首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  The aim of this study was to evaluate the effect of the topical application of melatonin mixed with collagenized porcine bone to accelerate the osteointegration on the rough discrete calcium deposit (DCD) surface implants in Beagle dogs 3 months after their insertion. In preparation for subsequent insertion of dental implants, lower premolars and molars were extracted from 12 Beagle dogs. Each mandible received three parallel wall implants with discrete calcium deposit (DCD) surface of 4 mm in diameter and 10 mm in length. The implants were randomly assigned to the distal sites on each side of the mandible in three groups: group I implants alone, group II implants with melatonin and group III implants with melatonin and porcine bone. Prior to implanting, 5 mg lyophylized powdered melatonin was applied to one bone hole at each side of the mandible. None was applied at the control sites. Ten histological sections per implant were obtained for histomorphometric studies. After a 4-wk treatment period, melatonin significantly increased the perimeter of bone that was in direct contact with the treated implants ( P <  0.0001), bone density ( P <  0.0001), new bone formation ( P <  0.0001) in comparison with control implants. Topical application of melatonin on DCD surface may act as a biomimetic agent in the placement of endo-osseous dental implants and enhance the osteointegration. Melatonin combined with porcine bone on DCD implants reveals more bone to implant contact at 12 wk (84.5 ± 1.5%) compared with melatonin treated (75.1 ± 1.4%) and nonmelatonin treated surface implants (64 ± 1.4%).  相似文献   

2.
Abstract:  The aim of this study was to evaluate the effect of the topical application of melatonin on osteointegration of dental implants in Beagle dogs 14 days after their insertion. In preparation for subsequent insertion of dental implants, upper and lower premolars and molars were extracted from 12 Beagle dogs. Each mandible received cylindrical screw implants of 3.25 mm in diameter and 10 mm in length. The implants were randomly assigned to the mesial and distal sites on each side of the mandible. Prior to implanting, 1.2 mg lyophylized powdered melatonin was applied to one bone hole at each side of the mandible. None was applied at the control sites. Eight histological sections per implant were obtained for histomorphometric studies. After a 2-wk treatment period, melatonin significantly increased the perimeter of bone that was in direct contact with the treated implants ( P  <   0.0001), bone density ( P  <   0.0001), new bone formation ( P  <   0.0001) and inter-thread bone ( P  <   0.05) in comparison with control implants. Topical application of melatonin may act as a biomimetic agent in the placement of endo-osseous dental implants.  相似文献   

3.
Melatonin mediates a variety of biological processes ranging from the control of circadian rhythms to immune regulation. Melatonin also influences bone formation and osteointegration of dental implants. However, the effects of melatonin on dentine formation have not been examined. This study investigated the effects of melatonin on the proliferation and differentiation of rat dental papilla cells (rDPCs) in vitro and dentine formation in vivo. We found that melatonin (0, 10?12, 10?10,10?8 m ) induced a dose‐dependent reduction in rDPCs proliferation, increased alkaline phosphatase (ALP) activity, the expression of dentine sialoprotein (DSP), and mineralized matrix formation in vitro. In vivo melatonin (50 mg/kg, BW, i.p.) inhibited dentine formation. Melatonin (10?8 m ) suppressed the activity of complex I and IV in the basal medium (OS?) and enhanced the activity of complex I and complex IV in osteogenic medium (OS+). These results demonstrate that melatonin suppresses the proliferation and promotes differentiation of rDPCs, the mechanisms of which may be related to activity of mitochondrial complex I and complex IV.  相似文献   

4.
No study has investigated the effect of learning curves on the accuracy of dental implant navigation systems. This study evaluated the accuracy of the dental implant navigation system and established the learning curve according to operation site and operating time. Each dental model was used for drilling 3 missing tooth positions, and a patient tracking module was created. The same dentist performed the drilling test for 5 sets of dental models. CT back scanning was performed on the dental models. Customized implants based on the drilled holes were inserted. The relative error between the preoperative planning and actual implant was calculated. Using the dental navigation system could help dentists position implants more accurately. Increasing the frequency with which a dentist used the navigation system resulted in shorter operations. Longitudinal and angular deviation were significantly (P < 0.0001 and P = 0.0164). We found that the same level of accuracy could be obtained for the maxilla and mandible implants. The Student's t test demonstrated that the longitudinal error, but not the total or angular error, differed significantly (P = 0.0012). The learning curve for the dental implant navigation system exhibited a learning plateau after 5 tests. The current system exhibited similar accuracy for both maxillary and mandibular dental implants in different dental locations. The one-way ANOVA revealed that the total, longitudinal, and angular errors differed significantly (P < 0.0001, P < 0.0001 and P = 0.0153). In addition, it possesses high potential for future use in dental implant surgery and its learning curve can serve as a reference for dentists.  相似文献   

5.
Abstract: This study focused on the effect of melatonin on in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Melatonin was measured in porcine follicular fluid of follicles of different sizes in the same ovary. Melatonin exists in follicular fluid, and the concentration is approximately 10?11 m . Its concentration decreased as the diameter of follicle increased, which suggests an effect of melatonin on oocyte maturation. Therefore, immature oocytes were cultured in vitro in maturation medium supplemented with melatonin (10?11, 10?9, 10?7, 10?5 and 10?3 m ) or without melatonin. The oocytes at maturation stage were collected and activated. The parthenogenetic embryos were cultured and observed in medium supplemented with or without melatonin. Fresh immature oocytes without melatonin treatment were used as control. When only maturation medium was supplemented with 10?9 m melatonin, the cleavage rate, blastocyst rate and the cell number of blastocyst (70 ± 4.5%, 28 ± 2.4% and 50 ± 6.5%) were significantly higher (P < 0.05) than that of controls; when only culture medium was supplemented with melatonin, the highest cleavage rate, blastocyst rate and the cell number of blastocyst was observed at 10?7 m melatonin, which were significantly higher than that of controls (P < 0.05). The best results (cleavage rates 79 ± 8.4%, blastocyst rates 35 ± 6.7%) were obtained when both the maturation and culture medium were supplemented with 10?9 m melatonin respectively (P < 0.05). In conclusion, exogenous melatonin at the proper concentration may improve the in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Further research is needed to identify the effect of melatonin on in vitro and in vivo oocyte maturation and embryo development in porcine.  相似文献   

6.
Abstract: This study evaluated the effect of the topical application of melatonin in accelerating bone formation associated with implants 2 months after their application to the tibiae of rabbits. Twenty New Zealand rabbits were used. Twenty implants treated with melatonin and 20 control implants without melatonin were placed in the proximal metaphyseal area of each tibia. Studies of new bone formation were subsequently made at 15, 30, 45 and 60 days. Cortical width and cortical length of new bone formation were measured. Following implantation, an anteroposterior and lateral radiologic study was carried out. Collected samples were sectioned at 5 μm and stained using hematoxylin–eosin, Masson’s trichromic and Gordon‐Switt reticulin stains. After a 60 day treatment period, melatonin increased the length of cortical bone (95.13 ± 0.42%) versus that around control implants (62.91 ± 1.45%). Related to the perimeter of cortical bone of the tibiae, melatonin induced new bone 88.35 ± 1.56% versus 60.20 ± 1.67% in the control implants. Melatonin regenerated the width and length of cortical bone around implants in tibiae of rabbits more quickly than around control implants without the addition of melatonin.  相似文献   

7.
Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.  相似文献   

8.
Abstract: In this study, the effects of the light/dark cycle, hormone replacement therapy (HRT), and nocturnal melatonin supplementation on osteogenic markers and serum melatonin levels were examined in a blind mouse model (MMTV‐Neu transgenic mice). Melatonin levels in this mouse strain (FVB/N) with retinal degeneration (rd?/?) fluctuate in a diurnal manner, suggesting that these mice, although blind, still perceive light. Real‐time RT‐PCR analyses demonstrated that Runx2, Bmp2, Bmp6, Bglap, and Per2 mRNA levels coincide with melatonin levels. The effect of chronic HRT (0.5 mg 17β‐estradiol + 50 mg progesterone in 1800 kcal of diet) alone and in combination with melatonin (15 mg/L drinking water) on bone quality and density was also assessed by histomorphometry and microcomputed tomography, respectively. Bone density was significantly increased (P < 0.05) after 1 yr of treatment with the individual therapies, HRT (22% increase) and nocturnal melatonin (20% increase) compared to control. Hormone replacement therapy alone also increased surface bone, decreased trabecular space, and decreased the number of osteoclasts without affecting osteoblast numbers compared to the control group (P < 0.05). Chronic HRT + melatonin therapy did not significantly increase bone density, even though this combination significantly increased Bglap mRNA levels. These data suggest that the endogenous melatonin rhythm modulates markers important to bone physiology. Hormone replacement therapy with or without nocturnal melatonin in cycling mice produces unique effects on bone markers and bone density. The effects of these therapies alone and combined may improve bone health in women in perimenopause and with low nocturnal melatonin levels from too little sleep, too much light, or age.  相似文献   

9.
Melatonin, which is synthesized in the pineal gland and peripheral reproductive organs, has antioxidant properties and regulates physiological processes. It is well known that melatonin affects in vitro maturation (IVM) of oocytes and embryonic development in many species. However, beneficial effects of melatonin on IVM have been explained mainly by indirect antioxidant effects and little information is available on the underlying mechanism by which melatonin directly acts on porcine cumulus oocyte complexes (COCs). Sonic hedgehog (Shh) signaling is important for follicle development, oocyte maturation, and embryo development, and there may be a relationship between melatonin and Shh signaling. To examine this, we designed three groups: (i) control, (ii) melatonin (10?9 mol/L), and (iii) melatonin with cyclopamine (2 μmol/L; Shh signaling inhibitor). The aim of this study was to investigate the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation (PA), gene expression in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Melatonin significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), PA blastocyst formation rates, and total cell numbers, which were inhibited by addition of cyclopamine. Simultaneously, the expression of cumulus expansion‐related genes (Ptgs1, Ptgs2, and Has2) and Shh signaling‐related genes (Shh, Pthc1, Smo, and Gli1) and proteins (Ptch1, Smo, and Gli1) in cumulus cells was upregulated in the melatonin‐treated group, and these effects were also inhibited by cyclopamine. In conclusion, our results suggest that Shh signaling mediates effects of melatonin to improve porcine cumulus expansion and subsequent embryo development.  相似文献   

10.
Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown‐fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity‐related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles. At 5 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control and those treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk. Melatonin induced browning of inguinal WAT in both ZDF and ZL rats. Hematoxylin–eosin staining showed patches of brown‐like adipocytes in inguinal WAT in ZDF rats and also increased the amounts in ZL animals. Inguinal skin temperature was similar in untreated lean and obese rats. Melatonin increased inguinal temperature by 1.36 ± 0.02°C in ZL and by 0.55 ± 0.04°C in ZDF rats and sensitized the thermogenic effect of acute cold exposure in both groups. Melatonin increased the amounts of thermogenic proteins, uncoupling protein 1 (UCP1) (by ~2‐fold, < 0.01) and PGC‐1α (by 25%, < 0.05) in extracts from beige inguinal areas in ZL rats. Melatonin also induced measurable amounts of UCP1 and stimulated by ~2‐fold the levels of PGC‐1α in ZDF animals. Locomotor activity and circulating irisin levels were not affected by melatonin. These results demonstrate that chronic oral melatonin drives WAT into a brown‐fat‐like function in ZDF rats. This may contribute to melatonin′s control of body weight and its metabolic benefits.  相似文献   

11.
Radiation and adjuvant endocrine therapy are nowadays considered a standard treatment option after surgery in breast cancer. Melatonin exerts oncostatic actions on human breast cancer cells. In the current study, we investigated the effects of a combination of radiotherapy and melatonin on human breast cancer cells. Melatonin (1 mm , 10 μm and 1 nm ) significantly inhibited the proliferation of MCF‐7 cells. Radiation alone inhibited the MCF‐7 cell proliferation in a dose‐dependent manner. Pretreatment of breast cancer cells with melatonin 1 wk before radiation led to a significantly greater decrease of MCF‐7 cell proliferation compared with radiation alone. Melatonin pretreatment before radiation also decreased G2‐M phase arrest compared with irradiation alone, with a higher percentage of cells in the G0‐G1 phase and a lower percentage of cells in S phase. Radiation alone diminished RAD51 and DNA‐protein kinase (PKcs) mRNA expression, two main proteins involved in double‐strand DNA break repair. Treatment with melatonin for 7 days before radiation led to a significantly greater decrease in RAD51 and DNA?PKcs mRNA expression compared with radiation alone. Our findings suggest that melatonin pretreatment before radiation sensitizes breast cancer cells to the ionizing effects of radiation by decreasing cell proliferation, inducing cell cycle arrest and downregulating proteins involved in double‐strand DNA break repair. These findings may have implications for designing clinical trials using melatonin and radiotherapy.  相似文献   

12.
Melatonin and its derivatives (N1‐acetyl‐N2‐formyl‐5‐methoxykynurenine [AFMK] and N‐acetyl serotonin [NAS]) have broad‐spectrum protective effects against photocarcinogenesis, including both direct and indirect antioxidative actions, regulation of apoptosis and DNA damage repair; these data were primarily derived from in vitro models. This study evaluates possible beneficial effects of melatonin and its active derivatives against ultraviolet B (UVB)‐induced harm to human and porcine skin ex vivo and to cultured HaCaT cells. The topical application of melatonin, AFMK, or NAS protected epidermal cells against UVB‐induced 8‐OHdG formation and apoptosis with a further increase in p53ser15 expression, especially after application of melatonin or AFMK but not after NAS use. The photoprotective action was observed in pre‐ and post‐UVB treatment in both human and porcine models. Melatonin along with its derivatives upregulated also the expression of antioxidative enzymes after UVB radiation of HaCaT cells. The exogenous application of melatonin or its derivatives represents a potent and promising tool for preventing UVB‐induced oxidative stress and DNA damage. This protection results in improved genomic, cellular, and tissue integrity against UVB‐induced carcinogenesis, especially when applied prior to UV exposure. In addition, our ex vivo experiments provide fundamental justification for further testing the clinical utility of melatonin and metabolites as protectors again UVB in human subjects. Our ex vivo data constitute the bridge between vitro to vivo translation and thus justifies the pursue for further clinical utility of melatonin in maintaining skin homeostasis.  相似文献   

13.
Melatonin is known to exert antitumour activity in several types of human cancers, but the underlying mechanisms as well as the efficacy of different doses of melatonin are not well defined. Here, we test the hypothesis whether melatonin in the nanomolar range is effective in exerting antitumour activity in vivo and examine the correlation with the hypoxia signalling mechanism, which may be a major molecular mechanism by which melatonin antagonizes cancer. To test this hypothesis, LNCaP human prostate cancer cells were xenografted into seven‐wk‐old Foxn1nu/nu male mice that were treated with melatonin (18 i.p. injections of 1 mg/kg in 41 days). Saline‐treated mice served as control. We found that the melatonin levels in plasma and xenografted tissue were 4× and 60× higher, respectively, than in control samples. Melatonin tended to restore the redox imbalance by increasing expression of Nrf2. As part of the phenotypic response to these perturbations, xenograft microvessel density was less in melatonin‐treated animals, indicative of lower angiogenesis, and the xenograft growth rate was slower (P < 0.0001). These changes were accompanied by a reduced expression of Ki67, elevated expression of HIF‐1α and increased phosphorylation of Akt in melatonin than saline‐treated mice. We conclude that the beneficial effect of melatonin in reducing cancer growth in vivo was evident at melatonin plasma levels as low as 4 nm and was associated with decreased angiogenesis. Higher HIF‐1α expression in xenograft tissue indicates that the antitumour effect cannot be due to a postulated antihypoxic effect, but may stem from lower angiogenesis potential.  相似文献   

14.
15.
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose‐dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.  相似文献   

16.
Osseodensification is a new method of bone instrumentation for dental implant placement that preserves bulk bone and increases primary implant stability, and may accelerate the implant rehabilitation treatment period and provide higher success and survival rates than conventional methods. The aim of this retrospective study was to evaluate and discuss results obtained on immediate implant placement with immediate and delayed loading protocols under Osseodensification bone instrumentation. This study included private practice patients that required dental implant rehabilitation, between February 2017 and October 2019. All implants were placed under Osseodensification and had to be in function for at least 12 months to be included on the study. A total of 211 implants were included in the study, with a 98.1% total survival rate (97.9% in the maxilla and 98.5% in the mandible). For immediate implants with immediate load, 99.2% survival rate was achieved, and 100% survival rate for immediate implant placement without immediate load cases. A total of four implants were lost during this period, and all of them were lost within two months after placement. Within the limitations of this study, it can be concluded that Osseodensification bone instrumentation provided similar or better results on survival rates than conventional bone instrumentation.  相似文献   

17.

Background

Although autologous bone is considered the gold standard among the grafting materials used in implant therapy, it does have a number of drawbacks, in particular morbidity at the site of donation and the limited amount of bone available. To overcome these limitations a number of alternative bone materials have been employed in the last few years. In this study we report the results of the use of homologous fresh-frozen bone from a tissue bank in patients undergoing reconstruction of bone defects in the oral cavity.

Material and methods

Between June 2004 and October 2008, 14 consecutive patients underwent bone reconstruction with fresh-frozen bone from a tissue bank. Four to eight months after surgery, implants were placed in the newly formed bone.

Results

No problems were recorded during the post-operative course. In all cases treatment was successful and osteointegrated implants were placed in the newly formed bone after 4–8 months. All implants showed good osteointegration (100% overall success rate, mean follow-up 20 months), allowing loading with a fixed cemented prosthesis.

Conclusions

Our results support the previous findings that homologous fresh-frozen bone can be considered a valid alternative to autologous bone for the reconstruction of bone defects in the oral cavity in patients undergoing implant therapy.  相似文献   

18.
Melatonin is a pleiotropic molecule which plays an important role in animal reproductive activities. Because of the increased global warming, the impact of heat stress (HS) on stockbreeding has become an inevitable issue to be solved. To investigate the potential effects of melatonin on the in vitro maturation of porcine oocyte under the HS, a HS model for porcine oocyte maturation has been used in this study and the different concentrations of melatonin (10?6–10?9 m ) were also tested for their protective effects on oocytes. The polar body rate, the index of the nuclear maturation of the oocytes, and the cleavage rate as well as the blastocyst rate were measured to evaluate the developmental competence of the oocytes after parthenogenetic activation (PA). The results showed that HS [in vitro maturation (IVM) 20–24 hr, 42°C] significantly reduced the polar body rate of oocytes and the blastocyte rate of porcine PA embryos, while melatonin (10?7 m ) application not only improved polar body rate and blastocyte rate, but also preserved the normal levels of steroid hormone which is disrupted by HS. The presence of melatonin (10?7 m ) during the oocyte maturation under the HS reduced reactive oxygen species (ROS) formation, enhanced glutathione (GSH) production, inhibited cell apoptosis, and increased the gene expressions of SIRT1, AKT2, and Polg2. Importantly, the endogenously occurring melatonin of cumulus–oocyte complexes was significantly induced by HS. The results indicated that melatonin application effectively protected the oocytes from HS. These observations warranted the further studies in vivo regarding to improve the reproductive activities of animals under the global warming environment.  相似文献   

19.
Melatonin has been used to promote in vitro embryo development in different species. This study determined the effects of melatonin on in vitro porcine embryo development; in particular, cleavage rate, blastocyst rate, and blastocyst cell number. Starting 5 hr after insemination, porcine zygotes were cultured in porcine zygote medium 3 (PZM-3) culture medium supplemented with melatonin at increasing concentrations (10(-12) M, 10(-9) M, 10(-6) M, 10(-3) M). Melatonin at a concentration of 10(-9) M had a positive effect on cleavage rates, while the highest concentration of melatonin (10(-3) M) significantly decreased cleavage rates. Although blastocyst rates were not increased by 10(-9) M melatonin, blastocyst cell numbers were significantly higher for embryos subjected to 10(-9) M melatonin. The expression levels of the pro-apoptotic gene BAX and anti-apoptotic gene BCL2L1 in blastocysts were not affected by the presence of melatonin in the culture medium. To further study the protective properties of 10(-9) M melatonin against stressful conditions, hydrogen peroxide (0.01 mm) and heat (40 degrees C) were used during embryo culture. The addition of melatonin to embryos subjected to 40 degrees C for 3 hr increased cleavage rates, but had no protective effect for embryos subjected to 0.01 mm H(2)O(2), probably because the physiological levels of melatonin could not counteract the pharmacological levels of H(2)O(2). Our data indicate that 10(-9) M melatonin has a positive effect on porcine embryo cleavage rates and blastocyst total cell numbers and it might have a protective effect against heat stress.  相似文献   

20.
Mitochondrial dysfunction in adipose tissue may contribute to obesity‐related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity‐related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile. At 6 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control (C‐ZDF and C‐ZL) and treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk (M‐ZDF and M‐ZL). After the treatment period, animals were sacrificed, tissues dissected, and mitochondrial function assessed in isolated organelles. Melatonin increased the respiratory control ratio (RCR) in mitochondria from white fat of both lean (by 26.5%, P < 0.01) and obese (by 34.5%, P < 0.01) rats mainly through a reduction of proton leaking component of respiration (state 4) (28% decrease in ZL, P < 0.01 and 35% in ZDF, P < 0.01). However, melatonin treatment lowered the RCR in beige mitochondria of both lean (by 7%, P < 0.05) and obese (by 13%, P < 0.05) rats by maintaining high rates of uncoupled respiration. Melatonin also lowered mitochondrial oxidative status by reducing nitrite levels and by increasing superoxide dismutase activity. Moreover, melatonin treatment also caused a profound inhibition of Ca‐induced opening of mPTP in isolated mitochondria from both types of fat, white and beige, in both lean and obese rats. These results demonstrate that chronic oral melatonin improves mitochondrial respiration and reduces the oxidative status and susceptibility to apoptosis in white and beige adipocytes. These melatonin effects help to prevent mitochondrial dysfunction and thereby to improve obesity‐related metabolic disorders such as diabetes and dyslipidemia of ZDF rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号