首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract:  Neuroprotective effects of melatonin against oxidative stress-induced neuronal cell degeneration in human SH-SY5Y neuroblastoma cells were investigated in this report. The results demonstrate that exogenous administration of H2O2 and 1-methyl, 4-phenyl, pyridinium ion (MPP+) significantly decreased cell viability in SH-SY5Y cultured cells. Desipramine, a monoamine uptake blocker was able to abolish the toxic effects of MPP+ but not H2O2 in reduction of cell viability. Conversely, melatonin reversed the toxic effects of H2O2 and MPP+ on cell viability. In addition, the reduction of phosphorylation of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis, and phosphorylation of cyclic AMP responsive element-binding protein by H2O2 and MPP+ was also diminished by melatonin. These results demonstrate some effective roles of melatonin on neuroprotection and its action on the modulation of tyrosine hydroxylase phosphorylation.  相似文献   

2.
Abstract: Methamphetamine (METH), the most commonly abused drug, has long been known to induce neurotoxicity. METH causes oxidative stress and inflammation, as well as the overproduction of both reactive oxygen species (ROS) and reactive nitrogen species (RNS). The role of METH‐induced brain inflammation remains unclear. Imbroglio activation contributes to the neuronal damage that accompanies injury, disease and inflammation. METH may activate microglia to produce neuroinflammatory molecules. In highly aggressively proliferating immortalized (HAPI) cells, a rat microglial cell line, METH reduced cell viability in a concentration‐ and time‐dependent manner and initiated the expression of interleukin 1β (IL‐1β), interleukin 6 (IL‐6) and tumor necrosis factor α. METH also induced the production of both ROS and RNS in microglial cells. Pretreatment with melatonin, a major secretory product of the pineal gland, abolished METH‐induced toxicity, suppressed ROS and RNS formation and also had an inhibitory effect on cytotoxic factor gene expression. The expression of cytotoxic factors produced by microglia may contribute to central nervous system degeneration in amphetamine abusers. Melatonin attenuates METH toxicity and inhibits the expression of cytotoxic factor genes associated with ROS and RNS neutralization in HAPI microglia. Thus, melatonin might be one of the neuroprotective agents induced by METH toxicity and/or other immunogens.  相似文献   

3.
Abstract: Methamphetamine (METH) is a common drug of abuse that induces toxicity in the central nervous system and is connected to neurological disorders such as Parkinson’s disease. METH neurotoxicity is induced by reactive oxygen species (ROS) production and apoptosis. Moreover, autophagy is an alternative to cell death and a means for eliminating dysfunctional organelles. In other cases, autophagy can end up in cell death. Nonetheless, it is not clear whether autophagy is also correlated with apoptotic signaling in drug‐induced neurotoxicity. Therefore, we hypothesized that METH‐generated toxicity associated with initiating the apoptotic signaling cascade can also increase the autophagic phenotype in neuronal cells. Using the SK–N–SH dopaminergic cell line as our model system, we found that METH‐induced autophagy by inhibiting dissociation of Bcl‐2/Beclin 1 complex and its upstream pathway that thereby led to cell death. We uncovered a novel function for the anti‐apoptotic protein Bcl‐2, as it played a role in negatively regulating autophagy by blocking an essential protein in the signaling pathway, Beclin 1. Furthermore, Bcl‐2 was activated by c‐Jun N‐terminal kinase 1 (JNK 1), which is upstream of Bcl‐2 phosphorylation, to induce Bcl‐2/Beclin 1 dissociation. Furthermore, we demonstrated a novel role for melatonin in protecting cells from autophagic cell death triggered by the Bcl‐2/Beclin 1 pathway by inhibiting the activation of the JNK 1, Bcl‐2 upstream pathway. This study provides information regarding the link between apoptosis and autophagy signaling, which could lead to the development of therapeutic strategies that exploit the neurotoxicity of drugs of abuse.  相似文献   

4.
Abstract:  Several studies demonstrated that methamphetamine (MA)-treated human neuroblastoma cells exhibit increased oxidative stress, which regulates intracellular signaling cascades leading to cell death. Melatonin has a potential as a direct free radical scavenger and protects against cell death caused by MA. The objective of this study was to investigate the neuroprotective properties of melatonin on MA-induced induction of death signaling cascade and neuronal cell degeneration in human neuroblastoma SH-SY5Y cultured cells. The results of the present study demonstrate that MA significantly reduced cell viability in SH-SY5Y cultured cells. Desipramine, a monoamine uptake blocker, and melatonin reversed the toxic effect of MA in reducing cell viability. Induction of Bax, Bcl-2 and cleaved caspase-3 protein levels were observed in SH-SY5Y cultured cells treated with MA, whereas the induction of Bax and cleaved caspase-3 was diminished by melatonin. Visualization of the induction of Bax using immunofluorescence but a reduction in mitochondrial sites using red-fluorescent mitochondria-staining dye was more obviously apparent in MA-treated cells than in untreated control cells and, again, this effect was abolished by melatonin. These findings demonstrate important roles of Bax and caspase in death signaling cascade, and the protective effects of melatonin in MA-treated SH-SY5Y cells.  相似文献   

5.
Melatonin is involved in the control of various physiological functions, such as sleep, cell growth and free radical scavenging. The ability of melatonin to behave as an antioxidant, together with the fact that the Alzheimer‐related amyloid β‐peptide (Aβ) triggers oxidative stress through hydroxyl radical‐induced cell death, suggests that melatonin could reduce Alzheimer's pathology. Although the exact etiology of Alzheimer's disease (AD) remains to be established, excess Aβ is believed to be the primary contributor to the dysfunction and degeneration of neurons that occurs in AD. Aβ peptides are produced via the sequential cleavage of β‐secretase β‐site APP‐cleaving enzyme 1 (BACE1) and γ‐secretase (PS1/PS2), while α‐secretase (ADAM10) prevents the production of Aβ peptides. We hypothesized that melatonin could inhibit BACE1 and PS1/PS2 and enhance ADAM10 expression. Using the human neuronal SH‐SY5Y cell line, we found that melatonin inhibited BACE1 and PS1 and activated ADAM10 mRNA level and protein expression in a concentration‐dependent manner and mediated via melatonin G protein‐coupled receptors. Melatonin inhibits BACE1 and PS1 protein expressions through the attenuation of nuclear factor‐κB phosphorylation (pNF‐κB). Moreover, melatonin reduced BACE1 promoter transactivation and consequently downregulated β‐secretase catalytic activity. The present data show that melatonin is not only a potential regulator of β/γ‐secretase but also an activator of α‐secretase expression through the activation of protein kinase C, thereby favoring the nonamyloidogenic pathway over the amyloidogenic pathway. Altogether, our findings suggest that melatonin may be a potential therapeutic agent for reducing the risk of AD in humans.  相似文献   

6.
Melatonin is an endogenous indoleamine with a wide range of biological functions in the various organisms from bacteria to mammals. Evidence indicates that melatonin facilitates apoptosis in cancer cells and enhances the antitumor activity of chemotherapy in animals and clinical studies. However, the melatonin metabolism and the key metabolic targets in cancer cells still remain unknown. In this study, U118 and SH‐SY5Y tumor cell lines were used to investigate the metabolic pathways of melatonin in cancer cells. Interestingly, the inhibitory effect of melatonin on proliferation in SH‐SY5Y cells is more potent than that in U118 cells. In contrast, this inhibitory effect on the normal cells is absent. The antitumor effects of melatonin are positively associated with its metabolite N‐acetylserotonin (NAS). Unexpectedly, CYP1B1 is, for first time, identified to localize in the mitochondria of tumor cells, and it metabolizes melatonin to form NAS in situ, which subsequently triggers mitochondria‐dependent apoptosis in cancer cells. In normal cells, NAS does not induce apoptosis. A remarkable individual variation on CYP1B1 expression was also detected in human tumor tissue. These findings provide the novel mechanisms regarding the antitumor effects of melatonin in the level of mitochondria. Thus, we hypothesize that CYP1B1 overexpression in mitochondria would significantly enhance the antitumor effects of melatonin. Mitochondrial CYP1B1 can potentially serve as a specific target to modify the therapeutic and biological effects of melatonin on cancer patients.  相似文献   

7.
Abstract: Melatonin has anti‐oxidant activity and it exerts a neuroprotective effects during ischemic brain injury. Calcium‐buffering proteins including parvalbumin and hippocalcin are involved in neuronal differentiation and maturation through calcium signaling. This study investigated whether melatonin moderates parvalbumin and hippocalcin expression in cerebral ischemia and glutamate toxicity‐induced neuronal cell death. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO). Male Sprague‐Dawley rats were treated with vehicle or melatonin (5 mg/kg) prior to MCAO, and cerebral cortical tissues were collected 24 hr after MCAO. Parvalbumin and hippocalcin levels were decreased in vehicle‐treated animal with MCAO, whereas melatonin prevented the ischemic injury‐induced reduction in these proteins. In cultured hippocampal cells, glutamate toxicity decreased parvalbumin and hippocalcin levels, while melatonin treatment prevented the glutamate exposure‐induced diminished in these proteins levels. Melatonin also attenuated the glutamate toxicity‐induced increase in intracellular Ca2+ levels. These results suggest that the maintenance of parvalbumin and hippocalcin levels by melatonin in ischemic injury contributes to the neuroprotective effect of melatonin against neuronal cell damage.  相似文献   

8.
Host cell death induced by Entamoeba histolytica is an important mechanism for both host defence and microbial immune evasion during human amoebiasis. However, the signalling pathways underlying cell death induced by E. histolytica are not fully understood. This study investigated the involvement of the protein tyrosine phosphatases (PTPs) SHP‐1 and SHP‐2 in the dephosphorylation associated with E. histolytica‐induced host cell death. Incubation with E. histolytica resulted in a marked decrease in protein tyrosine phosphorylation levels and degradation of SHP‐1 or SHP‐2 in Jurkat cells. Pre‐treatment of cells with a calpain inhibitor, calpeptin, impeded the amoeba‐induced dephosporylation and cleavage of SHP‐1 or SHP‐2. Additionally, inhibition of PTPs with phenylarsine oxide (PAO) attenuated Entamoeba‐induced dephosphorylation and DNA fragmentation in Jurkat T cells. These results suggest that calpain‐dependent cleavage of SHP‐1 and SHP‐2 may contribute to protein tyrosine dephosphorylation in Jurkat T cell death induced by E. histolytica.  相似文献   

9.
10.
Methamphetamine (METH) is an extremely addictive stimulatory drug. A recent study suggested that METH may cause an impairment in the proliferation of hippocampal neural progenitor cells, but the underlying mechanism of this effect remains unknown. Blood and cerebrospinal levels of melatonin derive primarily from the pineal gland, and that performs many biological functions. Our previous study demonstrated that melatonin promotes the proliferation of progenitor cells originating from the hippocampus. In this study, hippocampal progenitor cells from adult Wistar rats were used to determine the effects of METH on cell proliferation and the mechanisms underlying these effects. We investigated the effects of melatonin on the METH‐induced alteration in cell proliferation. The results demonstrated that 500 μm METH induced a decrease (63.0%) in neurosphere cell proliferation and altered the expression of neuronal phenotype markers in the neurosphere cell population. Moreover, METH induced an increase in the protein expression of the tumor suppressor p53 (124.4%) and the cell cycle inhibitor p21CIP1 (p21) (128.1%), resulting in the accumulation of p21 in the nucleus. We also found that METH altered the expression of the N‐methyl‐d ‐aspartate (NMDA) receptor subunits NR2A (79.6%) and NR2B (126.7%) and Ca2+/calmodulin‐dependent protein kinase II (CAMKII) (74.0%). In addition, pretreatment with 1 μm melatonin attenuated the effects induced by METH treatment. According to these results, we concluded that METH induces a reduction in cell proliferation by upregulating the cell cycle regulators p53/p21 and promoting the accumulation of p21 in the nucleus and that melatonin ameliorates these negative effects of METH.  相似文献   

11.
12.
Melatonin is involved in the physiological regulation of the β‐amyloid precursor protein (βAPP)‐cleaving secretases which are responsible for generation of the neurotoxic amyloid beta (Aβ) peptide, one of the hallmarks of Alzheimer's disease (AD) pathology. In this study, we aimed to determine the underlying mechanisms of this regulation under pathological conditions. We establish that melatonin prevents Aβ42‐induced downregulation of a disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) as well as upregulation of β‐site APP‐cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) in SH‐SY5Y cell cultures. We also demonstrate that the intrinsic mechanisms of the observed effects occurred via regulation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and glycogen synthase kinase (GSK)‐3β as melatonin reversed Aβ42‐induced upregulation and nuclear translocation of NF‐κBp65 as well as activation of GSK3β via its receptor activation. Furthermore, specific blocking of the NF‐κB and GSK3β pathways partially abrogated the Aβ42‐induced reduction in the BACE1 and PS1 levels. In addition, GSK3β blockage affected α‐secretase cleavage and modulated nuclear translocation of NF‐κB. Importantly, our study for the first time shows that peptidyl‐prolyl cis‐trans isomerase NIMA‐interacting 1 (Pin1) is a crucial target of melatonin. The compromised levels and/or genetic variation of Pin1 are associated with age‐dependent tau and Aβ pathologies and neuronal degeneration. Interestingly, melatonin alleviated the Aβ42‐induced reduction of nuclear Pin1 levels and preserved the functional integrity of this isomerase. Our findings illustrate that melatonin attenuates Aβ42‐induced alterations of βAPP‐cleaving secretases possibly via the Pin1/GSK3β/NF‐κB pathway.  相似文献   

13.
Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM‐associated neuronal cell death. Previous investigators reported on a genome‐wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose‐induced neuronal cell death and the effect of melatonin against high glucose‐induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN‐induced putative kinase 1 (PINK1) and LC‐3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker? fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V‐positive cells. In addition, high glucose‐stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N‐acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT2 receptor‐specific inhibitor 4‐P‐PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin‐regulated mitochondrial ROS production, cleaved caspase‐3 and caspase‐9 expressions, and the number of annexin V‐positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT2/Akt/NF‐κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions.  相似文献   

14.
Abstract:  Methamphetamine (METH) is a commonly abused drug that damages nerve terminals by causing reactive oxygen species (ROS) formation, apoptosis, and neuronal damage. Autophagy, a type of programmed cell death independent of apoptosis, is negatively regulated by the mammalian target of the rapamycin (mTOR) signaling pathway. It is not known, however, whether autophagy is involved in METH-induced neurotoxicity. Therefore, we investigated the effect of METH on autophagy and its upstream regulator, the mTOR signaling pathway. Using the SK-N-SH dopaminergic cell line, we found that METH induces the expression of LC3-II, a protein associated with the autophagosome membrane, in a dose-dependent manner. Moreover, METH inhibits the phosphorylation of mTOR and the action of its downstream target, the eukaryotic initiation factor (eIF)4E-binding protein, 4EBP1. Melatonin, a major secretory product of pineal, is a potent naturally produced antioxidant that acts through various mechanisms to ameliorate the toxic effects of ROS. We found that a pretreatment with melatonin enhances mTOR activity and 4EBP1 phosphorylation and protects against the formation of LC3-II in SK-N-SH cells exposed to METH. This work demonstrates a novel role for melatonin as a neuroprotective agent against METH.  相似文献   

15.
Abstract: Melatonin is a potent free radical scavenger, antioxidant and neuroprotective drug. On the other hand, galantamine is a cholinergic drug with antioxidant and neuroprotective properties linked to inhibition of acetylcholinesterase and allosteric modulation of nicotinic receptors. This investigation evaluated a possible synergistic neuroprotective effect of subeffective concentrations of combined galantamine and melatonin. Human neuroblastoma SH‐SY5Y cells were subjected to a mitochondrial oxidative stress, by blockade of mitochondrial complexes I and V with rotenone and oligomycin‐A (R/O); cells were treated for 24 hr with R/O. This caused 40% of the cell to die as measured by lactate dehydrogenase (LDH) release. Cell incubation with increasing concentrations of galantamine (10–300 nm ) or melatonin (0.3–10 nm ) for 24 hr, followed by a 24‐hr period with R/O, caused a concentration‐dependent protection; maximum protection was achieved with 300 nm galantamine (56% protection) and 10 nm melatonin (50% protection). Combination of subeffective concentrations of melatonin (0.3 nm ) and galantamine (30 nm ) caused a synergistic and significant protection that was similar to the maximum protection afforded by effective concentrations of melatonin or galantamine alone. This protective effect was completely reversed when nicotinic and melatonin receptors were blocked respectively by mecamylamine and luzindole. The neuroprotective effect was prevented by chelerythrine, LY294002, and Sn (IV) protoporphyrin IX dichloride (SnPP), indicating the participation of the PKC/PI3K/Akt activation and induction of the antioxidant enzyme heme oxygenase‐1. The synthesis of novel multitarget compounds having in a single molecule the combined neuroprotective properties of galantamine and melatonin could be a new strategy for potential therapeutic agents in neurodegenerative diseases.  相似文献   

16.
Neurodegenerative diseases such as Parkinson's disease are illnesses associated with high morbidity and mortality with few, or no effective, options available for their treatment. In addition, the direct cause of selective dopaminergic cell loss in Parkinson's disease has not been clearly understood. Taken together, several studies have demonstrated that melatonin has a neuroprotective effect both in vivo and in vitro. Accordingly, the effects of melatonin on 1-methyl, 4-phenyl, pyridinium ion (MPP(+))-treated cultured human neuroblastoma SK-N-SH cell lines were investigated in the present study. The results showed that MPP(+) significantly decreased cell viability. By contrast, an induction of phosphorylation of c-Jun, activation of caspase-3 enzyme activity, cleavage of DNA fragmentation factors 45 and DNA fragmentation were observed in MPP(+)-treated cells. These changes were diminished by melatonin. These results demonstrate the cellular mechanisms of neuronal cell degeneration induced via c-Jun-N-terminal kinases and caspase-dependent signaling, and the potential role of melatonin on protection of neuronal cell death induced by this neurotoxin.  相似文献   

17.
Abstract: Increasing evidence demonstrates that melatonin has an anti‐inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll‐like receptor 4 (TLR4)‐mediated molecule myeloid differentiation factor 88 (MyD88)‐dependent and TRIF‐dependent signaling pathways in lipopolysaccharide (LPS)‐stimulated macrophages. RAW264.7 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of melatonin (10, 100, 1000 μm ). As expected, melatonin inhibited TLR4‐mediated tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, and IL‐10 in LPS‐stimulated macrophages. In addition, melatonin significantly attenuated LPS‐induced upregulation of cyclooxygenase (COX)‐2 and inducible nitric oxide synthase (iNOS) in macrophages. Further analysis showed that melatonin inhibited the expression of MyD88 in LPS‐stimulated macrophages. Although it had no effect on TLR4‐mediated phosphorylation of c‐Jun N‐terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK), melatonin significantly attenuated the activation of nuclear factor kappa B (NF‐κB) in LPS‐stimulated macrophages. In addition, melatonin inhibited TLR4‐mediated Akt phosphorylation in LPS‐stimulated macrophages. Moreover, melatonin significantly attenuated the elevation of interferon (IFN)‐regulated factor‐3 (IRF3), which was involved in TLR4‐mediated TRIF‐dependent signaling pathway, in LPS‐stimulated macrophages. Correspondingly, melatonin significantly alleviated LPS‐induced IFN‐β in macrophages. In conclusion, melatonin modulates TLR4‐mediated inflammatory genes through MyD88‐dependent and TRIF‐dependent signaling pathways.  相似文献   

18.
Autophagy modulation is a potential therapeutic strategy for tongue squamous cell carcinoma (TSCC). Melatonin possesses significant anticarcinogenic activity. However, whether melatonin induces autophagy and its roles in cell death in TSCC are unclear. Herein, we show that melatonin induced significant apoptosis in the TSCC cell line Cal27. Apart from the induction of apoptosis, we demonstrated that melatonin‐induced autophagic flux in Cal27 cells as evidenced by the formation of GFP‐LC3 puncta, and the upregulation of LC3‐II and downregulation of SQSTM1/P62. Moreover, pharmacological or genetic blockage of autophagy enhanced melatonin‐induced apoptosis, indicating a cytoprotective role of autophagy in melatonin‐treated Cal27 cells. Mechanistically, melatonin induced TFE3(Ser321) dephosphorylation, subsequently activated TFE3 nuclear translocation, and increased TFE3 reporter activity, which contributed to the expression of autophagy‐related genes and lysosomal biogenesis. Luzindole, a melatonin membrane receptor blocker, or MT2‐siRNA partially blocked the ability of melatonin to promote mTORC1/TFE3 signaling. Furthermore, we verified in a xenograft mouse model that melatonin with hydroxychloroquine or TFE3‐siRNA exerted a synergistic antitumor effect by inhibiting autophagy. Importantly, TFE3 expression positively correlated with TSCC development and poor prognosis in patients. Collectively, we demonstrated that the melatonin‐induced increase in TFE3‐dependent autophagy is mediated through the melatonin membrane receptor in TSCC. These data also suggest that blocking melatonin membrane receptor‐TFE3‐dependent autophagy to enhance the activity of melatonin warrants further attention as a treatment strategy for TSCC.  相似文献   

19.
Through activation of the ERK pathway, nicotine, in both normal MCF‐10A and low‐malignant breast cancer cells (MCF7), promotes increased motility and invasiveness. Melatonin antagonizes both these effects by inhibiting almost completely ERK phosphorylation. As melatonin has no effect on nonstimulated cells, it is likely that melatonin can counteract ERK activation only downstream of nicotine‐induced activation. This finding suggests that melatonin hampers ERK phosphorylation presumably by targeting a still unknown intermediate factor that connects nicotine stimulation to ERK phosphorylation. Furthermore, downstream of ERK activation, melatonin significantly reduces fascin and calpain activation while restoring normal vinculin levels. Melatonin also counteracts nicotine effects by reshaping the overall cytoskeleton architecture and abolishing invasive membrane protrusion. In addition, melatonin decreases nicotine‐dependent ROCK1/ROCK2 activation, thus further inhibiting cell contractility and motility. Melatonin actions are most likely attributable to ERK inhibition, although melatonin could display other ERK‐independent effects, namely through a direct modulation of additional molecular and structural factors, including coronin, cofilin, and cytoskeleton components.  相似文献   

20.
Chronic amphetamine (AMPH) abuse leads to damage of the hippocampus, the brain area associated with learning and memory process. Previous results have shown that AMPH‐induced dopamine neurotransmitter release, reactive oxygen species formation, and degenerative protein aggregation lead to neuronal death. Melatonin, a powerful antioxidant, plays a role as a neuroprotective agent. The objective of this study was to investigate whether the protective effect of melatonin on AMPH‐induced hippocampal damage in the postnatal rat acts through the dopaminergic pathway. Four‐day‐old postnatal rats were subcutaneously injected with 5‐10 mg/kg AMPH and pretreated with 10 mg/kg melatonin prior to AMPH exposure for seven days. The results showed that melatonin decreased the AMPH‐induced hippocampal neuronal degeneration in the dentate gyrus, CA1, and CA3. Melatonin attenuated the reduction in the expression of hippocampal synaptophysin, PSD‐95, α‐synuclein, and N‐methyl‐D‐aspartate (NMDA) receptor protein and mRNA caused by AMPH. Melatonin attenuated the AMPH‐induced reduction in dopamine transporter (DAT) protein expression in the hippocampus and the reduction in mRNA expression in the ventral tegmental area (VTA). Immunofluorescence demonstrated that melatonin not only prevented the AMPH‐induced loss of DAT and NMDA receptor but also prevented AMPH‐induced α‐synuclein overexpression in the dentate gyrus, CA1, and CA3. Melatonin decreased the AMPH‐induced reduction in the protein and mRNA of the NMDA receptor downstream signaling molecule, calcium/calmodulin‐dependent protein kinase II (CaMKII), and the melatonin receptors (MT1 and MT2). This study showed that melatonin prevented AMPH‐induced toxicity in the hippocampus of postnatal rats possibly via its antioxidative effect and mitochondrial protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号