首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Melatonin has been reported in a variety of food plants and, consequently, in a number of plant-derived foodstuffs. In grapevine (Vitis vinifera L.) products, it was found in berry exocarp (skin) of different cultivars and monovarietal wines. Herein, we assessed, by means of mass spectrometry, the occurrence of melatonin in all berry tissues (skin, flesh, and seed) at two different phenological stages, pre-véraison and véraison. We detected the highest melatonin content in skin, at pre-véraison, whereas, at véraison, the highest levels were reported in the seed. Furthermore, during ripening, melatonin decreased in skin, while increasing in both seed and flesh. The relative concentrations of melatonin in diverse berry tissues were somewhat different from those of total polyphenols (TP), the latter measured by the Folin-Ciocalteau assay, and more abundant in seed at pre-véraison and in exocarp at véraison. The highest antiradical activity, determined by both DPPH (2,2-diphenyl-1-pycryl hydrazyl) and ABTS [(2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] radical-scavenging assay, was reported at pre-veráison in seed. To the best of our knowledge, we reported, for the first time, the occurrence of melatonin in grape seeds.  相似文献   

2.
Melatonin is a neurohormone, chronobiotic, and antioxidant compound found in wine and deriving directly from grapes and/or synthesized by yeast during alcoholic fermentation. In addition, a melatonin isomer has been detected in different foods, wine among them. The special interest for melatonin isomer related to the fact that it was found in greater quantities than melatonin and probably shares some of its biological properties. Despite this, its chemical structure has not yet been defined; although some researchers hypothesize, it could be melatonin with the ethylacetamide group shifted into position N1. Thus, the aim of our study was to identify the structures of the melatonin isomer. For this purpose, melatonin and melatonin isomer in Syrah wine were separated chromatographically by a sub‐2 μm particle column and detected by tandem mass spectrometry. The sample was then purified and concentrated by solid‐phase extraction, hydrolyzed with alkali or esterase, and substrates and products quantified by UPLC‐MS/MS. Moreover, melatonin, melatonin isomer, and their product ions were evaluated by high‐resolution mass spectrometry. The amount of melatonin isomer and melatonin in the wine was 84 ± 4 and 3 ± 0 ng/mL, respectively. In the solutions, containing diluted alkali or esterase, melatonin isomer was hydrolyzed in about 8 min. Correspondingly, tryptophan was detected, and its amount increased and reached the maximum concentration in about 8 min. Melatonin concentration was not affected by diluted alkali or esterase. The fragmentation pattern of melatonin isomer was different from that of melatonin but comparable to that of tryptophan‐ethylester. Finally, the so‐called melatonin isomer identity was verified by cochromatography with authentic standard of tryptophan‐ethylester.  相似文献   

3.
Several studies have shown the presence of melatonin and related compounds in grapes and wines. The latter provides evidence of the possibility to enhance the nutraceutical properties of premium wines. However, there are many external factors that can influence the levels of this indolamine in grape and wines. In this study, the monitoring of melatonin and its tentatively identified isomer was carried out during the entire winemaking process in Vitis vinifera cv. Malbec by ultra high-performance liquid chromatography-tandem mass spectrometry. Laboratory and pilot studies were carried out to elucidate the role of grape, yeasts, and tryptophan in the evolution of the indolamines during the fermentation process. Melatonin was detected in grape extract within the range 120-160 ng/g while its isomer was found in musts and finished wines. Our results demonstrate that Saccaromyces cervisiae plays a decisive role in contributing to the content of melatonin and its isomer in wine.  相似文献   

4.
Abstract:  Melatonin exists in a considerable variety of plant species. However, the physiological roles of melatonin in plants are not well understood. In this study, the distribution and accumulation of melatonin during leaf and fruit development were analyzed in Micro-Tom, a model cultivar of tomato ( Solanum lycopersicum L.). Melatonin was extracted using an acetone–methanol method and measured by enzyme-linked immunosorbent assay. Melatonin was detected in leaves, stems, roots, flowers, fruits, seedlings and seeds in the range of 1.5–66.6 ng/g fresh weight, with seeds containing the highest concentration of melatonin. In fruits and leaves, melatonin concentrations varied depending on the developmental stage, suggesting that melatonin controls some of the processes involved in plant maturation.  相似文献   

5.
Resistance inducers are a class of agrochemicals, including benzothiadiazole and chitosan, which activate the plant own defence mechanisms. In this work, open-field treatments with plant activators were performed on two red grape (Vitis vinifera L.) varieties cultivated in different localities, Groppello (Brescia, Lombardia, Italy) and Merlot (Treviso, Veneto, Italy). Treatments were carried out every 10 days until the véraison and, after harvesting, experimental wines (microvinificates) were prepared. In general, both melatonin and total polyphenol content, determined by mass spectrometry and Folin-Ciocalteu assay, respectively, were higher in wines produced from grapes treated with resistance inducers than in those obtained from untreated control and conventional fungicide-treated grapes. Accordingly, antiradical power of wines derived from plant activator-treated grapes, measured by both DPPH (2,2-diphenyl-1-picrylhydrazyl) and the ABTS [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical-scavenging assay, was higher than in their counterparts. To the best of our knowledge, this is the first report on the effects of agrochemicals on the melatonin content of red wine.  相似文献   

6.
7.
Possible role of melatonin in the germination of negatively photoblastic and thermosensitive seeds of Phacelia tanacetifolia Benth was studied. Final germination percentage (FGP) was determined in the presence or absence of light at various temperatures, ranging from 0 to 40°C. The highest FGP was determined as 48.7% and 92% at temperature of 15°C in the presence and absence of light, respectively. Seeds were primed with 1% KNO(3) containing various concentrations (0.3, 1, 6, 12, 30, 60, or 90 μM) of melatonin for 2 days at 15°C in darkness. Primed seeds were germinated at an inhibitory temperature of 30°C, and results were compared to those occurring at the optimum temperature of 15°C under both light and no light conditions. Melatonin incorporated into priming medium significantly reversed the inhibitory effects of light and high temperature. Germination was elevated from 2.5% to 52% of FGP for seeds primed in the presence of 6 μM melatonin in darkness at 30°C, while 1 μM melatonin had the highest FGP (21.0%) in the presence of light at 30°C. The highest FGP (47.5%) was obtained from seeds primed in the presence of 0.3 μM melatonin under the light condition at 15°C, while untreated seeds had 1.5% of FGP. The fastest seed germination was determined from seeds primed in the presence of 0.3 μM melatonin (G(50) = 0.56 days) at 15°C in darkness. The possible roles of melatonin in promoting germination parameters of photo- and thermosensitive seed germination are discussed.  相似文献   

8.
Grapes are an important economic crop and are widely cultivated around the world. Most grapes are grown in arid or semi‐arid regions, and droughts take a heavy toll in grape and wine production areas. Developing effective drought‐resistant cultivation measures is a priority for viticulture. Melatonin, an indoleamine, mediates many physiological processes in plants. Herein, we examined whether exogenously applied melatonin could improve the resistance of wine grape seedlings grown from cuttings to polyethylene glycol‐induced water‐deficient stress. The application of 10% polyethylene glycol (PEG) markedly inhibited the growth of cuttings, caused oxidative stress and damage from H2O2 and , and reduced the potential efficiency of Photosystem II and the amount of chlorophyll. Application of melatonin partially alleviated the oxidative injury to cuttings, slowed the decline in the potential efficiency of Photosystem II, and limited the effects on leaf thickness, spongy tissue, and stoma size after application of PEG. Melatonin treatment also helped preserve the internal lamellar system of chloroplasts and alleviated the ultrastructural damage induced by drought stress. This ameliorating effect may be ascribed to the enhanced activity of antioxidant enzymes, increased levels of nonenzymatic antioxidants, and increased amount of osmoprotectants (free proline). We conclude that the application of melatonin to wine grapes is effective in reducing drought stress.  相似文献   

9.
Abstract: A comprehensive investigation was carried out to determine the changes that occurred in water‐stressed cucumber (Cucumis sativus L.) in response to melatonin treatment. We examined the potential roles of melatonin during seed germination and root generation and measured its effect on reactive oxygen species (ROS) levels, antioxidant enzyme activities, and photosynthesis. Melatonin alleviated polyethylene glycol induced inhibition of seed germination, with 100 μm melatonin‐treated seeds showing the greatest germination rate. Melatonin stimulated root generation and vitality and increased the root:shoot ratio; therefore, melatonin may have an effect on strengthening cucumber roots. Melatonin treatment significantly reduced chlorophyll degradation. Seedlings treated with 100 μm melatonin clearly showed a higher photosynthetic rate, thus reversing the effect of water stress. Furthermore, the ultrastructure of chloroplasts in water‐stressed cucumber leaves was maintained after melatonin treatment. The antioxidant levels and activities of the ROS scavenging enzymes, i.e., superoxide dismutase, peroxidase, and catalase, were also increased by melatonin. These results suggest that the adverse effects of water stress can be minimized by the application of melatonin.  相似文献   

10.
The effect of melatonin treatment on postcastration serum LH and FSH levels during the latter stages of the breeding season and during the recrudescence phase of the seasonal reproductive cycle of the male mongoose was evaluated. Melatonin treatment (20 μg/day for 10 days) during the latter stages of the breeding season and during the recrudescence phase effectively reduced the postcastration gonadotropin response. Higher doses of melatonin (200 μg/day for 10 days) failed to reduce the postcastration elevation of LH and FSH. The role of melatonin in the regression and recrudescence processes of the annual reproductive cycle is discussed.  相似文献   

11.
12.
The interaction of arginine vasotocin (AVT) and norepinephrine (NE) upon pineal gland indoleamine synthesis was investigated. Rat pineal glands were incubated for 10 h in Krebs-Ringer bicarbonate plus 2 mg/ml glucose, 1 mg/ml bovine serum albumin, [14C]tryptophan, NE (10?6 M), and log doses of AVT ranging from 100 ng to 10 μg. Incubation media were extracted for [14C] serotonin while the other [14C]indoleamines, melatonin, hydroxyindoleacetic acid (HIAA), methoxyindoleacetic acid (MIAA), N-acetylserotonin (NAS), hydroxytryptophol (HTOL), and methoxytryptophol (MTOH) were separated by thin-layer chromatography. Serotonin metabolism was decreased by 0.1 μg AVT and NAS decreased by 1.0 μg AVT. Melatonin synthesis was decreased by both 0.1 and 1.0 μg AVT. AVT also decreased the conversion of [14C]serotonin to MIAA and to HTOL. The data indicate that AVT decreased NE-stimulated pineal indoleamine synthesis in vitro and further suggests that AVT may participate in the intracellular regulation of melatonin synthesis.  相似文献   

13.
Melatonin stimulated steroidogenesis in two compartments of the human ovary in vitro. In a corpus luteum of the menstrual cycle, melatonin increased progesterone synthesis in a dose related manner. Both serotonin and N-acetyl serotonin had no effect on progesterone synthesis. In the ovarian stroma, melatonin stimulated the incorporation of acetate-1-14-C into androstenedione. Binding of radioactive hCG by the corpus luteum was unaffected by melatonin. No specific binding of radioactive melatonin of low specific activity could be detected in homogenates of a human corpus luteum. These observations suggest that melatonin may directly modulate steroidogenesis in the human ovary.  相似文献   

14.
The identification of melatonin in plants has inspired new investigations to understand its biological function and which endogenous and external factors control its levels in these organisms. Owing to the therapeutical and nutraceutical properties of melatonin, it should be important to develop reliable analytical methods for its quantification in vegetal matrices containing this indoleamine, such as grape and wine. The main objectives of the present study were to test whether melatonin levels fluctuate during the day in berry skins of Vitis vinifera L. cv Malbec, thereby possibly relating its abundance to its putative antioxidant function, to determine whether daylight reaching clusters negatively controls melatonin levels, and to evaluate whether total polyphenols and anthocyanins also change through a 24-hr period. Grapes were harvested throughout the day/night to determine the moment when high levels of these components are present in grapes. The presence of melatonin in grapes was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. It is shown for the first time that melatonin levels fluctuate during the day/night cycle in plants grown under field conditions in a fruit organ of the species Vitis vinifera. We also determined that the diurnal decay of melatonin in berry skins is induced by sunlight, because covered bunches retained higher melatonin levels than exposed ones, thus explaining at least part of the basis of its daily fluctuation. Evidence of melatonin's antioxidant role in grapes is also suggested by monitoring malondialdehyde levels during the day.  相似文献   

15.
Abstract: This study focused on the effect of melatonin on in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Melatonin was measured in porcine follicular fluid of follicles of different sizes in the same ovary. Melatonin exists in follicular fluid, and the concentration is approximately 10?11 m . Its concentration decreased as the diameter of follicle increased, which suggests an effect of melatonin on oocyte maturation. Therefore, immature oocytes were cultured in vitro in maturation medium supplemented with melatonin (10?11, 10?9, 10?7, 10?5 and 10?3 m ) or without melatonin. The oocytes at maturation stage were collected and activated. The parthenogenetic embryos were cultured and observed in medium supplemented with or without melatonin. Fresh immature oocytes without melatonin treatment were used as control. When only maturation medium was supplemented with 10?9 m melatonin, the cleavage rate, blastocyst rate and the cell number of blastocyst (70 ± 4.5%, 28 ± 2.4% and 50 ± 6.5%) were significantly higher (P < 0.05) than that of controls; when only culture medium was supplemented with melatonin, the highest cleavage rate, blastocyst rate and the cell number of blastocyst was observed at 10?7 m melatonin, which were significantly higher than that of controls (P < 0.05). The best results (cleavage rates 79 ± 8.4%, blastocyst rates 35 ± 6.7%) were obtained when both the maturation and culture medium were supplemented with 10?9 m melatonin respectively (P < 0.05). In conclusion, exogenous melatonin at the proper concentration may improve the in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Further research is needed to identify the effect of melatonin on in vitro and in vivo oocyte maturation and embryo development in porcine.  相似文献   

16.
This study investigated whether melatonin protects luteinized granulosa cells from reactive oxygen species (ROS) as an antioxidant to enhance progesterone production in the follicle during ovulation. Follicular fluid was sampled at the time of oocyte retrieval in women undergoing in vitro fertilization and embryo transfer (IVF-ET). Melatonin concentrations in the follicular fluid were positively correlated with progesterone concentrations (r = 0.342, P < 0.05) and negatively correlated with the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative stress marker (r = -0.342, P < 0.05). The progesterone and 8-OHdG concentrations were negatively correlated (r = -0.246, P < 0.05). Luteinized granulosa cells were obtained at the time of oocyte retrieval in women undergoing IVF-ET. Cells were incubated with H(2)O(2) (30, 50, 100 μm) in the presence or absence of melatonin (1, 10, 100 μg/mL). Progesterone production by luteinized granulosa cells was significantly inhibited by H(2)O(2). Melatonin treatment overcame the inhibitory effect of H(2) O(2) . Twenty-five patients who had luteal phase defect (serum progesterone concentrations <10 ng/mL during the mid-luteal phase) were divided into two groups during the next treatment cycle: 14 women were given melatonin (3 mg/day at 22:00 hr) throughout the luteal phase and 11 women were given no medication as a control. Melatonin treatment improved serum progesterone concentrations (>10 ng/mL during the mid-luteal phase) in nine of 14 women (64.3%), whereas only two of 11 women (18.1%) showed normal serum progesterone levels in the control group. In conclusion, melatonin protects granulosa cells undergoing luteinization from ROS in the follicle and contributes to luteinization for progesterone production during ovulation.  相似文献   

17.
Abstract: Melatonin is a bioactive compound that is present in wine because it is contained in vinification grapes and synthesized by yeast during alcoholic fermentation. The purpose of this study was to determine the capacity of various Saccharomyces strains to form melatonin during its growth and alcoholic fermentation. A selection of yeasts including six S. cerevisiae (Lalvin CLOS, Lalvin ICV‐D254, Enoferm QA23 Viniferm ARM, Viniferm RVA, and Viniferm TTA), one S. uvarum (Lalvin S6U) and one S. cerevisiae var. bayanus (Uvaferm BC) were tested to determine whether they produce melatonin in yeast extract peptose dextrose and synthetic must media in a variety of conditions. Two S. cerevisiae strains (ARM, and QA23), the S. uvarum and the S. cerevisiae var. bayanus, synthesized melatonin. The conditions in which they did so, however, were different: the QA23 strain produced melatonin best in a medium with a low concentration of reducing sugars and Lalvin S6U and Uvaferm BC required a synthetic must under fermentation conditions. Melatonin synthesis largely depended on the growth phase of the yeasts and the concentration of tryptophan, reducing sugars and the growth medium. These results indicate that melatonin may have a role as a yeast growth signal molecule.  相似文献   

18.
Melatonin content in the epiphysis, serotonin, noradrenaline, dopamine-in the hypothalamus, gonadotropins--in the hypophysis of rats was studied under normal conditions and following ovariectomy; regularly of the estral cycle phases was studied as well. Two series of experiments were conducted on 120 rats with regular estral cycles. The animals were divided into groups according to the estral cycle phase. Melatonin concentration in the epiphysis, serotonin, noradrenaline, dopamine--in the hypothalamus was subject to variations coinciding with the estral cycle phases. Serotonin, noradrenaline, and dopamine content decreased in the hypophysis of ovariectomized rats in comparison with control; melatonin content rose in the epiphysis. There was no complete extinction of the estral cycle in the course of investigation (20 days). The action of castration on the sexual cycle depended on the phase at which the rats were subjected to ovariectomy. A reverse relationship existed between the melatonin content in the epiphysis and serotonin content in the hypothalamus, this serving as one of the important factors in the regulation of the sexual function.  相似文献   

19.
Studies from another laboratory have shown that several strains of laboratory mice have a genetic defect for melatonin synthesis. In non-deficient species, melatonin synthesis undergoes a typical, beta-adrenergically regulated day/night rhythm with low melatonin levels during daytime and high levels at night, the precursor serotonin showing an inverse behaviour. This study examines whether a day/night rhythm of pineal serotonin levels exists in melatonin-deficient male BALB/c mice. Mice kept under a lighting schedule of 12 h light (lights on at 07.00 h) and 12 h dark were killed at 13.00 and 01.00 h, respectively. Serotonin amounted to 12-15 ng/pineal and did not show regular day/night differences. Administration of the beta-adrenergic agonist, isoproterenol, which is known to affect melatonin synthesis in a number of species, was without effect on pineal serotonin levels. Melatonin and two of the melatonin-forming enzymes, serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) were below the detection limit in the pineal. It is concluded that in melatonin-deficient BALB/c mice, pineal serotonin synthesis is apparently intact. In BALB/c mice, serotonin synthesis and release do not appear to be directly or indirectly regulated by beta-adrenergic mechanisms.  相似文献   

20.
Melatonin is a hormone secreted from the pineal gland specifically at night and contributes to a wide array of physiological functions in mammals. Melatonin is one of the most well understood output of the circadian clock located in the suprachiasmatic nucleus. Melatonin synthesis is controlled distally via the circadian clock located in the suprachiasmatic nucleus and proximally regulated by norepinephrine released in response to the circadian clock signals. To understand melatonin synthesis in vivo, we have performed microdialysis analysis of the pineal gland, which monitors melatonin as well as the precursor (serotonin) and intermediate (N-acetylserotonin) of melatonin synthesis in freely moving animals in realtime at high resolution. Our data revealed a number of novel features of melatonin production undetected using conventional techniques, which include (1) large inter-individual variations of melatonin onset timing; (2) circadian regulation of serotonin synthesis and secretion in the pineal gland; and (3) a revised view on the rate-limiting step of melatonin formation in vivo. This article will summarize the main findings from our laboratory regarding melatonin formation in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号