-term whole human blood culture, stimulated with LPS), these antibodies mediated an increase in TNF production by mononuclear phagocytes and, in the rabbit model, they induced an increase in body temperature, as compared with the pre-immune reagent. Although anchoring of immune complexes containing LPS to receptors (Fc or C4b-C3b) on circulating monocytes may facilitate the access of LPS to these cells, access to localized, LPS-sensitized macrophages may be impaired. Consequently inhibition of the local Shwartzman reaction and increased TNF production in the ex vivo system were observed. Concordantly, the higher temperature in the passively immunized animals may be a consequence of a higher, immune complex-induced, systemic TNF production. These experimental results suggest that the use of anti-LPS immunoglobulins, as a potential immunotherapy for septic shock syndrome in vertebrates, may lead to increased TNF production, with adverse effects such as the pyrogenic.  相似文献   

3.
Lipopolysaccharide (LPS), a potent inflammatory stimulus derived from the outer membrane of gram-negative bacteria, has been implicated in septic shock. Plasma levels of adrenomedullin (AM), a potent vasorelaxant, are increased in septic shock and possibly contribute to the characteristic hypotension. As macrophages play a central role in the host response to LPS, we studied AM production by LPS-stimulated macrophages. When peritoneal exudate macrophages from C3H/OuJ mice were treated with protein-free LPS (100 ng/ml) or the LPS mimetic paclitaxel (Taxol; 35 μM), an ~10-fold increase in steady-state AM mRNA levels was observed, which peaked between 2 and 4 h. A three- to fourfold maximum increase in the levels of immunoreactive AM protein was detected after 6 to 8 h of stimulation. While LPS-hyporesponsive C3H/HeJ macrophages failed to respond to protein-free LPS with an increase in steady-state AM mRNA levels, increased levels were observed after stimulation of these cells with a protein-rich (butanol-extracted) LPS preparation. In addition, increased AM mRNA was observed following treatment of either C3H/OuJ or C3H/HeJ macrophages with soluble Toxoplasma gondii tachyzoite antigen or the synthetic flavone analog 5,6-dimethylxanthenone-4-acetic acid. Gamma interferon also stimulated C3H/OuJ macrophages to express increased AM mRNA levels yet was inhibitory in the presence of LPS or paclitaxel. In vivo, mice challenged intraperitoneally with 25 μg of LPS exhibited increased AM mRNA levels in the lungs, liver, and spleen; the greatest increase (>50-fold) was observed in the liver and lungs. Thus, AM is produced, by murine macrophages, and furthermore, LPS induces AM mRNA in vivo in a number of tissues. These data support a possible role for AM in the pathophysiology of sepsis and septic shock.  相似文献   

4.
INTRODUCTION: Monocytes from septic patients have a reduced capacity to respond to lipopolysaccharide (LPS). We examined whether the same response occurred after surgical injury, and whether this reduced activity was associated with differential monocyte toll-like receptor (TLR) expression. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from septic patients, patients undergoing surgery, and healthy volunteers. Cells were stimulated ex vivo with LPS (1 microg/ml) and stained for CD14, CD16, TLR-2, TLR-4, and HLA-DR surface expression. RESULTS: TLR-2 and -4 expressions were significantly increased in monocytes from both septic and surgical patients. While ex vivo LPS-stimulation significantly increased TNFalpha and IL-1beta production in PBMCs from surgical patients, LPS-stimulation decreased IL-1beta production from septic patients as compared to surgical and control patients. Ex vivo LPS-stimulation induced TLR-4 upregulation in monocytes from both surgical and control patients, but not from septic patients. HLA-DR expression in CD14+CD16+ monocytes was reduced only in septic patients. CONCLUSIONS: PBMCs from septic patients, but not following surgical injury, have a reduced capacity to respond to a secondary inflammatory signal, but this defect is not associated with reduced TLR-4 or CD14 expression.  相似文献   

5.
In meningococcal septic shock, the dominant inducer of inflammation is lipopolysaccharide (LPS) in the outer membrane of Neisseria meningitidis, while interleukin-10 (IL-10) is the principal anti-inflammatory cytokine. We have used microarrays and Ingenuity Pathway Analysis to study the global effects of IL-10 on gene expression induced by N. meningitidis, after exposure of human monocytes (n = 5) for 3 h to N. meningitidis (106 cells/ml), recombinant human IL-10 (rhIL-10) (25 ng/ml), and N. meningitidis combined with rhIL-10. N. meningitidis and IL-10 differentially expressed 3,579 and 648 genes, respectively. IL-10 downregulated 125 genes which were upregulated by N. meningitidis, including NLRP3, the key molecule of the NLRP3 inflammasome. IL-10 also upregulated 270 genes which were downregulated by N. meningitidis, including members of the leukocyte immunuglobulin-like receptor (LIR) family. Fifty-three genes revealed a synergistically increased expression when N. meningitidis and IL-10 were combined. AIM2 (the principal molecule of the AIM2 inflammasome) was among these genes (fold change [FC], 18.3 versus 7.4 and 9.4 after stimulation by N. meningitidis and IL-10, respectively). We detected reduced concentrations (92% to 40%) of six cytokines (IL-1b, IL-6, IL-8, tumor necrosis factor alpha [TNF-α], macrophage inflammatory protein alpha [MIP-α], MIP-β) in the presence of IL-10, compared with concentrations with stimulation by N. meningitidis alone. Our data analysis of the effects of IL-10 on gene expression induced by N. meningitidis suggests that high plasma levels of IL-10 in meningococcal septic shock plasma may have a profound effect on a variety of functions and cellular processes in human monocytes, including cell-to-cell signaling, cellular movement, cellular development, antigen presentation, and cell death.  相似文献   

6.
Bone degradation is a serious complication of chronic inflammatory diseases such as septic arthritis, osteomyelitis, and infected orthopedic implant failure. Up to date, effective therapeutic treatments for bacteria-caused bone destruction are limited. In our previous study, we found that LPS promoted osteoclast differentiation and activity through activation of mitogen-activated protein kinases (MAPKs) pathway such as c-Jun N-terminal kinases (JNK) and extracellular signal regulated kinase (ERK1/2). The current study was to evaluate the mechanism of LPS on the apoptosis and osteoblast differentiation in MC3T3-E1 cells. MC3T3-E1 osteoblasts were non-treated, treated with LPS. After treatment, the cell viability, the activity of alkaline phosphatase (ALP) and caspase-3 were measured. The expressions of osteoblast-specific genes and Bax, Bcl-2, and caspase-3 were determined by real-time quantitative polymerase chain reaction (qPCR). Protein levels of Bax, Bcl-2, caspase-3, and phosphorylation of MAPKs were measured using Western blotting assays. The MAPK signaling pathway was blocked by pretreatment with JNK inhibitor SP600125. LPS treatment induced a significant decrease in cell metabolism, viability, and ALP activity in MC3T3-E1 cells. LPS also significantly decreased mRNA expressions of osteoblast-related genes in MC3T3-E1 cells. On the other hand, LPS significantly upregulated mRNA expressions and protein levels of Bax and caspase-3 as well as activation of caspase-3, whereas decreased Bcl-2 expression in MC3T3-E1 cells. Furthermore, LPS significantly promoted MAPK pathway including the phosphorylation of JNK and the phosphorylation of ERK1/2; moreover, pretreatment with JNK inhibitor not only attenuated both of phosphorylation-JNK and ERK1/2 enhanced by LPS in MC3T3-E1 cells, but also reversed the downregulated expressions of osteoblast-specific genes including ALP and BSP induced by LPS. In conclusion, LPS could induce osteoblast apoptosis and inhibit osteoblast differentiation via activation of JNK pathway.  相似文献   

7.
Summary:  Leukocyte immunoglobulin (Ig)-like receptor B4 (LILRB4)(previously termed gp49B1) is a member of the Ig superfamily expressed constitutively on the surface of mast cells, neutrophils, and macrophages. LILRB4 inhibits IgE-dependent activation of mast cells in vitro through its two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit the src homology domain type-2-containing tyrosine phosphatase 1 into the cell membrane. Accordingly, Lilrb4−/− mice exhibit greater incidence and severity of IgE- and mast cell-dependent anaphylactic inflammation compared with mice that express LILRB4. In addition, mast cell-dependent inflammation induced by the interaction of stem cell factor (SCF) with its receptor Kit is also more severe in Lilrb4−/− mice, indicating that the counterregulatory function of LILRB4 extends beyond inflammation induced by Fc receptors, which signal through ITIMs, to responses initiated through a receptor tyrosine kinase. Indeed, pathologic inflammatory responses induced by activation of neutrophils with lipopolysaccharide (LPS) alone or with tissue-specific autoantibodies are greatly exacerbated in Lilrb4−/− mice. The rapid upregulation of LILRB4 expression on neutrophils in Lilrb4+/+ mice in response to LPS suggests it is an innate counterregulatory response designed to reduce pathologic inflammation. Nevertheless, LILRB4 also serves a similar purpose for inflammation induced by the humoral adaptive immune response that is manifested through effector cells bearing Fc receptors.  相似文献   

8.
9.
Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock.  相似文献   

10.
Catecholamines are molecules with immunomodulatory properties in health and disease. Several studies showed the effect of catecholamines when administered to restore hemodynamic stability in septic patients. This study investigates the effect of norepinephrine and dobutamine on whole blood cytokine release after ex vivo lipopolysaccharide (LPS) stimulation. Whole blood collected from healthy individuals was stimulated with LPS, in the presence of norepinephrine or dobutamine at different concentrations, with or without metoprolol, a β1 receptor antagonist. Cytokine measurement was performed in isolated cell culture supernatants with ELISA. Results are expressed as mean?±?SEM and compared with Mann-Whitney rank-sum test. Both norepinephrine and dobutamine significantly reduced TNF-α and IL-6 production after ex vivo LPS stimulation of whole blood in a dose-dependent manner, and this effect was partially reversed by the presence of metoprolol. Norepinephrine and dobutamine reduce the LPS-induced production of pro-inflammatory cytokines, thus possibly contributing to altered balance between the inflammatory and anti-inflammatory responses, which are vital for a successful host response to severe disease, shock, and sepsis.  相似文献   

11.
12.
One of the key components of the innate immune response is the recognition of microbial products such as LPS by Toll-like receptors on monocytes and neutrophils. We show here that short-term stimulation of primary human monocytes with LPS led to an increase in adhesion of monocytes to endothelial cells and a dramatic decrease in transendothelial migration under static conditions. In contrast, under normal physiological flow, monocyte adhesion and migration across a human umbilical vein endothelial cell monolayer appeared to be unaffected by LPS treatment. LPS stimulation of monocytes activated beta(1) and beta(2) integrins, but did not increase their surface expression levels. During septic shock, reduction in blood flow as a result of vasodilation and vascular permeability leads to adhesion and accumulation of LPS-stimulated circulating monocytes onto the blood vessel walls. The different findings of monocyte migration under static and flow conditions in our study may offer one explanation for this phenomenon. The rapid engagement of LPS-activated monocytes preventing transendothelial migration could represent a novel mechanism of bacterial exclusion from the vasculature. This occurs during the early stages of sepsis, and in turn may modulate the severity of the pathophysiology.  相似文献   

13.
Toll-like receptors (TLRs) are a recently described family of immune receptors involved in the recognition of pathogen-associated molecular patterns (PAMPs). The central role of TLR-2 and TLR-4 in microbial responses suggests they may be implicated in the pathogenesis of human sepsis. We hypothesized that the incidence and outcome of sepsis would be influenced by the expression of TLR-2 and TLR-4 on monocytes. We have examined the expression of TLR-2 and TLR-4 mRNA and protein and their response to pro- and anti-inflammatory agents on monocytes from subjects in the intensive therapy unit (ITU) with and without Gram-negative, Gram-positive or polymicrobial sepsis. We compared these data to ITU and healthy control subjects. TLR-2 mRNA was significantly up-regulated on monocytes from subjects with both Gram-positive and Gram-negative sepsis. Similarly, we detected increased levels of TLR-2 protein on the surface of monocytes from sepsis subjects relative to ITU controls. TLR-4 mRNA was increased in Gram-positive subjects; however, there was no corresponding increase in TLR-4 protein. Although TLR-4 mRNA expression in healthy control monocytes could be modulated in vitro by culture with lipopolysaccharide or interleukin-10, this was not observed in monocytes obtained from sepsis and ITU control subjects, suggesting that septic and ITU control milieus may alter the immunoregulation of TLR-4 mRNA expression on monocytes. TLR-2 mRNA was not modulated in culture by any stimulus in any group. We suggest that expression and regulatory response of monocyte TLR-2, and to a lesser extent TLR-4 may be abnormal in human sepsis.  相似文献   

14.
Chickens possess toll-like receptor (TLR15), a pattern recognition receptor (PRR) absent in mammals. We characterized the regulation and mechanism of CpG responsiveness via TLRs in chicken macrophage HD11 cells. TLR15 was significantly upregulated after induction with B- and C-type CpG oligonucleotides (ODN), tripalmitoylated lipopeptide (PAM3CSK4), Escherichia coli- and Salmonella enteritidis-derived lipopolysaccharide (LPS). In response to CpG-ODN inhibitor, TLR15 and IL1B were downregulated, but TLR21 was upregulated. IL1B was upregulated with CpG-ODN and downregulated after inhibitor treatment. The results suggest that responsiveness to different types of CpG-ODN in chicken macrophages requires multiple receptors, each with unique variation in expression. We utilized RNA interference (RNAi) technology to examine myeloid differentiation primary response gene (MyD88) dependency of TLR15 and TLR21. HD11 macrophages transfected with multiple MyD88-target siRNAs exhibited 70% decrease in MyD88 mRNA expression. IL1B was upregulated with CpG induction in cells with no reduction of MyD88 mRNA levels, but not in cells with 70% MyD88 reduction. Therefore, induction through TLR15 in response to CpG-ODN operates via the MyD88-dependent pathway in chicken macrophages.  相似文献   

15.
16.
HLA-G, a natural immunosuppressant present in the human placenta during pregnancy, prevents fetal destruction by the maternal immune system. The immunosuppressive effect of HLA-G is mediated by the immune cell inhibitory receptors, LILRB1 and LILRB2. HLA-G forms disulfide-linked dimers by natural oxidation, and the dimer associates with LILRB1/B2 much more strongly than the monomer. Furthermore, the dimer formation remarkably enhanced the LILRB-mediated signaling. In this report, we studied the in vivo immunosuppressive effect of the HLA-G dimer, using the collagen-induced arthritis model mouse. Mice were treated with the HLA-G monomer or dimer intracutaneously at the left foot joint, once or for 5 days, and the clinical severity was evaluated daily in a double-blind study. The HLA-G monomer and dimer both produced excellent anti-inflammatory effects with a single, local administration. Notably, as compared to the monomer, the dimer exhibited significant immunosuppressive effects at lower concentrations, which persisted for about two months. In accordance with this result, a binding study revealed that the HLA-G dimer binds PIR-B, the mouse homolog of the LILRBs, with higher affinity and avidity than the monomer. The HLA-G dimer is expected to be quite useful as an anti-rheumatoid arthritis agent, in small amounts with minimal side effects.  相似文献   

17.
Lipopolysaccharide (LPS), a part of the Gram-negative bacteria cell wall, is a potent inducer of tumor necrosis factor (TNF). TNF is an important mediator in Gram-negative infections such as meningococcal septic shock, but its harmful action can be prevented by the natural occurring soluble (s) TNF receptors (sTNFR) sp55 and sp75. In this study, the effect of LPS on release of sTNFR was investigated. First, we found a selective increase in human whole-blood sp75 TNFR levels following LPS stimulation, accompanied by no increase in sp55. Separating the different blood cell populations, mononuclear cells (PBMC) selectively released sp75 upon LPS stimulation, while LPS induced a minor increase in sp75 release from polymorphonuclear granulocytes. Interestingly, in co-cultures of PBMC and granulocytes, the release of LPS-induced sp75 TNFR was enhanced. Second, adherent monocytes were also found to selectively release sp75 TNFR upon LPS stimulation, where Neisseria meningitidis LPS was found to be 100-1000 times more potent in inducing sp75 release than Escherichia coli LPS. Using flow cytometry, the monocyte membrane distribution of both TNFR were found to be increased after LPS stimulation. Third, human umbilical vein endothelial cells selectively released sp55 TNFR after stimulation with LPS. We conclude that mononuclear and endothelial cells might be the main sources of soluble p75 and p55 TNFR, respectively, observed in Gramnegative sepsis, although these receptors are released in vivo more rapidly than they are in vitro.  相似文献   

18.
19.
20.
Patients with cystic fibrosis (CF) exhibit an excessive host inflammatory response. The aim of this study was to determine (i) whether interleukin 8 (IL-8) secretion is increased from monocytes from subjects heterozygous as well as homozygous for cystic fibrosis transmembrane conductance regulator (CFTR) mutations and (ii) whether this is due to increased cell surface lipopolysaccharide (LPS) receptors or, alternatively, increased activation of mitogen-activated protein kinases (MAPK). The basal level of IL-8 secretion was higher from monocytes from CF patients than from monocytes from healthy controls (P = 0.02) and obligate heterozygotes (parents of the CF patients). The 50% effective concentrations for LPS-induced IL-8 production for monocytes from both CF patients and obligate heterozygotes were 100-fold lower than those for monocytes from healthy controls (P < 0.05). No differences in the levels of IL-1β production were seen between these groups. Expression of the LPS surface receptors CD14 and Toll-like receptor 4 were not different between CF patients and healthy controls. In contrast, phosphorylation of the MAPKs p38 and ERK occurred at lower doses of LPS in monocytes from patients heterozygous and homozygous for CFTR mutations. These results indicate that a single allelic CFTR mutation is sufficient to augment IL-8 secretion in response to LPS. This is not a result of increased LPS receptor expression but, rather, is associated with alterations in MAPK signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号