首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Synapsin is a synaptic vesicle-associated protein implicated in the regulation of vesicle trafficking and transmitter release, but its role in heterosynaptic plasticity remains elusive. Moreover, contradictory results have obscured the contribution of synapsin to homosynaptic plasticity. We previously reported that the neuromodulator serotonin (5-HT) led to the phosphorylation and redistribution of Aplysia synapsin, suggesting that synapsin may be a good candidate for the regulation of vesicle mobilization underlying the short-term synaptic plasticity induced by 5-HT. This study examined the role of synapsin in homosynaptic and heterosynaptic plasticity. Overexpression of synapsin reduced basal transmission and enhanced homosynaptic depression. Although synapsin did not affect spontaneous recovery from depression, it potentiated 5-HT-induced dedepression. Computational analysis showed that the effects of synapsin on plasticity could be adequately simulated by altering the rate of Ca(2+)-dependent vesicle mobilization, supporting the involvement of synapsin not only in homosynaptic but also in heterosynaptic forms of plasticity by regulating vesicle mobilization.  相似文献   

2.
The mechanism of the potentiating action of phorbol diacetate on synaptic transmission in the hippocampus was studied by the quantal analysis technique. Thin transverse sections were prepared from guinea pig hippocampus and intracellular potentials were recorded from CA3 neurons. Unitary excitatory postsynaptic potentials (EPSPs) were induced in the impaled neurons by brief glutamate pulses administered to granule cells. The amplitude of the unitary EPSPs fluctuated according to Poisson distribution. From the mean and variance of the amplitude of the unitary EPSPs, the mean quantal content (m) and the mean quantal amplitude (q) were calculated. Before phorbol diacetate administration, the values of m and q were 9.7 +/- 1.4 and 1.1 +/- 0.28 mV (mean +/- S.D.), respectively. Potentiation of synaptic transmission by phorbol diacetate was accompanied by increases in the value of m. The value of q remained unchanged in most neurons and decreased in some. These results indicate that the phorbol ester causes an increase in release of neurotransmitter and thereby potentiates synaptic transmission.  相似文献   

3.
Synaptic transmission at the sensory neuron-motor neuron synapses of Aplysia, like transmission at many synapses of both vertebrates and invertebrates, is increased after a short burst of high-frequency stimulation (HFS), a phenomenon known as posttetanic potentiation (PTP). PTP is generally attributable to an increase in transmitter release from presynaptic neurons. We investigated whether changes in the readily releasable pool of transmitter (RRP) contribute to the potentiation that follows HFS. We compared the changes in excitatory postsynaptic potentials (EPSPs) evoked with action potentials to changes in the RRP as estimated from the asynchronous transmitter release elicited by a hypertonic solution. The changes in the EPSP were correlated with changes in the RRP, but the changes matched quantitatively only at connections whose initial synaptic strength was greater than the median for all experiments. At weaker connections, the increase in the RRP was insufficient to account for PTP. Weaker connections initially released a smaller fraction of the RRP with each EPSP than stronger ones, and this fraction increased at weaker connections after HFS. Moreover, the initial transmitter release in response to the hypertonic solution was accelerated after HFS, indicating that the increase in the efficacy of release was not restricted to excitation-secretion coupling. Modulation of the RRP and of the efficacy of release thus both contribute to the enhancement of transmitter release by HFS.  相似文献   

4.
5.
We studied the cholinergic modulation of glutamatergic transmission between neighboring layer 5 regular-spiking pyramidal neurons in somatosensory cortical slices from young rats (P10-P26). Brief bath application of 5-10 microM carbachol, a nonspecific cholinergic agonist, decreased the amplitude of evoked unitary excitatory postsynaptic potentials (EPSPs). This effect was blocked by 1 microM atropine, a muscarinic receptor antagonist. Nicotine (10 microM), in contrast to carbachol, reduced EPSPs in nominally magnesium-free solution but not in the presence of 1 mM Mg+2, indicating the involvement of NMDA receptors. Likewise, when the postsynaptic cell was depolarized under voltage clamp to allow NMDA receptor activation in the presence of 1 mM Mg+2, synaptic currents were reduced by nicotine. Nicotinic EPSP reduction was prevented by the NMDA receptor antagonist D-AP5 (50 microM) and by the nicotinic receptor antagonist mecamylamine (10 microM). Both carbachol and nicotine reduced short-term depression of EPSPs evoked by 10 Hz stimulation, indicating that EPSP reduction happens via reduction of presynaptic glutamate release. In the case of nicotine, several possible mechanisms for NMDAR-dependent EPSP reduction are discussed. As a result of NMDA receptor dependence, nicotinic EPSP reduction may serve to reduce the local spread of cortical excitation during heightened sensory activity.  相似文献   

6.
Weng HR  Chen JH  Pan ZZ  Nie H 《Neuroscience》2007,149(4):898-907
Glutamatergic synaptic transmission is a dynamic process determined by the amount of glutamate released by presynaptic sites, the clearance of glutamate in the synaptic cleft, and the properties of postsynaptic glutamate receptors. Clearance of glutamate in the synaptic cleft depends on passive diffusion and active uptake by glutamate transporters. In this study, we examined the role of glial glutamate transporter 1 (GLT-1) in spinal sensory processing. Excitatory postsynaptic currents (EPSCs) of substantia gelatinosa neurons recorded from spinal slices of young adult rats were analyzed before and after GLT-1 was pharmacologically blocked by dihydrokainic acid. Inhibition of GLT-1 prolonged the EPSC duration and the EPSC decay phase. The EPSC amplitudes were increased in neurons with weak synaptic input but decreased in neurons with strong synaptic input upon inhibition of GLT-1. We suggest that presynaptic inhibition, desensitization of postsynaptic AMPA receptors, and glutamate "spillover" contributed to the kinetic change of EPSCs induced by the blockade of GLT-1. Thus, GLT-1 is a key component in maintaining the spatial and temporal coding in signal transmission at the glutamatergic synapse in substantia gelatinosa neurons.  相似文献   

7.
Baudoux S  Parker D 《Neuroscience》2008,153(4):1332-1343
While it is established that glial cells actively influence neuronal and synaptic properties, the functional effects of glial-neuronal interactions are still not well understood. To address the role of glia at the network level we have examined the effects of the specific gliotoxin L-aminoadipic acid on the locomotor network output and cellular and synaptic properties in the lamprey spinal cord. The gliotoxic effect of aminoadipic acid was associated with a specific depolarization of glial cells. Aminoadipic acid depolarized the membrane potential of spinal cord neurons, suggesting a functional link between glia and neurons. The depolarization was significantly reduced by glutamate receptor antagonists in adults, but by gap junction blockers in larvae, suggesting a developmental difference in glial-neuronal interactions. Aminoadipic acid also reduced the amplitude of monosynaptic excitatory postsynaptic potentials (EPSPs), an effect that was not associated with changes in the presynaptic release probability or postsynaptic response to glutamate. These cellular and synaptic effects of aminoadipic acid were associated with disruption of the locomotor network output. This could not be accounted for by changes in glutamate uptake or potassium buffering by glia, suggesting a direct role for glia in the network. Interestingly, we found that the aminoadipic acid-evoked disruption of network activity and reduction of monosynaptic EPSP amplitudes did not occur in the presence of the endogenous spinal modulator 5-HT. These results thus provide evidence for an active functional role for glial cells in spinal cord locomotor networks, and suggest a potential glial modulatory effect of 5-HT.  相似文献   

8.
Posttetanic potentiation (PTP)-like phenomena appear to be mediated by a variety of mechanisms. Although neuropeptides are located in a large number of neurons and many neuropeptides, like PTP, can enhance synaptic transmission, there is a paucity of studies indicating that peptides may actually participate in PTP. Here, we utilize a single central synapse in the feeding circuit of Aplysia to investigate a possible peptidergic contribution to PTP in the CNS. The cholinergic command-like interneuron, cerebral-buccal interneuron 2 (CBI-2), contains two neuropeptides, feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP2). Previous studies showed that tetanic prestimulation or repeated stimulation of CBI-2, as well as perfusion of FCAP and CP2, increase the size of the cholinergic excitatory postsynaptic potentials (EPSPs) that CBI-2 evokes in the motoneurons B61/62 and shorten the latency to initiate B61/62 firing in response to CBI-2 stimulation. We used temperature-dependent suppression of peptide release and occlusion experiments to examine the possible contribution of FCAP and CP2 to PTP at the CBI-2 to B61/62 synapse. When peptide release was suppressed, perfusion of exogenous peptides increased the size of posttetanic EPSPs. In contrast, when peptide release was not suppressed, exogenous peptides did not enhance the size of posttetanic EPSPs, thus indicating occlusion. Temperature manipulation and occlusion experiments also indicated that peptides extend PTP duration. This peptide-dependent prolongation of PTP has functional consequences in that it extends the duration of time during which the latency to initiate B61/62 firing in response to CBI-2 stimulation is shortened.  相似文献   

9.
Information processing in neuronal networks is determined by the use-dependent dynamics of synaptic transmission. Here we characterize the dynamic properties of excitatory synaptic transmission in two major intracortical pathways that target the output neurons of the neocortex, by recording unitary EPSPs from layer 5 pyramidal neurons evoked in response to action potential trains of increasing complexity in presynaptic layer 2/3 or layer 5 pyramidal neurons. We find that layer 2/3 to layer 5 synaptic transmission is dominated by frequency-dependent depression when generated at fixed frequencies of > 10 Hz. Synaptic depression evolved on a spike-by-spike basis in response to action potential trains that possessed a broad range of interspike intervals, but a low mean frequency (10 Hz). Layer 2/3 to layer 2/3 and layer 2/3 to layer 5 synapses were incapable of sustained release during prolonged, complex trains of presynaptic action potential firing (mean frequency, 48 Hz). By contrast, layer 5 to layer 5 synapses operated effectively across a wide range of frequencies, exhibiting increased efficacy at frequencies > 10 Hz. Furthermore, layer 5 to layer 5 synapses sustained release throughout the duration of prolonged, complex spike trains. The use-dependent properties of synaptic transmission could be modulated by pharmacologically changing the probability of release and by induction of long-term depression. The dynamic properties of intracortical excitatory synapses are therefore pathway-specific. We suggest that the synaptic output of layer 5 pyramidal neurons is ideally suited to control the neocortical network across a wide range of frequencies and for sustained periods of time, a behaviour that helps to explain the pivotal role played by layer 5 neurons in the genesis of periods of network 'up' states and epileptiform activity in the neocortex.  相似文献   

10.
Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded from the triceps surae motoneurons in the rat. Two to 3 weeks after section of the medial gastrocnemius (MG) nerve, Ia EPSPs evoked by stimulation of the MG nerve were significantly depressed, as reported previously. However, the MG EPSP amplitude significantly increased within 24 h, reaching a maximum on the 3rd day after axotomy. This increase was prevented by actinomycin-D treatment, indicating that the synaptic enhancement is dependent upon protein synthesis. When disuse of sensory fibers was induced without injuring the muscle nerve, the degree of synaptic enhancement was similar to that after axotomy. Therefore, the enhancement of central synaptic transmission shortly after axotomy is due to the loss of electrical activity, but not due to the axon reaction of the Ia sensory neurons to injury. It is postulated that the presence of some factor in Ia sensory fibers enhances synaptic transmission, while electrical activity of the neurons antagonizes the action of this factor.  相似文献   

11.
In neural mechanisms of animal learning, intracellular cAMP has been known to play an important role. In the present experiments we attempted functional transplant of a photoactivated adenylyl cyclase (PAC) isolated from Euglena into Aplysia neurons, and explored whether PAC can produce cAMP in the neurons by light stimulation. Serotonergic modulation of mechanoafferent sensory neurons in Aplysia pleural ganglia has been reported to increase intracellular cAMP level and promotes synaptic transmission to motor neurons by increasing spike width of sensory neurons. When cAMP was directly injected into the sensory neurons, spike amplitude temporarily decreased while spike width temporarily increased. This effect was not substituted by injection of 5'AMP, and maintained longer in a bath solution containing IBMX, the phosphodiesterase inhibitor. We, therefore, explored these changes as indicators of appearance of the PAC function. PAC or the PAC expression vector (pNEX-PAC) was injected into cell bodies of sensory neurons. Spike amplitude decreased in both cases and spike width increased in the PAC injection when the neurons were stimulated with light, suggesting that the transplanted PAC works well in Aplysia neurons. These results indicate that we can control cAMP production in specific neurons with light by the functional transplant of PAC.  相似文献   

12.
Chen J  Sandkühler J 《Neuroscience》2000,98(1):141-148
The synaptic strength between primary afferent Adelta-fibers, many of which convey pain-related information, and second order neurons in the spinal dorsal horn can be depressed for prolonged periods of time in a use- and N-methyl-D-aspartate receptor-dependent fashion. Here, we have used a transverse spinal cord slice-dorsal root preparation of young rat to characterize the nature of this form of long-term depression and the role of metabotropic glutamate receptors. Dorsal roots were bisected and intracellular recordings were made from lamina II neurons with independent excitatory synaptic inputs from both dorsal root halves. Conditioning stimulation of one dorsal root half (1 Hz, 900 pulses) induced long-term depression that was specific for the stimulated pathway, i. e. homosynaptic in nature. The induction of long-term depression was prevented by non-selective group I and group II mGluR antagonist (S)-alpha-methyl-4-carboxyphenylglycine, by selective group I receptor antagonist (S)-4-carboxyphenylglycine and by selective group II mGluR antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester. Group III mGluR antagonist (RS)-alpha-methylserine-O-phosphate was ineffective. Short-term depression was not affected by any of these antagonists.Thus, a homosynaptic form of long-term depression exists at putative nociceptive synapses in the spinal dorsal horn and its induction requires the activation of both group I and II metabotropic glutamate receptors.  相似文献   

13.
Depolarization-induced suppression of inhibition (DSI) is a transient suppression of the inhibitory synaptic transmission, observed in the hippocampus and the cerebellum, upon postsynaptic depolarization. Using rat hippocampal cultures, we examined whether DSI is confined to the inhibitory synapses on the depolarized neuron or, if DSI can spread to those on neighboring non-depolarized neurons. Whole-cell recordings were performed in 108 neuronal pairs with the following synaptic responses. Stimulation of one neuron evoked the inhibitory autaptic currents (IACs) recurrently in that neuron and also elicited the inhibitory postsynaptic currents (IPSCs) orthodromically in the other neuron. In 38 of 108 pairs, the postsynaptic depolarization caused transient suppression of IPSCs (homosynaptic DSI). In 11 of the 38 pairs exhibiting the homosynaptic DSI, the depolarization also induced suppression of IACs (heterosynaptic DSI). The heterosynaptic DSI, like the homosynaptic DSI, depended on depolarizing pulse duration and was blocked by a phorbol ester. These results suggest that DSI can spread to the synapses on a neighboring non-depolarized neuron in rat hippocampal cultures.  相似文献   

14.
The short-term plasticity of synaptic transmission between excitatory neurons within a barrel of layer 4 rat somatosensory neocortex was investigated. Action potentials in presynaptic neurons at frequencies ranging from 1 to 100 Hz evoked depressing postsynaptic excitatory postsynaptic potentials (EPSPs). Recovery from synaptic depression followed an exponential time course with best-fit parameters that differed greatly between individual synaptic connections. The average maximal short-term depression was close to 0.5 with a recovery time constant of around 500 ms. Analysis of each individual sweep showed that there was a correlation between the amplitude of the response to the first and second action potentials such that large first EPSPs were followed by smaller than average second EPSPs and vice versa. Short-term depression between excitatory layer 4 neurons can thus be termed use dependent. A simple model describing use-dependent short-term plasticity was able to closely simulate the experimentally observed dynamic behavior of these synapses for regular spike trains. More complex irregular trains of 10 action potentials occurring within 500 ms were initially well described, but during the train errors increased. Thus for short periods of time the dynamic behavior of these synapses can be predicted accurately. In conjunction with data describing the connectivity, this forms a first step toward computational modeling of the excitatory neuronal network of layer 4 barrel cortex. Simulation of whisking-evoked activity suggests that short-term depression may provide a mechanism for enhancing the detection of objects within the whisker space.  相似文献   

15.
Sensory inputs from the whiskers reach the primary somatosensory thalamus through the medial lemniscus tract. The main role of the thalamus is to relay these sensory inputs to the neocortex according to the regulations dictated by behavioural state. Intracellular recordings in urethane-anaesthetized rats show that whisker stimulation evokes EPSP-IPSP sequences in thalamic neurons. Both EPSPs and IPSPs depress with repetitive whisker stimulation at frequencies above 2 Hz. Single-unit recordings reveal that during quiescent states thalamic responses to repetitive whisker stimulation are suppressed at frequencies above 2 Hz, so that only low-frequency sensory stimulation is relayed to the neocortex. In contrast, during activated states, induced by stimulation of the brainstem reticular formation or application of acetylcholine in the thalamus, high-frequency whisker stimulation at up to 40 Hz is relayed to the neocortex. Sensory suppression is caused by the depression of lemniscal EPSPs in relatively hyperpolarized thalamocortical neurons. Sensory suppression is abolished during activated states because thalamocortical neurons depolarize and the depressed lemniscal EPSPs are able to reach firing threshold. Strong IPSPs may also contribute to sensory suppression by hyperpolarizing thalamocortical neurons, but during activated states IPSPs are strongly reduced altogether. The results indicate that the synaptic depression of lemniscal EPSPs and the level of depolarization of thalamocortical neurons work together in thalamic primary sensory pathways to suppress high-frequency sensory inputs during non-activated (quiescent) states while permitting the faithful relay of high-frequency sensory information during activated (processing) states.  相似文献   

16.
Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes IP3 formation, may play an important role in postsynaptic signaling during facilitation and learning in Aplysia. Using the PLC inhibitor U73122, we found that PLC activity is required for synaptic facilitation following a 10-min treatment with 5-HT, as measured at 20 min after 5-HT washout. Prior work has indicated that facilitation at this time is supported primarily by postsynaptic processes. To determine whether postsynaptic PLC activity is involved in 5-HT-mediated facilitatory actions, we examined the effect of U73122 on enhancement of the response of motor neurons isolated in cell culture to glutamate, the sensory neuron transmitter. A 10-min application of 5-HT induced persistent (>40 min) enhancement of glutamate-evoked potentials (Glu-EPs) recorded from isolated motor neurons, and this enhancement was blocked by U73122. Finally, we showed that injecting U73122 into intact animals before behavioral training impaired intermediate-term sensitization, indicating that PLC activity contributes to this form of nonassociative learning.  相似文献   

17.
The main role of the thalamus is to relay sensory inputs to the neocortex. In the primary somatosensory thalamus (ventrobasal thalamus), sensory inputs deliver tactile information through the medial lemniscus tract. The transmission of sensory information through this pathway is affected by behavioral state. For instance, the relay of high-frequency somatosensory inputs through the thalamus is suppressed during anesthesia or quiescent states but allowed during behaviorally activated states. This change may be due to the effects of modulators on the efficacy of lemniscal synapses. Here I show that lemniscal synapses of adult rodents studied in vitro produce large amplitude-highly secure unitary excitatory postsynaptic potentials (EPSPs), which depress in response to repetitive stimulation at frequencies >2 Hz. Acetylcholine and norepinephrine, which are important thalamic modulators, have no effect on the efficacy of lemniscal EPSPs but reduce evoked inhibitory postsynaptic potentials and corticothalamic EPSPs. Although acetylcholine and norepinephrine do not affect lemniscal synapses, the postsynaptic depolarization they produce on thalamocortical neurons serves to warrant the relay of lemniscal inputs at high-frequency rates by bringing the depressed lemniscal EPSPs close to firing threshold. In conclusion, acetylcholine and norepinephrine released during activated states selectively enhance sensory transmission through the lemniscal pathway by depolarizing thalamocortical neurons and simultaneously depressing the other afferent pathways.  相似文献   

18.
To investigate the role of phosphatidylinositol 3 kinase (PI3 kinase) in hippocampal synaptic plasticity, we used whole-cell patch clamp recordings from rat CA1 neurons to determine the effects of PI3 kinase inhibitors on long-term depression (LTD). PI3 kinase blockade caused a loss of synapse specificity of LTD that was dependent on the co-activation of NMDA-type glutamate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), and involved release of Ca(2+) from intracellular stores. These findings suggest that the synapse specificity of hippocampal LTD may not be an intrinsic property of this form of homosynaptic plasticity, but rather that it can be regulated by PI3 kinase.  相似文献   

19.
Functions of glutamate transporters in the brain   总被引:9,自引:0,他引:9  
L-glutamate is the primary excitatory neurotransmitter in the mammalian central nervous system and has also been implicated as a potent neurotoxin. To ensure a high signal-to-noise ratio during synaptic transmission and to prevent neuronal damage that might occur as a result of excessive activation of glutamate receptors, the extracellular glutamate concentration is tightly controlled by glutamate transporters in the plasma membrane of neurons and the surrounding glial cells. Five subtypes of glutamate transporters have been identified and characterized by molecular cloning. Recent studies of glutamate transporters using the genetic knockout strategy indicate that glial, but not neuronal, glutamate transporters play critical roles in maintaining the extracellular glutamate concentrations and are thereby essential for both normal synaptic transmission at the photoreceptor synapses and protection of neurons against glutamate excitotoxicity. This review summarizes the current knowledge on the properties and functional roles of glutamate transporters, focusing on the properties of the anion channel in the transporters, the unexpected localization of these transporters, their role in synaptic transmission and plasticity, and their involvement in the protection of neurons against excitotoxicity.  相似文献   

20.
Studies of the modulation of synaptic transmission in buccal muscle of Aplysia were limited because the conventional fast transmitter used by a number of large buccal motor neurons was unknown. Most of the identified buccal motor neurons are cholinergic because they synthesize acetylcholine (ACh) and their excitatory junction potentials (EJPs) are blocked by the cholinergic antagonist hexamethonium. However, three large identified motor neurons (B3, B6, and B38) do not synthesize ACh and their EJPs are not inhibited by hexamethonium. To identify the fast excitatory transmitter used by these noncholinergic motor neurons, we surveyed putative transmitters for their ability to evoke contractions. Of the noncholinergic transmitters tested, glutamate was the most effective at evoking contractions. The pharmacology of the putative glutamate receptor is different from previously characterized glutamate receptors in that glutamate agonists and antagonists previously used to classify glutamate receptors had little effect in this system. In addition, glutamate itself was the most effective agent tested at reducing EJPs evoked by the noncholinergic motor neurons presumably by desensitizing glutamate receptors. Finally, immunocytology using an antiserum raised to conjugated glutamate in parallel with intracellular fills indicated that the varicose axons of these motor neurons were glutamate-immunoreactive. Taken together, these results indicate that the fast transmitter used by the noncholinergic neurons is almost certainly glutamate itself. This information should help us understand the role of transmitters and cotransmitters in the generation of feeding behaviors in Aplysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号