首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural maintenance of chromosomes 2 (SMC2) gene encodes condensin complexes that are required for proper chromosome segregation and maintenance of chromosomal stability. Although cells with defective chromosome segregation become aneuploid and are prone to harbor chromosome instability, pathologic implications of SMC2 gene alterations are largely unknown. In a public database, we found that SMC2 gene had mononucleotide repeats that could be mutated in cancers with microsatellite instability (MSI). In this study, we analyzed these repeats in 32 gastric cancers (GC) with high MSI (MSI‐H), 59 GC with low MSI (MSI‐L)/stable MSI (MSS), 43 colorectal cancers (CRC) with MSI‐H and 60 CRC with MSI‐L/MSS by single‐strand conformation polymorphism (SSCP) and DNA sequencing. We also analyzed SMC2 protein expression in GC and CRC tissues using immunohistochemistry. We found SMC2 frameshift mutations in two GC and two CRC that would result in truncation of SMC2. The mutations were detected exclusively in MSI‐H cancers, but not in MSI‐L/MSS cancers. Loss of SMC2 expression was observed in 22% of GC and 25% of CRC. Of note, all of the cancers with SMC2 frameshift mutations displayed loss of SMC2 expression. Also, both GC and CRC with MSI‐H had significantly higher incidences in SMC2 frameshift mutations and loss of SMC2 expression than those with MSI‐L/MSS. Our data indicate that SMC2 gene is altered by both frameshift mutation and loss of expression in GC and CRC with MSI‐H, and suggest that SMC2 gene alterations might be involved in pathogenesis of these cancers.  相似文献   

2.
Laminins are important in tumor invasion and metastasis as well as in maintenance of normal epithelial cell structures. However, mutation status of laminin chain‐encoding genes remains unknown in cancers. Aim of this study was to explore whether laminin chain genes are mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). In a public database, we found that laminin chain genes LAMA1, LAMA3, LAMB1 and LAMB4 had mononucleotide repeats in the coding sequences that might be mutation targets in the cancers with microsatellite instability (MSI). We analyzed the genes in 88 GC and 139 CRC [high MSI (MSI‐H) or stable MSI/low MSI (MSS/MSI‐L)] by single strand conformation polymorphism analysis and DNA sequencing. In the present study, we found LAMB4 (11.8% of GC and 7.6% of CRC with MSI‐H), LAMA3 (2.9% of GC and 2.5 of CRC with MSI‐H), LAMA1 (5.9% of GC with MSI‐H) and LAMB1 frameshift mutations (1.3% of CRC with MSI‐H). These mutations were not found in MSS/MSI‐L (0/114). We also analyzed LAMB4 expression in GC and CRC by immunohistochemistry. Loss of LAMB4 expression was identified in 17–32% of the GC and CRC. Of note, the loss expression was more common in the cancers with LAMB4 mutation or those with MSI‐H. Our data show that frameshift mutations of LAMA1, LAMA3, LAMB1 and LAMB4, and loss of LAMB4 may be features of GC and CRC with MSI‐H.  相似文献   

3.
Mounting evidence indicates that deregulation of microRNAs (miRNAs) are involved in development of many human diseases, including cancers. Regulation of miRNA is a complicated process and some components in the regulation are known to be altered in human cancers. Among the miRNA regulation‐related genes, we found that AGO1, AGO2, TNRC6A, TNRC6C, TARBP2 and EXPORTIN5 genes have mononucleotide repeats in their coding sequences. To see whether these genes are mutated in cancers with microsatellite instability (MSI), we analysed the mononucleotide repeats in 27 gastric cancers (GCs) with high MSI (MSI‐H), 18 GC with low MSI (MSI‐L), 45 GC with stable MSI (MSS), 41 colorectal cancers (CRCs) with MSI‐H, 14 CRCs with MSI‐L and 45 CRCs with stable MSI (MSS) by single‐strand conformation polymorphism (SSCP) analysis and DNA sequencing. We found AGO2, TNRC6A, TARBP2, TNRC6C and EXPORTIN5 mutations in 10, six, one, one and one cancer(s), respectively. They were detected in MSI‐H but not in MSI‐L or MSS cancers. The GCs and CRCs with MSI‐H harboured one or more mutations of the genes in 22% and 27%, respectively. We also analysed Ago2 and TNRC6A protein expressions in GCs and CRCs with MSI‐H. In cancers with MSI‐H, loss of Ago2 expression was observed in 40% of GCs and 35% of CRCs, while loss of TNRC6A was observed in 52% of the GCs and 54% of the CRCs. Our data indicate that frameshift mutations in AGO2 and TNRC6A and their losses of expression are common in GCs and CRCs with MSI‐H, and suggest that these alterations may contribute to the cancer development by deregulating miRNA regulation. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

4.
5.
Mounting evidence indicates that alterations of autophagy processes are directly involved in the development of many human diseases, including cancers. Autophagy‐related gene (ATG) products are main players in the autophagy process. In humans there are 16 known ATG genes, of which four (ATG2B, ATG5, ATG9B and ATG12) have mononucleotide repeats with seven or more nucleotides. Frameshift mutations of genes with mononucleotide repeats are features of cancers with microsatellite instability (MSI). It is not known whether ATG genes with mononucleotide repeats are altered by frameshift mutations in gastric and colorectal carcinomas with MSI. For this, we analysed the mononecleotide repeats in ATG2B, ATG5, ATG9B and ATG12 in 32 gastric carcinomas with high MSI (MSI‐H), 13 gastric carcinomas with low MSI (MSI‐L), 43 colorectal carcinomas with MSI‐H and 15 colorectal carcinomas with MSI‐L by a single‐strand conformation polymorphism (SSCP) analysis. We found ATG2B, ATG5, ATG9B and ATG12 mutations in 10, 2, 13 and 0 cancers, respectively. The mutations were detected in MSI‐H cancers but not in MSI‐L cancers. Gastric and colorectal cancers with MSI‐H harboured one or more ATG mutations in 28.1% and 27.9%, respectively. Our data indicate that frameshift mutations in ATG genes with mononucleotide repeats are common in gastric and colorectal carcinomas with MSI‐H, and suggest that these mutations may contribute to cancer development by deregulating the autophagy process. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Kim MS  Chung NG  Kang MR  Yoo NJ  Lee SH 《Histopathology》2011,58(5):660-668
Kim M S, Chung N G, Kang M R, Yoo N J & Lee S H
(2011) Histopathology 58 , 660–668
Genetic and expressional alterations of CHD genes in gastric and colorectal cancers Aims: Chromodomain helicase DNA‐binding protein (CHD) is a regulator of the chromatin remodelling process. The aim was to determine the CHD1, CHD2, CHD3, CHD4, CHD7, CHD8 and CHD9mutational status of mononucleotide repeats in gastric and colorectal cancers with microsatellite instability (MSI). Methods and Results: The repeats were determined in 28 gastric cancers (GCs) with high MSI (MSI‐H), 45 GCs with low MSI (MSI‐L)/stable MSI (MSS), 35 colorectal cancers (CRCs) with MSI‐H and 45 CRCs with MSI‐L/MSS by single‐strand conformation polymorphism analysis. CHD4 and CHD8 expressionwas also examined in GCs and CRCs by immunohistochemistry. CHD1, CHD2, CHD3, CHD4, CHD7, CHD8 and CHD9 mutations were found in five, 19, three, five, seven, 10 and seven cancers, respectively. They were detected in MSI‐H cancers, but not in MSI‐L/MSS cancers. Loss of CHD4 expression was observed in 56.4% of the GCs and 55.7% of the CRCs, and loss of CHD8 was observed in 35.7% of the GCs and 28.6% of the CRCs. The cancers with CHD4 and CHD8 mutations showed loss of CHD4 and CHD8 expression, respectively. Conclusions: Frameshift mutation and loss of expression of CHD genes are common in GCs and CRCs with MSI‐H.These alterations might contribute to cancer pathogenesis by deregulating CHD‐mediated chromatin remodelling.  相似文献   

7.
Mounting evidence exists that perturbation of bone morphogenic protein (BMP) signaling is involved in cancer development, especially in gastrointestinal cancers. However, somatic mutations of the genes encoding BMP and BMP receptors have not yet been discovered in human cancer tissues. By analyzing a public database, we found that BMP receptor 2 (BMPR2) and BMP1 genes had mononucleotide repeats in their coding sequences that could be mutation targets in cancers with microsatellite instability (MSI). In this study, we analyzed the mutation of BMPR2 and BMP1 genes in gastric (GC) and colorectal cancers (CRC) with MSI [31 GC with high MSI (MSI-H), 13 GC with low MSI (MSI-L), 38 CRC with MSI-H and 15 CRC with MSI-L] by single-strand conformation polymorphism analysis and DNA sequencing. Overall, we found seven frameshift mutations in the BMPR2 gene, but not in the BMP1 gene. The mutations were an identical deletion mutation of one base in the repeats (c.1748delA) that would result in premature stops of the amino acid synthesis (p.Asn583ThrfsX44). The BMPR2 mutations were detected in 6.5% of GC and 13.2% of CRC with MSI-H. All the cancers with the BMPR2 mutation showed loss of BMPR2 expression. Our data indicate that frameshift mutation of BMPR2 gene occurs in GC and CRC with MSI-H, and suggest that the BMPR2 mutation might contribute to cancer pathogenesis by inactivating BMPR2-mediated BMP signaling.  相似文献   

8.
Early gastric cancers (EGCs) precede advanced gastric cancers (AGCs), with a favourable prognosis compared to AGC. To understand the progression mechanism of EGC to AGC, it is required to disclose EGC and AGC genomes in mutational and evolutionary perspectives. We performed whole‐exome sequencing and copy number profiling of nine microsatellite (MS)‐unstable (MSI‐H) (five EGCs and four AGCs) and eight MS‐stable (MSS) gastric cancers (four EGCs and four AGCs). In the cancers, we observed well‐known driver mutations (TP53, APC, PIK3CA, ARID1A, and KRAS) that were enriched in cancer‐related pathways, including chromatin remodelling and tyrosine kinase activity. The MSI‐H genomes harboured ten times more mutations, but were largely depleted of copy number alterations (CNAs) compared to the MSS cancers. Interestingly, EGC genomes showed a comparable level of mutations to AGC in terms of the number, sequence composition, and functional consequences (potential driver mutations and affected pathways) of mutations. Furthermore, the CNAs between EGC and AGC genomes were not significantly different in either MSI‐H and MSS. Evolutionary analyses using somatic mutations and MSI as molecular clocks further identified that EGC genomes were as old as AGC genomes in both MSS and MSI‐H cancers. Our results suggest that the genetic makeup for gastric cancer may already be achieved in EGC genomes and that the time required for transition to AGC may be relatively short. Also, the data suggest a possibility that the mutational profiles obtained from early biopsies may be useful in the clinical settings for the molecular diagnosis and therapeutics of gastric cancer patients. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

9.
A scaffold protein DAB2 and its interaction partner DAB2IP have putative tumor suppressor gene (TSG) functions. Previous studies identified that both DAB2 and DAB2IP genes were inactivated by promoter hypermethylation in human cancers, but their mutational alterations in cancers remain largely unknown. The aim of our study was to find whether DAB2 and DAB2IP were mutated in gastric (GCs) and colorectal cancers (CRCs) by DNA sequencing. Both DAB2 and DAB2IP have mononucleotide repeats in their coding sequence that could be mutation targets in high microsatellite instability (MSI-H) cancers. We analyzed GC and CRC tissues and found that 8 of 34 GCs (23.5%) and 15 of 79 CRCs (20.0%) with MSI-H harbored DAB2IP frameshift mutations. DAB2 frameshift mutations were found in 2 of 79 CRCs (2.5%) with MSI-H. These mutations were not detected in microsatellite stable (MSS) cancers. We also found intratumoral heterogeneity (ITH) of DAB2IP frameshift mutations in 7 of 16 CRCs (43.8%). Loss of DAB2IP protein expression was found in approximately 20% of GCs and CRCs irrespective of MSI and DAB2IP frameshift mutation status. Our study shows that the TSG DAB2IP harbored frameshift mutations and ITH as well as expression loss. Together these tumor alterations might play a role in tumorigenesis of GC and CRC with MSI-H by down-regulating the tumor-inhibiting activities of DAB2IP.  相似文献   

10.
Kim MS  Kim SS  Ahn CH  Yoo NJ  Lee SH 《Human pathology》2009,40(1):58-4919
Frameshift mutations of genes with mononucleotide repeats are features of colorectal and gastric cancers with microsatellite instability (MSI). Deregulation of Wnt pathway is involved in the mechanisms of cancer development, and mutations of the Wnt-pathway genes have frequently been detected in cancers, indicating somatic mutations are important deregulation mechanisms of the Wnt signaling in cancer development. Both AXIN2 and TCF7L2 genes in the Wnt pathway possess mononucleotide repeats in their coding sequences and are considered as candidate tumor suppressor genes. The aim of this study was to see whether AXIN2 and TCF7L2 are altered by frameshift mutations in gastric carcinomas with MSI. For this, we analyzed human AXIN2 exon 8 and TCF7L2 exon 14 in 32 gastric carcinomas with high MSI, 13 gastric carcinomas with low MSI, and 47 gastric carcinomas without MSI by a single-strand conformation polymorphism analysis. Overall, we detected 9 AXIN2 and 6 TCF7L2 frameshift mutations in the mononucleotide repeats in the cancers with MSH-H, and all of them were found in MSH-H cancers (AXIN2, 28.1%; TCF7L2, 18.8%). Of the 32 high MSI cancers, 13 cancers (40.6%) harbored at least one of AXIN2 and TCF7L2 mutation, whereas 19 cancers (59.4%) harbored neither. The present data indicate that frameshift mutations in both AXIN2 and TCF7L2 genes are common in gastric carcinomas with high MSI and suggest that these mutations may contribute to development of gastric cancers with high MSI by deregulating the Wnt signaling in the affected cancer cells.  相似文献   

11.
Screening for microsatellite instability target genes in colorectal cancers   总被引:4,自引:0,他引:4  
Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes.

Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated.

Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001).

Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies.

  相似文献   

12.
It is unclear whether the mutation spectra in WNT genes vary among distinct types of colorectal tumors. We have analyzed mutations in specific WNT genes in a cohort of 52 colorectal tumors and performed a meta‐analysis of previous studies. Notably, significant differences were found among the mutation spectra. We have previously shown that in familial adenomatous polyposis, APC somatic mutations are selected to provide the “just‐right” level of WNT signaling for tumor formation. Here, we found that APC mutations encompassing at least two β‐catenin down‐regulating motifs (20 a.a. repeats) are significantly more frequent in microsatellite unstable (MSI‐H) than in microsatellite stable (MSS) tumors where truncations retaining less than two repeats are more frequent (P = 0.0009). Moreover, in cases where both APC hits are detected, selection for mutations retaining a cumulative number of two 20 a.a. repeats became apparent in MSI‐H tumors (P = 0.001). This type of mutations were also more frequent in proximal versus distal colonic tumors, regardless of MSI status (P = 0.0008). Among MSI‐H tumors, CTNNB1 mutations were significantly more frequent in HNPCC than in sporadic lesions (28% versus 6%, P < 10‐6) and were preferentially detected in the proximal colon, independently of MSI status (P = 0.017). In conclusion, the observed spectra of WNT gene mutations in colorectal tumors are likely the result from selection of specific levels of β‐catenin signaling, optimal for tumor formation in the context of specific anatomical locations and forms of genetic instability. We suggest that this may underlie the preferential location of MMR deficient tumors in the proximal colon. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
A subset of sporadic gastric cancers (GC) exhibits microsatellite instability (MSI). To define the precise role of MSI in GC, a total of 100 patients with sporadic GC were classified into three groups, i.e., high-frequency MSI (MSI-H), low-frequency MSI (MSI-L), and microsatellite stable (MSS), based on 10 microsatellite markers. Mutational analyses of TGFbetaRII, IGFIIR, BAX, MSH3, MSH6, E2F4, MSH2, MLH1, and TP53 genes, and methylation and protein expression of MLH1 and MSH2 were performed and correlated. Twenty-seven percent of GC showed MSI at least in one locus and could be further graded as MSI-H (14%) and MSI-L (13%). No clinicopathologic difference was noted between GC with MSI-L and MSS. Compared with GC with MSI-L or MSS, GC with MSI-H had a significantly higher frequency of antral location, intestinal subtype, H. pylori seropositivity, but a lower incidence of lymph node metastasis, and displayed a higher frequency of frameshift mutations of TGFbetaRII, IGFIIR, BAX, MSH3, and E2F4 genes but a lower incidence of TP53 mutations. Furthermore, hypermethylation of the MLH1 promoter was responsible for the loss of protein function in 13 of 14 MSI-H tumors. It was concluded that a specific phenotype and a distinct profile of genetic alterations exist in MSI-H GC. We speculate that epigenetic inactivation of MLH1 by methylation plays a crucial role in initiating such a pathway of carcinogenesis. In contrast, GCs with MSS and MSI-L exhibit clinicopathologic features that are distinct from MSI-H tumors and have a higher frequency of TP53 mutations, suggesting that they may evolve through an entirely different pathway.  相似文献   

14.
ERBB3 is a member of EGFR family receptor tyrosine kinases, genetic alterations of which are common and therapeutically targeted in human cancers. Recently, somatic mutations of ERBB3 gene, including recurrent mutation in exon 3 altering Val104, were reported in gastric cancers (GC) and colorectal cancers (CRC), strongly suggesting its role in the development of GC and CRC. To examine whether the recurrent ERBB3 mutations of exon 3 occur in GC and CRC, and other malignancies as well, we analyzed the ERBB3 in 1677 cancer tissues by a single‐strand conformation polymorphism (SSCP) assay. We identified ERBB3 mutations altering the Val104 mutations in GC (0.5%) and CRC (2.2%). However, we did not find the ERBB3 mutations in the other cancers besides GC and CRC. We observed that an increased intensity of phosphorylated ERBB3 (pERBB3) in GC and CRC. Of note, all of the cancers with ERBB3 mutations displayed an increased intensity of pERBB3 immunostaining. Our data indicate that the recurrent ERBB3 mutations altering Val104 occur predominantly in GC and CRC. Also, the data suggest that ERBB3 is altered in GC and CRC by various ways, including somatic mutations and increased expression that might play roles in tumorigenesis.  相似文献   

15.
Every colorectal cancer (CRC) patient should be tested for microsatellite instability (MSI) to screen for Lynch syndrome. Evaluation of MSI status involves screening tumor DNA for the presence of somatic deletions in DNA repeats using PCR followed by fragment analysis. While this method may lack sensitivity due to the presence of a high level of germline DNA, which frequently contaminates the core of primary colon tumors, no other method developed to date is capable of modifying the standard PCR protocol to achieve improvement of MSI detection. Here, we describe a new approach developed for the ultra‐sensitive detection of MSI in CRC based on E‐ice‐COLD‐PCR, using HSP110 T17, a mononucleotide DNA repeat previously proposed as an optimal marker to detect MSI in tumor DNA, and an oligo(dT)16 LNA blocker probe complementary to wild‐type genotypes. The HT17 E‐ice‐COLD‐PCR assay improved MSI detection by 20–200‐fold compared with standard PCR using HT17 alone. It presents an analytical sensitivity of 0.1%–0.05% of mutant alleles in wild‐type background, thus greatly improving MSI detection in CRC samples highly contaminated with normal DNA. HT17 E‐ice‐COLD‐PCR is a rapid, cost‐effective, easy‐to‐implement, and highly sensitive method, which could significantly improve the detection of MSI in routine clinical testing.  相似文献   

16.
Microsatellite instability (MSI) is present in most colorectal cancers (CRC) associated with hereditary nonpolyposis colorectal cancer (HNPCC). MSI testing in so-called sporadic forms of CRC may become a useful tool in identifying new HNPCC kindred. The aim of this study was to analyse the utility of BAT-26 as a marker to identify CRCs with MSI and to investigate whether sporadic CRCs with MSI have a phenotypic expression similar to HNPCC cases. MSI was detected using two methods, an association of 7 poly(CA) repeats and a poly(A) repeat alone, BAT-26, in a series of 62 patients with apparently sporadic forms of CRC. Germ-line and somatic mutations in the hMSH2, hMLH1, and hMSH6 genes were analysed in patients with MSI+ tumours. Patients with MSI+ at poly(CA) loci and at BAT-26 were younger (p = 0·024 and p = 0·002), had tumours more frequently right sided (p = 0·017 and p = 0·0001) and more often mucinous (p = 0·037 and p = 0·005, respectively) than patients with MSI negative tumours. Mutation analysis allowed the identification of two patients carrying germ-line mutations in the hMLH1 gene (both were BAT-26+) and two other patients who had somatic mutation in the hMSH2 and in hMLH1 genes. In conclusion, the detection of MSI using poly(CA) repeats or BAT-26 alone allowed the identification of a subset of patients with clinico-pathological characteristics similar to those associated to HNPCC. BAT-26 has the advantage of being a simple and less expensive method that might be used as a screening procedure before mutation analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Hereditary nonpolyposis colon cancer (HNPCC) syndrome is the most frequent hereditary cancer syndrome predisposing to cancers of various locations, especially colon, endometrium, stomach, and upper urinary tract. Carcinomas of the kidney parenchyma are not considered as an HNPCC-related tumor. HNPCC tumors are characterized by microsatellite instability (MSI) due to a defect in mismatch repair (MMR) and carry somatic frameshift mutations in mononucleotide repeats within the coding regions of key genes. We report the first case of a papillary carcinoma of the kidney in an HNPCC patient who developed carcinomas of the upper urinary tract, endocervix, and colon. Whereas the HNPCC-related tumors demonstrated MSI phenotype, loss of MSH2 protein expression, and frameshift mutations in several of the 13 target genes analyzed, the kidney cancer displayed MSS phenotype, normal MMR protein expression, and no frameshift mutation in target genes. Our observations do not support the possibility that papillary carcinomas are part of HNPCC syndrome.  相似文献   

18.
19.
Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by a germline mutation in one of several DNA repair genes, which in the tumors is reflected as microsatellite instability (MSI). MSI+ tumors have been found to carry somatic frameshift mutations in mononucleotide repeats within the coding regions of several genes involved in growth control, apoptosis, and DNA repair, e.g., TGFBRII, BAX, IGFIIR, TCF4, MSH3, and MSH6. We have studied the occurrence of somatic frameshift alterations in these mononucleotide repeat-containing genes in 24 tumors (15 colorectal cancers, 1 colon adenoma, 4 endometrial cancers, 1 ovarian cancer, 1 gastric cancer, 1 urothelial cancer, and 1 duodenal cancer) from 14 individuals in an HNPCC family with germline hMSH2 mutation. Such somatic frameshift mutations occurred at a variable frequency; the long mononucleotide repeats that characterize intronic MSI markers were mutated in the majority of tumors, 13 of the tumors displayed alterations in the (A)(10) tract of TGFBII, eight tumors (all of gastrointestinal origin) had alterations in the (A)(9) repeat of TCF4, and one to five tumors had somatic frameshift alterations in the shorter mononucleotide repeats of IGFIIR, BAX, MSH3, and MSH6. Thus, longer mononucleotide repeats were more frequently affected by somatic frameshift mutations. The pattern of alterations varied between the tumors from different family members as well as between different tumors from the same individual. To what extent this variable pattern depends on the widespread mismatch repair deficiency induced by the underlying MSH2 mutation, or represents alternative ways whereby the tumors can achieve a tumorigenic phenotype, is unknown. We suggest, however, that the accumulation of somatic frameshifts, rather than the specific loci in which these occur, drives the development of the tumorigenic phenotype in HNPCC.  相似文献   

20.
Microsatellite instability (MSI) caused by a defective DNA mismatch repair (MMR) system is one of the phenotypes of genomic instability, accounting for the tumorigenesis of certain types of cancers conveying clinical and prognostic significance. Genes such as TGF-βRII, IGFIIR, hMSH3, and hMSH6 include coding mononucleotide repeats that are known targets for mutations in MSI-high tumors. The aim of our study was to investigate the prevalence of mutations in the above 4 MSI target genes in correlation with the MSI status of 75 basal cell carcinomas (BCCs), including aggressive-growth BCCs and cases with perineural invasion. TGF-βRII or hMSH3 frameshift mutations were identified in 5% of the BCCs, including two cases of aggressive-growth subtype, whereas there were no microsatellite alterations in the IGFIIR and hMSH6 genes. Mutations at the mononucleotide repeats within the hMSH3 and TGF-βRII genes occurred in certain BCCs, not always in association with MSI. It seems likely that microsatellite alterations may be important in the development of individual cases of BCCs despite the low frequency of MSI in our cohort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号