首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urinary t,t-muconic acid as an indicator of exposure to benzene   总被引:2,自引:0,他引:2  
A method for rapidly determining t,t-muconic acid (MA) by high performance liquid chromatography was developed and successfully applied to urine samples from 152 workers exposed to benzene (64 men, 88 women) and 213 non-exposed controls (113 men, 100 women). The MA concentrations in urine correlated linearly with time weighted average benzene concentrations in the breath zone air of workers. A cross sectional balance study showed that about 2% of benzene inhaled is excreted into the urine as MA. The MA concentrations in the urine of the non-exposed was below the detection limit (less than 0.1 mg/l) in most cases, and the 95% lower confidence limit of MA for those exposed to benzene at 5 ppm (5.0 mg/l as a non-corrected value) was higher than the 97.5%-tile values for the non-exposed (1.4 mg/l). In practice, it was possible to separate those exposed to 6-7 ppm benzene from the non-exposed by means of urine analysis for MA. The urinary MA concentration was suppressed by coexposure to toluene.  相似文献   

2.
A sampling strategy was developed to detect personal exposure to methanol and formic acid vapors. Formic acid is the metabolic end product of methanol, and part of inhaled formic acid is excreted directly in urine, so that urinary formic acid would reveal exposure to both agents. A linear relationship to inhaled vapors, however, could be shown only if urinary sampling were delayed until 16 hr (next morning) after exposure. Exposure to methanol vapor at the current Finnish hygienic limit level (200 ppm) produced 80 mg formic acid/g creatinine; exposure to formic acid at the hygienic limit (5 ppm) caused 90 mg/g creatinine. The similarity of these figures may indicate a common toxicological foundation of these empirically set values.  相似文献   

3.
A hand-saving HPLC method to measure urinary phenylmercapturic acid (PMA) was developed which allows about 35 PMA determinations per day. The method involves conversion of pre-PMA to PMA by the addition of sulfuric acid to a urine sample, extraction into an ether-methanol mixture followed by condensation under a nitrogen stream. The condensate was introduced to a ODS-3 column in a HPLC system, and PMA in the column was eluted into a mobile phase of acetonitrile: methanol: perchloric acid: water. The elution of PMA was monitored at 205 nm. One determination will be completed in 40 min. The method was applied to analysis of end-of-shift urine samples from 152 workers exposed up to 210 ppm benzene, 66 workers exposed to a mixture of benzene (up to 116 ppm) and toluene + xylenes (up to 118 ppm), and 131 non-exposed controls of both sexes. A linear regression was established between time-weighted average intensity of exposure to benzene and urinary PMA. From the regression, it was calculated that urinary PMA level will be about 6.4 mg/l after 8-hour exposure to benzene at 100 ppm, and that PMA in urine accounted for about 0.1% of benzene absorbed. No effects of sex, age, and smoking habit of individuals were detected, and the effect of co-exposure to toluene + xylenes at the levels comparable to that of benzene was essentially nil, which indicates an advantage of PMA as a benzene exposure marker over monoto tri-phenolic metabolites or t,t-muconic acid.  相似文献   

4.
Objective: To investigate whether methoxyacetic acid (MAA) is the metabolite of ethylene glycol dimethyl ether (EGdiME) in humans and whether its metabolite in urine can be used as a biomarker for exposure to EGdiME. Methods: Workers occupationally exposed to EGdiME, as well as nonexposed controls, were studied. Urine samples were collected from 20 control subjects and, on Friday postshift, from 14 workers. The identification and quantification of the metabolite were performed by gas chromatography/mass spectrometry (GC/MS) and GC/FID, respectively. Air samples were collected on activated charcoal tubes by area sampling with battery-operated pumps. The glycol ether was analyzed by GC/FID. Results: GC/MS clearly showed the metabolite of EGdiME to be MAA. Urinary MAA levels in the control subjects (background levels) were 0.0–0.3 mg/g crea. The levels of urinary MAA in the solvent-exposed workers were significantly (P<0.0001) higher than those in the control subjects. In the eight workers exposed to an average of 0.3 ppm of EGdiME and the six workers exposed to an average of 2.9 ppm, the mean urinary MAA level was 1.08 (range 0.6–1.5) mg/g crea and 9.33 (range 5.7–18.1) mg/g crea, respectively. These results can be explained by differences in the exposure intensity. Conclusions: Our results suggest that MAA is the metabolite of EGdiME, and that MAA in urine may be used for biological monitoring of EGdiME exposures.  相似文献   

5.
Summary Different parameters of biological monitoring were applied to 26 benzene-exposed car mechanics. Twenty car mechanics worked in a work environment with probably high benzene exposures (exposed workers); six car mechanics primarily involved in work organization were classified as non-exposed. The maximum air benzene concentration at the work places of exposed mechanics was 13 mg/m3 (mean 2.6 mg/m3). Elevated benzene exposure was associated with job tasks involving work on fuel injections, petrol tanks, cylinder blocks, gasoline pipes, fuel filters, fuel pumps and valves. The mean blood benzene level in the exposed workers was 3.3 g/l (range 0.7–13.6 g/1). Phenol proved to be an inadequate monitoring parameter within the exposure ranges investigated. The muconic and S-phenylmercapturic acid concentrations in urine showed a marked increase during the work shift. Both also showed significant correlations with benzene concentrations in air or in blood. The best correlations between the benzene air level and the mercapturic and muconic acid concentrations in urine were found at the end of the work shift (phenylmercapturic acid concentration: r = 0.81, P < 0.0001; muconic acid concentration: r = 0.54, P < 0.05). In conclusion, the concentrations of benzene in blood and mercapturic and muconic acid in urine proved to be good parameters for monitoring benzene exposure at the workplace even at benzene air levels below the current exposure limits. Today working as a car mechanic seems to be one of the occupations typically associated with benzene exposure.  相似文献   

6.
The occupational exposure of 19 men to hexamethylene diisocyanate (HDI) vapour was monitored during one 8-h shift. It ranged from 0.30 to 97.7 μg/m3. This was compared with the urinary output of hexane diamine (HDA) liberated by acid hydrolysis from its conjugates in post-shift samples. The excretion varied from 1.36 to 27.7 μg/g creatinine, and there was a linear association of HDI air concentration with urinary HDA excretion. The validity of the urinary analysis was confirmed by simultaneous blind analysis in another laboratory. The results had an excellent linear concordance. Thus, it seems that while the gas chromatographic-mass spectrometric detection method requires sophisticated apparatus, the results are very useful to occupational health practices. A biological exposure index limit of 19 μg HDA/g creatinine in a post-shift urine specimen is proposed as an occupational limit level of HDI monomer (time-weighted average=75 μg/m3). Most importantly, biological monitoring of HDA is sensitive enough to be used at and below the current allowable exposure limit levels.  相似文献   

7.
8.
Summary Acetone concentrations in urine samples from 28 workers exposed to acetone in a fiber-reinforced plastics factory were determined by directly injecting urine supernate into a gaschromatograph with FID detectors. Acetone concentrations in the urine from ten nonexposed subjects were also determined. The 8-h time-weighted exposure intensity of individual workers was monitored by means of diffusive sampling. Acetone concentration in urine and acetone concentration in the breathing zone showed a linear correlation to each other. The study results indicate that the correlation coefficient is high enough to enable use of the urinary level of acetone as an indicator of occupational exposure to acetone.  相似文献   

9.
10.

Background and objectives

Data on human exposure to chemicals in Africa are scarce. A biomonitoring study was conducted in a representative sample of the population in Kinshasa (Democratic Republic of Congo) to document exposure to benzene.

Methods

S-phenylmercapturic acid (S-PMA) was measured by LC–MS/MS in spot urine samples from 220 individuals (50.5% women), aged 6–70 years living in the urban area and from 50 additional subjects from the sub-rural area of Kinshasa. Data were compiled as arithmetic means, geometric means, percentile 95th and range expressed in μg/L.

Results

Overall, living in urban Kinshasa was associated with increased levels of S-PMA in urine as compared to a population living in the sub-rural area. Increased levels were also found by comparison with some date from literature.

Conclusions

This study reveals the high benzene exposure of the Kinshasa population requiring the determination of benzene concentrations in ambient air of Kinshasa and limit values for the protection of human health.  相似文献   

11.
Summary Vanadium was determined in urine and blood of two workers (Worker Nos. 1 and 2 with direct exposure to vanadium pentoxide) and 13 fellow workers (with indirect or no vanadium exposure), and the results were compared by means of personal and stationary sampling of vanadium in air. Worker No. 1, a foreman with the heaviest exposure to vanadium, had a green tongue, complained of frequent productive coughing, and excreted 47 to 124 ng/ml vanadium in his late morning and mid-afternoon urine. Worker No. 2, a helper to the foreman with less exposure, had no green tongue or subjective complaints, and excreted no vanadium at a measurable level even in his mid-shift urine. No vanadium was detected in urine samples from other workers, nor in blood from all workers including Worker Nos. 1 and 2. Application of inductively coupled plasma emission spectrometry to measurement of vanadium in biological materials is discussed.  相似文献   

12.
In order to compare methylchloroform (MC, or 1,1,1-trichloroethane) per se and its metabolites in urine as indicators of occupational exposure to this solvent, 50 male solvent workers were studied in the second half of a working week to evaluate the exposure-excretion relationship. The time-weighted average intensity of solvent exposure of individuals during an 8-h shift was monitored by personal diffusive sampling. Urine samples were collected near the end of the shift and were analyzed for MC and its metabolites [i.e., trichloroacetic acid (TCA), trichloroethanol (TCE) and total trichloro-compounds (TTC; the sum of TCA and TCE)] by head-space gas chromatography. MC per se, TCA, TCE, and TTC in urine correlated significantly (P < 0.01) with MC in ambient air, and among the four the correlation coefficient was highest for MC. The same results were obtained by multiple regression analysis in which ambient air MC was taken as the dependent variable and either the three indicators urinary MC, TCA, and TCE or the two indicators urinary MC and TTC were taken as independent variables. Taking the specificity and selectivity of the analyte as well as the simple and hazardous chemical-free procedure of analysis into consideration, it is concluded that MC is the analyte of choice as an indicator of occupational exposure to MC, when urine is selected as a specimen available by noninvasive sampling.  相似文献   

13.
Summary Absorption of ethylbenzene and excretion of mandelic acid were investigated under controlled conditions in six volunteers, exposed at concentrations of 18, 34, 80, and 200 mg/m3. Retention of ethylbenzene vapours in the lungs was 49 ± 5%. Elimination of mandelic acid was found to be biphasic, with biological half-life values of 3.1 and 24.5 h. Total excreted mandelic acid accounts for 55 ± 2% of retained ethylbenzene. The results obtained were applied to devise an exposure test for ethylbenzene, which would enable the precise evaluation of exposure at low ethylbenzene, vapour concentrations (± 13%). Exposures, carried out dermally, gave a rationale for the exclusion of the skin as a route of entry of ethylbenzene vapours into the body.  相似文献   

14.
In male subjects not occupationally exposed to benzene, the concentration of muconic acid (MA) in urine is usually below 0.5 mg/g creatinine. At ambient levels of benzene exposure (below 0.01 ppm), the mean MA level was greater in 21 smokers than in 14 nonsmokers. In 38 male subjects employed in garages and coke ovens, a statistically significant correlation was found between the airborne concentration of benzene measured with passive monitors and MA in postshift urine. The mean postshift MA concentrations corresponding to a benzene 8-hour time-weighted average exposure (TWA) of 0.5 and 1 ppm were 0.8 and 1.4 mg/g creatinine, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Summary To define the relationship between ionic fluoride concentration in the serum of workers and the amount of hydrofluoric acid (HF) in the work environment, pre-and postshift serum and urine samples of 142 HF workers and 270 unexposed workers were examined. The maximum and minimum concentrations of HF in the air in each workshop varied from the mean by less than 30%. The pre-exposure levels of serum and urinary fluoride in HF workers were higher (P < 0.001) than the control values. This suggests that fluoride excretion from the body continues for at least 12 h. The postshift serum and urinary fluoride concentrations of these workers were significantly higher (P < 0.001) than the preshift concentrations. A good correlation (r = 0.64) was obtained between postshift serum fluoride and postshift urine fluoride. There was a linear relationship between mean serum fluoride concentration and HF concentration in the workshop. A mean fluoride concentration of 82.3 g/l with a lower fiducial limit (95%, P = 0.05) of 57.9 g/l was estimated to correspond to an atmospheric HF concentration of 3 ppm. This is the maximum allowable environmental concentration recommended by the Japanese Association of Industrial Health, and it is also the threshold limit value suggested by the American Conference of Governmental Industrial Hygienists. The results demonstrate that exposure to HF can be monitored by determining the serum fluoride concentration.  相似文献   

16.
Summary Two workers exposed to trivalent chromium sulphate in a leather tannery had high concentrations of chromium in the urine. The concentration of chromium showed a workshift-related diurnal fluctuation, but it was remarkably high even after a vacation, indicating accumulation of chromium in the body. The concentrations of chromium in the workplace air, as collected on filters using standard techniques, were below 30/gmg/m3. The chromium in the air was present in the form of large droplets not collected by the standard techniques. In the blood stream, chromium was transported exclusively in the plasma. No absorption of chromium through the skin could be detected. Absorption from the gastrointestinal tract was calculated to explain the findings.  相似文献   

17.
Objective: To investigate whether methyltetrahydrophthalic acid (MTHP acid) in urine can be used as a biomarker for exposure to methyltetrahydrophthalic anhydride (MTHPA). Methods: Workers occupationally exposed to MTHPA were studied in combination with one of the authors, who was experimentally exposed to MTHPA. Air levels of MTHPA were determined by personal sampling in the breathing zone. The MTHPA in air was sampled by silica gel and analyzed by gas chromatography (GC) with electron-capture detection. Urinary levels of MTHP acid, a metabolite of MTHPA, were determined in 15 subjects in total. Urine was collected from 14 workers immediately before the start of the work shift and then after 4 and 8 h, and from one of the authors at intervals during 24 h. MTHP acid in urine was analyzed by GC with mass spectrometric detection. Results: The time-weighted average (TWA) air levels ranged from 1.0 g to 200 g MTHPA/m3 during 8 h work shifts. The urinary levels of MTHP acid increased during exposure and decayed after the end of exposure, with an estimated half-time of about 3 h. A close correlation was found between the TWA air levels of MTHPA and creatinine-adjusted MTHP acid levels in urine collected at the end of the shift (r=0.955; P<0.0001). The current occupational exposure limit of 50 g MTHPA/m3 (Japan Society for Occupational Health) corresponded to about 1300 g MTHP acid/g creatinine, which was equivalent to about 900 nmol/mmol creatinine in the International System of Units (SI). Conclusions: These results indicate that the determination of MTHP acid in urine is suitable for use in the biological monitoring of MTHPA exposure.  相似文献   

18.
19.
Objective: In the present study the relationship between the level of exposure to o-cresol and of 2,4- +2,5-, 3,4-, and 3,5-xylenols and the urinary excretion of their metabolites was examined. The mixed exposure to phenolic derivatives of exposed workers during their work shift was monitored by personal air sampling of the breathing-zone air and by measurements of phenol, o-cresol, and xylenol isomer concentrations in shift-end urine. Methods: The study subjects were 76 men working at a coke plant who were 22–58 years old and 34 nonexposed subjects. Concentrations of phenolic compounds were determined in the breathing-zone air during the work shift, whereas concentrations of phenol, cresol, and xylenol isomers were measured in urine collected after the work shift. Concentrations of phenols in air and urine were determined by gas chromatography with flame-ionization detection. Urine samples were extracted after acid hydrolysis of glucuronides and sulfates by solid-phase extraction. The gas chromatography-mass spectrometry method was applied to identify metabolites in urine samples. Results: The time-weighted average concentrations of phenol, cresol, and xylenol isomers detected in breathing-zone air showed that the exposure level of the workers was relatively low. The geometric mean values were as follows: 0.26 mg/m3 for phenol, 0.09 mg/m3 for o-cresol, 0.13 mg/m3 for p- and m-cresol, and 0.02–0.04 mg/m3 for xylenols at the tar-distillation process. Corresponding urinary concentrations were 10.39, 0.53, and 0.25–0.88 mg/g creatinine for phenol, o-cresol, and xylenol isomers, respectively. The correlation coefficients between the o-cresol and 2,4-, 2,5-, 3,4-, and 3,5-xylenol concentrations measured in urine and in the breathing-zone air were statistically significant, varying in the range of 0.54–0.74 for xylenol isomers and being 0.69 for o-cresol. Conclusion: We have found that the presence of o-cresol and xylenol isomers in urine can be used as a biomarker for phenol exposure. Analysis performed on workers at the tar-distillation process showed that they were exposed to relatively low concentrations of phenolic compounds. Received: 15 October 1996 / Accepted: 5 May 1997  相似文献   

20.
 Excretion of trans,trans-muconic acid (2,4-hexadienedioic acid; t,t-MA), a potential biomarker of low-level exposure to benzene, was determined in 32 smokers and 82 nonsmokers. In smokers the median background excretion of t,t-MA was 0.13 (0.06–0.39) mg/g creatinine and was significantly higher (P<0.05) than the value of 0.065 (0.02–0.59) mg/g creatinine in nonsmokers. For nonsmokers, the correlation between t,t-MA excretion and environmental exposure to benzene in ambient air, which was determined during the 8-day study period by personal diffusion samplers, was not significant (r=0.164, P=0.18). Nonsmokers living in the city tended to have higher t,t-MA excretion rates than nonsmokers living in the suburbs. However, the difference was only significant for nonsmokers from nonsmoking homes. For the same location (suburb or city), smoking at home leads to a marginal increase in t,t-MA excretion of the nonsmoking members of the household. In a further study with eight nonsmokers we found that dietary supplementation with 500 mg sorbic acid significantly increased (P<0.001) the mean urinary t,t-MA excretion from 0.08 (0.04–0.12) to 0.88 (0.57–1.48) mg/24 h. Under study conditions 0.12% of the sorbic acid dose was excreted in urine as t,t-MA, thereby indicating that a typical dietary intake of 6–30 mg/day sorbic acid accounts for 10–50% of the background t,t-MA excretion in nonsmokers, and for 5–25% in smokers. As a consequence, sorbic acid in the diet is a significant confounding factor in assessing low-level benzene exposure if t,t-MA excretion in urine is used as a biomarker. Received: 10 October 1995 / Accepted: 26 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号