首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N‐acetyltransferase (Aanat: serotonin→N‐acetylserotonin) and acetylserotonin‐O‐methyltransferase (Asmt: N‐acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively. In silico analysis indicated that the teleost‐specific whole‐genome duplication generated Aanat1 duplicates (aanat1a and aanat1b); some fish express both of them, while others express either one of the isoforms. Here, we bring the first information on the structure, function, and distribution of Aanat1a and Aanat1b in a teleost, the sea bass Dicentrarchus labrax. Aanat1a and Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral tissues, while Aanat2 appeared as a pineal enzyme. Co‐expression of Aanats with asmt was found in the pineal gland and the three retinal nuclear layers. Enzyme kinetics indicated subtle differences in the affinity and catalytic efficiency of Aanat1a and Aanat1b for indolethylamines and phenylethylamines, respectively. Our data are consistent with the idea that Aanat2 is a pineal enzyme involved in melatonin production, while Aanat1 enzymes have a broader range of functions including melatonin synthesis in the retina, and catabolism of serotonin and dopamine in the retina and other tissues. The data are discussed in light of the recently uncovered roles of N‐acetylserotonin and N‐acetyldopamine as antioxidants, neuroprotectants, and modulators of cell proliferation and enzyme activities.  相似文献   

3.
4.
5.
Abstract: Increasing evidence demonstrates that melatonin has an anti‐inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll‐like receptor 4 (TLR4)‐mediated molecule myeloid differentiation factor 88 (MyD88)‐dependent and TRIF‐dependent signaling pathways in lipopolysaccharide (LPS)‐stimulated macrophages. RAW264.7 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of melatonin (10, 100, 1000 μm ). As expected, melatonin inhibited TLR4‐mediated tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, and IL‐10 in LPS‐stimulated macrophages. In addition, melatonin significantly attenuated LPS‐induced upregulation of cyclooxygenase (COX)‐2 and inducible nitric oxide synthase (iNOS) in macrophages. Further analysis showed that melatonin inhibited the expression of MyD88 in LPS‐stimulated macrophages. Although it had no effect on TLR4‐mediated phosphorylation of c‐Jun N‐terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK), melatonin significantly attenuated the activation of nuclear factor kappa B (NF‐κB) in LPS‐stimulated macrophages. In addition, melatonin inhibited TLR4‐mediated Akt phosphorylation in LPS‐stimulated macrophages. Moreover, melatonin significantly attenuated the elevation of interferon (IFN)‐regulated factor‐3 (IRF3), which was involved in TLR4‐mediated TRIF‐dependent signaling pathway, in LPS‐stimulated macrophages. Correspondingly, melatonin significantly alleviated LPS‐induced IFN‐β in macrophages. In conclusion, melatonin modulates TLR4‐mediated inflammatory genes through MyD88‐dependent and TRIF‐dependent signaling pathways.  相似文献   

6.
The effect of melatonin on cellular activation processes in human blood   总被引:3,自引:0,他引:3  
Abstract: The pineal hormone melatonin, due to its lipophilic nature, has access to every cell and every part of a cell in the body, suggesting that it could exert effects on blood immune cells. The regulation of the activation of monocytes may be important in a number of diseases, especially pathophysiological conditions associated with inflammatory reactions. Considering this, a study on the effect of melatonin on monocytes in whole blood was carried out. Melatonin added at a final concentration of 5 ng/mL to whole blood in vitro reduced lipopolysaccharide (LPS)-induced tissue factor (TF) activity in monocytes by 55% in blood from a group of subjects with melatonin-sensitive cells. At even lower concentrations of melatonin (20-50 pg/mL) and in the physiological range, a trend of suppressed LPS-induced TF activity by ~ 20% was seen. A further indication of a downregulation of LPS-stimulated monocytes by melatonin was shown by its reduction of LPS-induced tumor necrosis factor (TNF). Twenty to one hundred pg/mL melatonin caused a significant reduction of LPS-induced TNF production by ~ 25–30%. In contrast, melatonin at a final concentration of 10 pg/mL, added to whole blood incubated with LPS and also the phorbol ester, PMA, caused a signficant rise of 25%; whereas 100 pg/mL enhanced LPS + PMA-induced TNF by ~ 80% as compared to LPS + PMA alone. These effects were not detectable during the winter darkness of Tromsø (70°N), probably due to the high content of melatonin in the blood even at daytime. These results show that melatonin may have a beneficial effect by suppressing the expression of TF activity in LPS-stimulated monocytes. Furthermore, the results indicate that LPS-induced TF in monocytes of whole blood is independent of protein kinase C (PKC) activation. Melatonin is probably amplifying cellular activation reactions that are PKC-dependent. This may be physiologically important in upregulation of the immune system.  相似文献   

7.
8.
9.
Background and Aims: The transmembrane protein Toll‐like receptor 4 (TLR4), which exists mainly in macrophages such as Kupffer cells of the liver, plays an important role in recognizing and mediating macrophage activation and pro‐inflammatory cytokine release. Activation of the pro‐inflammatory cytokine cascade, including tumor necrosis factor‐alpha (TNF‐α), has a pivotal role in the progression of severe liver injury. D‐galactosamine (GalN) and lipopolysaccharide (LPS)‐induced liver injury in rats is an experimental model of fulminant hepatic failure, where TNF‐α plays a central role in the progression of liver injury. E5564, a synthetic analogue of the lipid A component of endotoxin, inhibits endotoxin‐stimulated inflammation and is under study for patients with sepsis. In the present study, we sought to explore the salvage effect of TLR4 antagonist E5564 on GalN+LPS‐induced acute liver failure (ALF) in rats. Methods: ALF was induced in male Wistar rats by the intraperitoneal injection of GalN (500 mg/kg) and LPS (50 µg/kg). Immediately after GalN+LPS injection, rats were treated with intravenous injection of E5564 (3 mg/kg). The cumulative survival rates of GalN+LPS‐induced ALF rats were compared between those with and without E5564 treatment. Results: The intravenous injection of E5564 reduced the elevation of serum total bilirubin, aspartate aminotransferase, alanine aminotransferase and TNF‐α levels in rats at 3 h after GalN+LPS injection, and improved the survival rate of GalN+LPS‐induced ALF rats at 24 h (8% vs 43%). Conclusions: TLR4 antagonist E5564 reduced GalN+LPS‐induced acute liver injury in rats and improved the overall survival rate of GalN+LPS‐induced ALF rats. It may contribute to the treatment of ALF through blocking endotoxin‐induced TNF‐α overproduction of macrophages.  相似文献   

10.
Aims/hypothesis To assess the involvement of the AGE-specific receptor (AGER, also known as RAGE) axis and nuclear factor kappa-B (NFKB, also known as NF-kappaB) activation in the development of lacrimal gland and tear film dysfunction in diabetes, the present study evaluated: (1) lacrimal gland and tear film alterations in diabetic rats; and (2) the expression of AGE, AGER and NFKB in ocular tissues of normoglycaemic and diabetic rats. Materials and Methods Diabetes was induced in male Wistar rats with intravenous streptozotocin. Tear secretion parameters were measured and NFKB expression was evaluated in lacrimal glands of control and diabetic rats by western blot. Immunohistochemistry with confocal microscopy was used to assess AGE, AGER and NFKB expression in lacrimal glands of both groups. Results Lacrimal gland weight and tear film volume were lower in diabetic than in control rats (p=0.01 and 0.02, respectively). IL1B and TNF concentrations in tears were higher in diabetic than in control rats (p=0.007 and 0.02, respectively). NFKB protein was identified in rat cornea, conjunctiva and lacrimal glands. AGE, AGER and NFKB expression were greater in lacrimal glands of diabetic than in those of control rats. Conclusions/interpretation Diabetes induces significant alterations in rat lacrimal gland structure and secretion. The higher expression of AGE, AGER and NFKB in lacrimal glands of diabetic rats suggests that these factors are involved in signalling and in subsequent inflammatory alterations related to dry eye in diabetes mellitus.  相似文献   

11.
Rabbitfish are a restricted lunar-synchronized spawner that spawns around a species-specific lunar phase. It is not known how the fish perceive changes in cues from the moon. One possible explanation is that rabbitfish utilize changes in moonlight intensity to establish synchrony. The purpose of the present study was to examine whether or not the pineal gland of the golden rabbitfish can directly perceive changes in moonlight intensity. Isolated pineal glands were statically cultured under natural or artificial light conditions and melatonin secreted into the culture medium was measured using a time-resolved fluoroimmunoassay. Under an artificial light/dark cycle, melatonin secretion significantly increased during the dark phase. Under continuous light conditions, melatonin secretion was suppressed, while culture under continuous dark conditions seemed to duplicate melatonin secretion corresponding to the light/dark cycle in which the fish were acclimated. When cultured pineal glands were kept under natural light conditions on the dates of the full and the new moon, small amounts of melatonin were secreted at night. Moreover, exposure of cultured pineal glands to artificial and natural light conditions resulted in a significant decrease of melatonin secretion within 2 hr. These results suggest that the isolated pineal gland of golden rabbitfish responds to environmental light cycles and that 'brightness' of the night moon has an influence on melatonin secretion from the isolated pineal gland.  相似文献   

12.
13.
The objective of this study was to determine the role of alpha-adrenoceptors in melatonin production by rat pineal gland. Pineal glands were isolated from adult male rats and maintained in organ baths. The perfusate was sampled every 5 min, stored, and later assayed for melatonin. Exposure to norepinephrine (10 microM) or the beta-adrenoceptor agonist orciprenaline (2-10 microM) increased the glands' production of melatonin. The time courses of melatonin production in response to these agonists were unaffected by the rats' pretreatment in vivo with the alpha-adrenoceptor antagonist prazosin (2 mg/kg i.p., three times). Rats that had had their superior cervical ganglia removed were primed with either orciprenaline (2 mg/kg i.p) or both orciprenaline and phenylephrine (1 mg/kg i.p) 1 hr before decapitation. Exposure of the pineal glands from these rats to orciprenaline evoked melatonin release that was similar in each group. These results lend weight to the suggestion that the marked potentiation by alpha-adrenoceptor agonists of the stimulation of cAMP and N-acetyltransferase (NAT) by beta-adrenoceptor agonists, demonstrated most readily in cultured glands or dispersed rat pinealocytes, does not carry over into significant augmentation of melatonin production in intact pineal glands.  相似文献   

14.
The purpose of this study was to compare the responses of the Syrian hamster and rat pineal glands in organ culture to vasoactive intestinal peptide (VIP). The endpoints in these studies were the activities of pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), as well as pineal and medium melatonin levels. When rat pineal glands were incubated with either VIP (1 microM) or isoproterenol (1 microM), a beta-adrenergic agonist, a significant increase in NAT and HIOMT activities and melatonin levels were observed within 3 hr. Conversely, during the day, VIP (1 microM) was ineffective in stimulating these parameters in hamster pineal gland after incubation times of either 2, 4, 6, or 8 hr. In another experiment, hamster pineal glands were collected from animals killed in the late dark period (after 30 min light exposure). In these glands, isoproterenol promoted NAT activity and melatonin production; however, VIP was ineffective in stimulating either NAT or HIOMT activities; likewise, VIP had no stimulatory effect on pineal melatonin levels at night. Finally, when hamster pineal glands at night were incubated with either 0, 10 nM, 100 nM, 10 microM, or 100 microM VIP, no changes in any parameter of melatonin synthesis were measured. The results indicate that the hamster pineal gland, unlike that of the rat, may not respond to VIP with an increased melatonin production.  相似文献   

15.
F Moujir  R J Reiter  C Rodriguez  K Yaga 《Endocrinology》1992,130(4):2076-2082
The purpose of this investigation was to compare the effect of peptide N-terminal histidine and C-terminal isoleucine (PHI) with that of the beta-adrenergic agonist isoproterenol (ISO) on N-acetyltransferase (NAT) activity and melatonin production in the cultured rat pineal gland. Pineal glands were removed and placed in organ culture containing PHI, ISO, or PHI plus ISO at different dosages, and subsequent changes in NAT activity and melatonin levels were measured. PHI stimulated these parameters in both a time- and dose-dependent manner. Combined treatment with PHI (10(-6) M) and high doses of ISO (either 10(-7) or 10(-8) M) did not potentiate the effect of the peptide in terms of either NAT activity or melatonin levels in the pineal gland. However, at a lower concentration, ISO (10(-9) M) had additive effects to those of PHI in both cultured pineals and medium. The results suggest that PHI modulates melatonin synthesis in the rat pineal gland. Furthermore, stimulation of the pineal with both PHI and ISO demonstrates an additive effect rather than a synergistic action of these compounds. It is presumed that ISO and PHI stimulate pineal melatonin production via separate receptors, but they probably use the same intracellular second messenger, cAMP, to do so. This is the first study showing an effect of the peptide PHI on pineal melatonin production in any vertebrate.  相似文献   

16.
In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis. A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland. To test this hypothesis, we analyzed cannabinoid (CB) receptors and specific enzymes for endocannabinoid biosynthesis or catabolism in rat pineal glands and cultured pinealocytes. Immunohistochemical and immunoblot analyses revealed the presence of CB1 and CB2 receptor proteins, of N-acyl phosphatidyl ethanolamine hydrolyzing phospholipase D (NAPE-PLD), an enzyme catalyzing endocannabinoid biosynthesis and of fatty acid amide hydrolase (FAAH), an endocannabinoid catabolizing enzyme, in pinealocytes, and in pineal sympathetic nerve fibers identified by double immunofluorescence with an antibody against tyrosine hydroxylase. The immunosignals for the CB2 receptor, NAPE-PLD, and FAAH found in pinealocytes did not vary under a 12 hr light:12 hr dark cycle. The CB1 receptor immunoreaction in pinealocytes was significantly reduced at the end of the light phase [zeitgeber time (ZT) 12]. The immunosignal for NAPE-PLD found in pineal sympathetic nerve fibers was reduced in the middle of the dark phase (ZT 18). Stimulation of cultured pinealocytes with NE affected neither the subcellular distribution nor the intensity of the immunosignals for the investigated CB receptors and enzymes. In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.  相似文献   

17.
18.
In previous studies, noradrenaline was found to elicit a rise of melatonin secretion through activation of typical beta-adrenergic receptors. In the present study, a perifusion system was developed to characterize the kinetics of melatonin release from rat pineal glands. Isolated pineal glands from adult male rats were continuously perifused for 15 h in a Krebs-Ringer solution, and the concentration of melatonin in the effluent perifusate was monitored using a specific radioimmunoassay. The rate of release of melatonin declined during the first 3-4 h of perifusion and then remained fairly stable for at least 11 h. The spontaneous release of melatonin was around 20 pg per min and per gland. When pineal glands were stimulated with isoproterenol, melatonin release output linearly increased for at least 2 h after the stimulation. The increase in melatonin release depended on the isoproterenol concentration and on the duration of the stimulation. The analysis of the pattern of melatonin secretion by a single rat pineal gland showed that the secretion was irregular but did not present a clear feature of pulsatile or oscillatory release over a 11 h-long study. The perifusion system was found useful in order to follow the characteristics of melatonin release from pineal glands and should allow investigations of neuronal or hormonal control of pineal gland activities.  相似文献   

19.
Peripheral administration of bacterial endotoxin [lipopolysaccharide (LPS)] to rodents produces an innate immune response and hypothalamic-pituitary-adrenal axis stimulation. Renin-angiotensin-aldosterone system inhibition by angiotensin II AT1 receptor blockade has antiinflammatory effects in the vasculature. We studied whether angiotensin II receptor blockers (ARBs) prevent the LPS response. We focused on the adrenal gland, one organ responsive to LPS and expressing a local renin-angiotensin-aldosterone system. LPS (50 microg/kg, ip) produced a generalized inflammatory response with increased release of TNF-alpha and IL-6 to the circulation, enhanced adrenal aldosterone synthesis and release, and enhanced adrenal cyclooxygenase-2, IL-6, and TNF-alpha gene expression. ACTH and corticosterone release were also increased by LPS. Pretreatment with the ARB candesartan (1 mg/kg.d, sc for 3 d before the LPS administration) decreased LPS-induced cytokine release to the circulation, adrenal aldosterone synthesis and release, and cyclooxygenase-2 and IL-6 gene expression. Candesartan did not prevent the LPS-induced ACTH and corticosterone release. Our results suggest that AT1 receptors are essential for the development of the full innate immune and stress responses to bacterial endotoxin. The ARB decreased the general peripheral inflammatory response to LPS, partially decreased the inflammatory response in the adrenal gland, prevented the release of the pro-inflammatory hormone aldosterone, and protected the antiinflammatory effects of glucocorticoid release. An unrestricted innate immune response to the bacterial endotoxin may have deleterious effects for the organism and may lead to development of chronic inflammatory disease. We postulate that the ARBs may have therapeutic effects on inflammatory conditions.  相似文献   

20.
In many investigations performed thus far on rodents, a suppression of melatonin synthesis was observed when animals were exposed to weak magnetic fields. However, among the several issues not yet resolved is the question of whether the observed changes are caused by direct effects on the pineal gland or by indirect effects, e.g., at the level of the eyes. We, therefore, performed a series of experiments in which direct effects of weak magnetic fields were studied in isolated pineal glands of Djungarian hamsters (Phodopus sungorus). After sacrifice of animals during morning hours, pineal glands were removed and placed individually into glass chambers that were perfused with oxygenated buffer. Experiments (n = 8) lasted for 8 hr. Magnetic fields (1,623 or 50 Hz at 86 microTesla) were generated by Helmholtz coils, and were present during the entire period. In each experiment, 12 exposed, and 12 sham-exposed, pineal glands were placed individually in glass chambers, which were surrounded by identical coils. Because of the design of the coils (bifilament), and the experimental setup (black box), the experimentator was not aware which coil was activated until the results were obtained. After 3.25 hr of adaptation, melatonin production was stimulated by isoproterenol (10(-7) M) for 30 min. Eluted fractions were collected, and melatonin concentrations were measured by radioimmunoassay. Maximum melatonin production was achieved after 5-7 hr. In all experiments, maximum melatonin concentrations were lower in the exposed groups compared with the sham-exposed controls. Statistical analyses for each frequency showed significant suppressive effects at 16(2/3) Hz (P < 0.01), and 50 Hz (P < 0.00). It is concluded that the suppressive effects of magnetic fields on the synthesis of melatonin are a result of primary mechanisms at the level of the pineal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号