首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了解南通市社区大气PM2.5中16种多环芳烃(PAHs)的含量变化、污染水平、分布特征及其来源,于2016年6月-2017年5月采集该市某社区采样点的大气PM2.5共84个样品,用高效液相色谱法测定16种PAHs浓度,分析四季PAHs含量变化和污染特征。结果显示,采样点大气PM2.5中16种PAHs在2016-2017年春、夏、秋、冬四季的总浓度(∑PAHs)分别为7.41、10.96、12.85、20.45 ng/m3,平均浓度为12.92 ng/m3,其中BaP的平均浓度为1.69 ng/m3;2016-2017年大气PM2.5中16种PAHs总浓度呈明显的季节变化规律,冬季>秋季>夏季>春季,四季PAHs的组成均以4~5环为主;特征比值法显示,PAHs的主要来源为机动车尾气排放和燃煤。提示南通市该社区的大气PM2.5中存在PAHs污染,其中冬季浓度值最高。  相似文献   

2.
目的 监测大气PM2.5中多环芳烃组分及含量,以了解杭州市主城区大气中多环芳烃的污染特征。方法 2014年9月—2021年12月每月定期连续采样7 d~8 d,每日采样23 h。样品经称重后检测多环芳烃组分及含量。结果 2014年—2021年大气PM2.5浓度呈逐年下降趋势;冬春季浓度高于夏秋季。其多环芳烃含量也呈逐年下降趋势,冬春季浓度高于夏秋季。所检测的多环芳烃,除Any、Flu、Acl以外均显示冬春季平均浓度大于夏秋季平均浓度。多环芳烃总质量也呈下降趋势,冬春浓度高于夏秋。在640个监测日中,有20个监测日BaP浓度超过标准限值,占3.125%;以BaP作为参照,有228个监测日,毒性等效浓度超过标准限值,占35.625%。结论 大气PM2.5浓度、多环芳烃总含量、大多数多环芳烃含量、多环芳烃总质量占比呈逐年下降趋势,并具有季节性差异,冬春季浓度(或占比)高于夏秋季。  相似文献   

3.
目的分析2014年济南市王舍人社区大气PM_(2.5)中多环芳烃的污染特征及健康风险。方法于2014年检测王舍人社区大气PM_(2.5)中多环芳烃水平,利用比值法进行污染源识别,并评价人群健康风险。结果王舍人社区76 d大气PM_(2.5)检测结果中有49 d(占64.5%)超过GB 3095—2012《环境空气质量标准》二级标准限值(75μg/m~3),PAHs污染物以2~3环化合物为主,1-5月有燃煤污染特征,7、8月有交通污染特征,9—12月兼有燃煤和交通污染特征。冬季PAHs总浓度(508.33 ng/m~3,n=25)高于春季(132.06 ng/m~3,n=17)、夏季(133.13 ng/m~3,n=14)和秋季(189.33 ng/m~3,n=20),冬季Ba P浓度(5.91 ng/m~3,n=25)高于春季(1.78 ng/m~3,n=17)、秋季(1.44 ng/m~3,n=20)和夏季(1.03 ng/m~3,n=14),差异均有统计学意义(P0.05)。12月大气PAHs污染所致成人、儿童的终身致癌超额危险度和成人预期寿命损失分别为0.68×10~(-5)、0.48×10~(-5)和42.52 min。结论 2014年王舍人社区大气PAHs污染有燃煤和交通污染特征,人群终身致癌超额危险度处于可接受范围内。  相似文献   

4.
5.
为了解佳木斯市秋季大气PM_(2.5)中多环芳烃的污染特征,于2017年10月15—22日连续1周采集了佳木斯郊区大气PM_(2.5)样品,采用GC-MS定量分析了佳木斯市PM_(2.5)中16种多环芳烃的浓度,包括萘(naphthalene,NAP)、苊(acenaphthene,ACY)、二氢苊(acenaphthylene,ACE)、芴(fluorene,FLU)、菲(phenanthrene,PHE)、蒽(anthracene,ANT)、荧蒽(fluoranthene,FLO)、芘(pyrene,PYR)、苯并(a)蒽[benzo (a) anthracene,BaA]、屈(chrysene,CHR)、苯并(b)荧蒽[benzo (b)fluoranthene,BbF]、苯并(k)荧蒽[benzo (k) fluoranthene,BkF]、苯并(a)芘[benzo(a)pyrene,BaP]、茚并(1,2,3-cd)芘[indeno(1, 2,3-cd) pyrene,INP]、二苯并(a,h)蒽[dibenz(a,h)anthracene,DBA]和苯并(ghi)苝[benzo(ghi)perylene,BghiP]。结果显示,大气PM_(2.5)的浓度为92.54~529.84μg/m~3,均值为223.13μg/m~3;PAHs浓度范围为22.90~248.25 ng/m~3,均值为117.14 ng/m~3,多环芳烃中CHR、BaA、FLO、PYR、BbF、BaP和BkF相对含量较高,占多环芳烃总量79.73%,利用化合物比值进行源解析,PM_(2.5)中PAHs主要来源为燃煤;采用苯并(a)芘和苯并(a)芘等效质量浓度(BaPE)对佳木斯市大气颗粒物PM_(2.5)中的PAHs进行致癌风险评价,BaP日均值为11.86 ng/m~3,BaPE日均值为16.14 ng/m~3,均超过了居民区标准限值(2.5 ng/m~3),污染严重。  相似文献   

6.
目的 了解淄博市城区大气PM2.5中的多环芳烃(PAHs)污染水平及特征,分析PAHs来源。方法 2017年采集淄博市城区大气中PM2.5颗粒物,用HPLC分析PM2.5颗粒样品中16种PAHs的含量水平,分析其变化规律,利用比值特征法解析PAHs来源。结果 除苊烯外,PM2.5中15种PAHs均有检出,全年PM2.5的平均值为0.087 mg/m3,范围为0.011~0.309 mg/m3;PAHs总含量范围为1.11~361 ng/m3,平均为33.7 ng/m3。 PM2.5和ΣPAHs的含量随季节的变化规律一致。全年中4环多环芳烃的含量随月份增加呈现下降的趋势;2~3环多环芳烃的含量相对稳定。5~6环多环芳烃含量先逐渐上升,在8月份达到峰值,8月份以后含量逐渐下降。淄博为石油化工为主的工业城市,大气PM2.5中多环芳烃受石油化工源及煤来源的综合影响。结论 淄博市大气PM2.5中PAHs冬季污染最为严重,对健康有较高的潜在风险。2017年经过秋冬大气污染治理,大气状况有了明显改善。  相似文献   

7.
目的 分析张家港市PM2.5中多环芳烃含量、污染特征及来源,为张家港市大气污染的治理提供参考依据。方法 2018年选择张家港市城北小学为采样点,每月10—16日采集PM2.5样品,检测分析优先控制的16种多环芳烃浓度特征、变化趋势以及特征化合物比值。结果 PM2.5中多环芳烃日平均含量总量为1.72~36.7 ng/m3,P50=4.16 ng/m3,日平均含量在前4位的分别是苯并[b]荧蒽0.95 ng/m3,苯并[k]荧蒽0.80 ng/m3、茚并[1,2,3-cd]芘0.75 ng/m3、苯并[g,h,i]苝0.70 ng/m3;多环芳烃日平均含量冬季为14.99 ng/m3,高于春、夏、秋季平均含量(P<0.01);多环芳烃结构以5~6环为主,占总量的35.3%~68.4%;特征化合物比值荧蒽/(荧蒽+芘)为0.27~0.75,苯并[a]芘/苯并[g,h,i]苝为0.53~3.20,苯并[a]蒽/(苯并[a]蒽+屈)为0.18~0.50,提示张家港市大气中多环芳烃主要来源于交通和煤炭燃烧,为混合型污染。结论 张家港市PM2.5中多环芳烃含量季节性变化明显,冬季污染最为严重。多环芳烃结构以5~6环为主,其主要来源为石油和煤炭燃烧。  相似文献   

8.
9.
目的了解广州市大气PM_(2.5)中多环芳烃(PAHs)的季节污染特征和来源,评价人群健康风险。方法于2015年1—11月采集了广州市市区3个行政区的采样点的大气PM_(2.5)样品,分析16种PAHs的含量,利用特征比值法识别其主要来源,应用苯并[a]芘(Ba P)毒性当量因子和美国EPA推荐的模型评价人群健康风险。结果 3个采样点PM_(2.5)中PAHs总质量浓度范围为1.35~43.13 ng/m~3,平均为8.33 ng/m~3,其中Ba P的平均浓度为0.91 ng/m~3;16种PAHs总浓度呈明显的季节变化规律,冬季秋季夏季春季;4个季节PAHs的组成均以5~6环PAHs为主。特征比值法判断出PAHs的主要来源为机动车尾气和煤燃烧。总致癌等效浓度(TEQ)和总致突变等效浓度(MEQ)的平均值分别为2.29 ng/m~3和2.13 ng/m~3,季节变化特征与PAHs相一致;PAHs通过呼吸暴露对成人和儿童造成的终身致癌超额危险度分别为0.78×10~(-6)和0.55×10~(-6)。结论广州市大气PM_(2.5)中PAHs的污染水平较低,主要来源为机动车尾气和煤燃烧,PM_(2.5)中PAHs的人群健康风险处在可接受范围内。  相似文献   

10.
目的了解上海市浦东新区冬季大气PM_(2.5)中多环芳烃的污染来源。方法 2016年12月至2017年2月期间在浦东新区城区和郊区分别设置采样点采集PM_(2.5)样品,采用高效液相色谱-荧光法测定PM_(2.5)中载带的15种多环芳烃的含量并运用特征比值法和正矩阵因子分解法分析其污染来源。结果特征比值法显示浦东新区冬季大气PM_(2.5)中多环芳烃的主要污染源为机动车尾气(包括汽油车和柴油车)、煤燃烧和生物质燃烧。正矩阵因子分解法研究发现这3个因子在城区采样点的贡献率依次为51.6%、27.7%、20.7%,在郊区采样点的贡献率依次为50.8%、30.0%、19.2%。结论 2016年冬季浦东新区大气PM_(2.5)中多环芳烃污染来源中机动车尾气比例最高,煤燃烧源的比例郊区略高于城区,提示相关部门需加强机动车尾气和郊区工业排放的控制和管理。  相似文献   

11.
目的 分析银川市大气PM2.5中12种元素(锑、铝、砷、铍、镉、铬、汞、铅、锰、镍、硒、铊)的污染特征及变化趋势,为大气污染进一步治理提供科学依据。方法 2015年1月至2018年2月每月定期在银川市采集大气PM2.5,采用称重法和电感耦合等离子质谱法(ICP-MS)分别测定大气PM2.5及其元素的质量浓度,分析其污染特征及污染趋势。结果 2017年银川市大气PM2.5年均质量浓度较2015年、2016年明显降低,P<0.05;2015年、2016年呈现明显的季节变化,冬春高、夏秋低,2017年四季变化趋势不明显。银川市大气PM2.5中金属元素Al、Pb、Mn含量较高,其它元素含量相对较低;从2015年到2017年元素Al、Pb、Mn、Sb、Be、Cd、Ni、Tl的质量浓度呈递降趋势。结论 从2015年至2017年,银川市空气质量明显好转,但空气污染的治理仍需要加强。  相似文献   

12.
目的了解北京市大气PM_(2.5)中17种元素的浓度水平及季节变化。方法在北京市于2014年3月至2015年2月每月连续7 d使用中流量大气颗粒物采样器和石英滤膜采集大气PM_(2.5),同时记录大气的温度、相对湿度和风速等气象因素。采用微波消解-ICP/MS测定采集的颗粒物中17种元素的浓度。分析17种元素浓度与气象因素之间的相关性以及霾日和非霾日不同元素的浓度差别。结果北京市大气PM_(2.5)中Fe、Cu、Zn和Pb的质量浓度占所检测元素总浓度的92.69%,大气中元素成分与日均温度、日均风速呈现负相关关系,与日均相对湿度正相关。霾日大气PM_(2.5)中17种元素的浓度高于非霾日。结论北京市大气PM_(2.5)中元素的浓度与温度、风速等气象因素有关,且有着明显的季节变化。霾日大气PM_(2.5)种元素的污染严重。  相似文献   

13.
刘晓利    王丹    孟超    刘芳盈    李平    张殿平    邢燕    王勤   《现代预防医学》2021,(1):23-26
目的 探讨2019年淄博市城区大气PM2.5污染状况,分析其主要成分及污染来源。方法 设置张店区、高新区两个监测点,于每月的10-16号采集大气 PM2.5样品,检测PM2.5质量浓度、PM2.5中多环芳烃及重金属含量,采用因子分析法对 PM2.5污染来源进行解析。结果 2019年我市主城区平均PM2.5质量浓度0.081mg/m3,高于国家环境空气质量二级标准(0.075mg/m3),超标率43.45%(73/168)。因子分析法发现我市PM2.5中多环芳烃主要污染来源为燃煤、汽车尾气(张店区和高新区贡献率分别为73.06%、78.29%),其次是工业冶金(张店区和高新区贡献率分别为12.09%、9.49%);张店区PM2.5中重金属主要污染来源为燃煤(贡献率为36.50%),其次是汽车尾气(贡献率为17.37%),高新区PM2.5中重金属主要污染来源为建筑尘/扬尘(贡献率为39.91%),其次是燃煤(贡献率为14.29%)。结论 我市大气 PM2.5污染水平较重,主要污染来源为燃煤、汽车尾气、工业冶金及建筑尘/扬尘的复合型污染。  相似文献   

14.
目的探讨银川市大气PM_(2.5)中金属元素来源及各来源所占比例,为金属元素污染控制提供科学依据。方法在银川市城区设置2个监测点,2015年每月定期采集大气PM_(2.5)样品,共采集样品164份,分析锑(Sb)、铝(Al)、砷(As)、镉(Cd)、铬(Cr)、汞(Hg)、铅(Pb)、锰(Mn)、镍(Ni)、硒(Se)、铊(Tl)11种金属元素含量及来源。结果 PM_(2.5)质量浓度及部分金属元素含量具有明显的季节变化特征,夏秋低、冬春高。PM_(2.5)中金属元素平均质量浓度顺序:AlPbMnAsTbCdCrSeTlNiHg,环境空气中Pb年均浓度和季平均浓度均未超标。Pb、Tl、Cd、Mn、Se、As主要来源为人为源,主要受到交通源、工业源及燃烧源等人为污染影响。结论银川市大气PM_(2.5)重金属元素的污染特征和来源有其自身的地域性特征。PM_(2.5)质量浓度及金属元素含量受供暖期影响,主要来源于人为污染。  相似文献   

15.
目的建立大气颗粒物PM_(2.5)中16种多环芳烃(PAHs)的超高效液相色谱-二极管阵列检测器测定法。方法空气样品滤膜经乙腈密封超声提取,以乙腈-水为流动相进行梯度洗脱,过Waters ACQUITY UPLC~BEH Shield RP18色谱柱(2.1 mm×150 mm,1.7μm),超高效液相色谱法测定,反相色谱法梯度淋洗分离后,二极管阵列检测器检测。结果在10~1 000μg/L的范围内,所得16种PAHs的回归方程均呈良好的线性关系良好(r0.999 9)。方法的检出限为0.5~6.0μg/L,平均回收率为88.9%~119.4%,RSD为0.3%~4.9%。结论该方法操作简单,灵敏高,分析速度快,适用于空气中16种PAHs的监测。  相似文献   

16.
目的 分析济南市十六里河社区大气PM2.5中多环芳烃的污染特征及健康风险。方法 于2014年检测十六里河社区大气PM2.5中多环芳烃水平,利用比值法识别PAHs的污染源,并评价大气PAHs的人群健康风险。结果 76 d大气PM2.5检测结果中有42 d超过0.075 mg/m3,PAHs以(2~3)环为主,1 - 5、11、12月份有燃煤污染特征,7 - 9月份以交通源为主兼有燃煤源特征,10月份以燃煤源为主兼有交通源特征。PAHs总浓度(ng/m3)大小为冬季(402.19)>春季(158.44)>秋季(143.82)>夏季(81.52)(P< 0.05),苯并(a)芘浓度(ng/m3)大小为冬季(4.22)>春季(2.11)>秋季(1.06)>夏季(0.85)(P< 0.05),其中11、12月份苯并(a)芘浓度分别是我国大气环境标准的1.3和3.2倍。12月份大气PAHs污染致成人、儿童的终身致癌超额危险度和成人预期寿命损失最大,分别为0.69×10 -5、0.48×10 -5和42.74 min。结论 2014年十六里河社区PAHs人群终身致癌超额危险度处于可接受范围内,PAHs污染特征具有明显的燃煤和交通污染特征,应根据不同季节月份采取相应的控制措施。  相似文献   

17.
目的:了解北京市采暖期大气颗粒物PM2,与PM10.的污染特征.方法:在北京市城区设置采样点,采集了2006年3月3~5日、6~8日、8~10日和12~14日PM2.5与PM10,对其中的8种水溶性离子、17种"酸提"元素、12种"水提‘元素、17种多环芳烃及有机碳、元素碳的含量进行了分析.结果:8种水溶性离子总浓度及含碳组分(有机碳 元素碳的质量浓度分别占PM2.5和PM10质量浓度的29.8%、17.5%和21.0%、14.6%;17种"酸提"元素总浓度分别占PM:,币PM..质量浓度的4.8%和5.8%;已测定的17种多环芳烃中以4环和5环为主,二者浓度之和分别占PM2.5与PM10中多环芳烃总浓度的84.9%和86.3%.结论:水溶性离子、含碳组分为采暖期PM2.5和PM10中的主要成分.  相似文献   

18.
粒径小于 2 .5 μm的大气颗粒物质 (particulatematter) ,常以PM2 5表示 ,其危害作用日益受到关注。在我国大城市 ,室外大环境的PM2 5主要来源于燃料燃烧的烟雾和机动车尾气等 ,室内小环境可能还要加上来自于吸烟的烟雾[1] 。PM2 5由于粒径小、在空气中滞留时间长 ,易避开气管细胞纤毛等过滤机制进入下呼吸道。目前认为环境PM2 5污染可能与当前城市化进程和经济发展有关 ,也是PM影响哮喘与肺癌发病上升的原因。有研究表明哮喘与肺癌可能有共同的发病机制和外部诱因。本文试图就当前有关这方面的研究作一综…  相似文献   

19.
目的 了解南通市大气PM2.5中重金属的浓度及其来源,评价重金属的人群健康风险。方法 于2017年和2018年每月10 - 16日在港闸区监测点进行PM2.5采样,共采集样品168份,监测其质量浓度,并采用电感耦合等离子质谱仪(ICP - MS)分析其12种元素的含量,利用富集因子法和主成分分析法识别元素的来源,并对人群进行呼吸暴露健康风险评价。结果 南通市2018年PM2.5中锑、铝、砷、铬、铅、镍、硒、铊浓度均低于2017年,差异有统计学意义(t锑 = 2.36,P<0.05;t铝 = 5.68,P<0.05;t砷 = 3.50,P<0.05 ;t铬 = 2.77,P<0.05;t铅 = 3.52,P<0.05;t镍 = 2.03,P<0.05;t硒 = 3.06,P<0.05; t铊 = 3.81,P<0.05);重金属的富集因子(EF)高于10的元素有铍、锑、砷、镉、汞、铅、硒、铊。主成分分析表明南通市PM2.5元素主要来源于工业、交通和自然来源的混合污染等。铅、锰通过呼吸暴露的非致癌风险(HQ)均小于1,砷、铬、镉等元素致癌风险均低于10 - 5。结论 南通大气中重金属污染为复合污染,应从源头治理,从而保护公众健康。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号