首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABC transporters play an important role in mediating the cytoplasmic concentration of endogenous and xenobiotic substances. They therefore influence the pharmacokinetic profile of a variety of drugs. By virtue of their localization to plasma membranes in the intestine, liver, blood-brain and other vital biological barriers, a majority of ABC drug transporters cause drug-drug interactions, decreased drug efficacy and multidrug resistance for chemotherapeutic agents. Thus, elucidating which drug entities are substrates for ABC drug transporters is a crucial step in the drug development and treatment process. Here, we review the current status of methodology used to categorize drug compounds as substrates or modulators for the major ABC drug transporters including ABCB1, ABCC1 and ABCG2.  相似文献   

2.
3.
Isothiocyanates, a class of anti‐cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP‐binding cassette (ABC) efflux transporters such as P‐glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate‐mediated diet–drug interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
目的 :介绍ABC转运蛋白与肿瘤多药耐药的研究进展 ,阐述ABC转运蛋白高表达是多药耐药的重要机制之一。方法 :检索国内外大量文献资料进行汇总、综述。结果 :ABC转运蛋白是具有ATP结合区的单向底物外排泵。P -糖蛋白高表达是肿瘤细胞产生多药耐药的经典路径 ,多药耐药相关蛋白高表达能导致非P -糖蛋白介导的多药耐药。结论 :开发多药耐药蛋白抑制剂有广阔的应用价值 ,但注重其药理作用的同时还应对其潜在的毒副作用保持高度警惕  相似文献   

5.
ABC multidrug transporters: structure, function and role in chemoresistance   总被引:5,自引:0,他引:5  
Three ATP-binding cassette (ABC)-superfamily multidrug efflux pumps are known to be responsible for chemoresistance; P-glycoprotein (ABCB1), MRP1 (ABCC1) and ABCG2 (BCRP). These transporters play an important role in normal physiology by protecting tissues from toxic xenobiotics and endogenous metabolites. Hydrophobic amphipathic compounds, including many clinically used drugs, interact with the substrate-binding pocket of these proteins via flexible hydrophobic and H-bonding interactions. These efflux pumps are expressed in many human tumors, where they likely contribute to resistance to chemotherapy treatment. However, the use of efflux-pump modulators in clinical cancer treatment has proved disappointing. Single nucleotide polymorphisms in ABC drug-efflux pumps may play a role in responses to drug therapy and disease susceptibility. The effect of various genotypes and haplotypes on the expression and function of these proteins is not yet clear, and their true impact remains controversial.  相似文献   

6.
Breast cancer resistance protein (BCRP), also known as ABCG2, ABCP and MXR, is a member of the ATP-binding cassette transporter G family. BCRP functions as a biological barrier that extrudes xenobiotics out of cells. The broad substrate specificity and tissue distributions of BCRP in the body make this transporter one of the major efflux transporters in chemotherapy. Recent studies have demonstrated that BCRP exerts a great impact on drug absorption and disposition. This review focuses on the role of BCRP in pharmacokinetics as well as in vitro and in vivo strategies to evaluate hepatic/intestinal BCRP-mediated drug transports and drug-drug interactions. The impacts of polymorphism and gender difference of BCRP are also discussed.  相似文献   

7.
Modulators and inhibitors of multidrug efflux transporters, like P-glycoprotein, are used to reduce or inhibit multidrug resistance, MDR, which leads to a failure of the chemotherapy of e.g. cancers, epilepsy, bacterial, parasitic, and fungal diseases. Binding and transport of first-, second-, and third-generation modulators and inhibitors of P-glycoprotein are discussed, taking into account the properties of the drug (H-bonding potential, dimensions, and pK(a) values) as well as the properties of the membrane.  相似文献   

8.
Parasitic protozoa are responsible for a wide spectrum of diseases in humans and domestic animals. The main line of defence available against these organisms is chemotherapy. However, the application of chemotherapeutic drugs has resulted in the development of resistance mechanisms, which limit the number of antiprotozoal drugs that are effective in the treatment and control of parasitic diseases. Knowledge about the resistance mechanisms involved may allow the development of new drugs that minimise or circumvent drug resistance or may identify new targets for drug development. This review focuses on the role of protozoal ATP-binding cassette (ABC) transporters in drug resistance. These membrane proteins mediate the ATP-dependent transport of a wide variety of chemotherapeutic drugs away from their targets inside the parasites. The genome sequence of Plasmodium falciparum and Plasmodium yoelii has recently been completed, and the sequencing of other parasitic genomes are now underway. As a result, many new membrane transporters belonging to the ABC superfamily are being discovered. We review the ABC transporters in major parasitic protozoa, including Plasmodium, Leishmania, Trypanosoma and Entamoeba species. Transporters with an established role in drug resistance have been emphasised, but newly discovered transporters with a significant amino acid sequence identity to established ABC drug transporters have also been included.  相似文献   

9.
Recent antitumor drug research has seen the development of a large variety of tyrosine kinase inhibitors (TKIs) with increasing specificity and selectivity. These are highly promising agents for specific inhibition of malignant cell growth and metastasis. However, their therapeutic potential also depends on access to their intracellular targets, which may be significantly affected by certain ABC membrane transporters. It has been recently shown that several human multidrug transporter ABC proteins interact with specific TKIs, and the ABCG2 transporter has an especially high affinity for some of these kinase inhibitors. These results indicate that multidrug resistance protein modulation by TKIs may be an important factor in the treatment of cancer patients; moreover, the extrusion of TKIs by multidrug transporters may result in tumor cell TKI resistance. Interaction with multidrug resistance ABC transporters may also significantly modify the pharmacokinetics and toxicity of TKIs in patients.  相似文献   

10.
Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions   总被引:6,自引:0,他引:6  
Fuhr U  Jetter A 《Die Pharmazie》2002,57(9):595-601
Rabeprazole is the most recently approved proton pump inhibitor in Germany. The substance has an absolute bioavailability upon oral administration of approximately 52% which is robust against food intake or administration of antacids. Maximal plasma concentrations are reached after approximately 3-4 h. Concentrations increase proportionally with the dose. Rabeprazole undergoes an almost complete, mainly non-enzymatic metabolism with renal elimination of the metabolites. CYP3A4 and CYP2C19 contribute to the fraction of metabolism mediated enzymatically. Elimination half-life is about 1 h. The extent of rabeprazole concentration increase by old age, poor metabolizer status for CYP2C19 and impairment of liver function is not greater than two-fold, impaired renal function does not affect the elimination. Even in patients with delayed elimination, no relevant accumulation of rabeprazole was observed upon long-term administration. In in vivo studies, rabeprazole had no noteworthy effect on the metabolism of other drugs. This statement however must be made with reservation because of shortcomings in published studies with respect to the methods used and presentation and because of lacking investigations about possible effects on the cytochrome P-450 enzymes CYP3A4 and CYP2D6. A slight reduction in ketoconazole absorption and a moderate increase in digoxin concentrations should be taken into account for concomitant therapy, but is expected to be clinically relevant only in isolated cases. Based on these partially incomplete data, in summary it is to be expected that rabeprazole can be administered at a standard dose for the respective disease in almost any patient for the entire duration of therapy, and that usually no dose adjustment of other drugs is required when rabeprazole is coadministered.  相似文献   

11.
12.
There is great interest within the pharmaceutical industry in predicting the in vivo pharmacokinetics (PKs) and metabolism-based drug-drug interactions (DDIs) of compounds from their in vitro metabolism data. Metabolism-based DDIs are largely due to changes in levels of drug-metabolizing enzymes caused by one drug, leading to changes in the PK parameters (mainly clearance) of another. The search for alternative approaches to time-consuming and costly clinical PK drug interaction studies for predicting human DDIs, has been ongoing for decades. In vitro enzyme-mediated biotransformation reactions provide a foundation for predictions that relate PK concepts to enzyme kinetics. This review discusses the principles, assumptions, tools and approaches to in vitro/in vivo prediction, especially in the context of hepatic clearance (the most important PK parameter) and its prediction from in vitro data. Enzyme inhibition is a common cause of DDIs and involves various mechanisms (eg, reversible and mechanism-based inhibition). The models and equations used for predicting DDIs for different types of inhibitor (ie, competitive, partial competitive, non-competitive, partial non-competitive and mixed-type reversible inhibitors, and mechanism-based inhibitors) are extensively presented. Although the methods of prediction are numerous, there remain a number of unresolved factors that may affect the accuracy of the prediction. These factors are also discussed to provide a caution to researchers performing prediction studies.  相似文献   

13.
Duloxetine, a potent reuptake inhibitor of serotonin (5-HT) and norepinephrine, is effective for the treatment of major depressive disorder, diabetic neuropathic pain, stress urinary incontinence, generalized anxiety disorder and fibromyalgia. Duloxetine achieves a maximum plasma concentration (C(max)) of approximately 47?ng/mL (40?mg twice-daily dosing) to 110?ng/mL (80?mg twice-daily dosing) approximately 6 hours after dosing. The elimination half-life of duloxetine is approximately 10-12 hours and the volume of distribution is approximately 1640?L. The goal of this paper is to provide a review of the literature on intrinsic and extrinsic factors that may impact the pharmacokinetics of duloxetine with a focus on concomitant medications and their clinical implications. Patient demographic characteristics found to influence the pharmacokinetics of duloxetine include sex, smoking status, age, ethnicity, cytochrome P450 (CYP) 2D6 genotype, hepatic function and renal function. Of these, only impaired hepatic function or severely impaired renal function warrant specific warnings or dose recommendations. Pharmacokinetic results from drug interaction studies show that activated charcoal decreases duloxetine exposure, and that CYP1A2 inhibition increases duloxetine exposure to a clinically significant degree. Specifically, following oral administration in the presence of fluvoxamine, the area under the plasma concentration-time curve and C(max) of duloxetine significantly increased by 460% (90% CI 359, 584) and 141% (90% CI 93, 200), respectively. In addition, smoking is associated with a 30% decrease in duloxetine concentration. The exposure of duloxetine with CYP2D6 inhibitors or in CYP2D6 poor metabolizers is increased to a lesser extent than that observed with CYP1A2 inhibition and does not require a dose adjustment. In addition, duloxetine increases the exposure of drugs that are metabolized by CYP2D6, but not CYP1A2. Pharmacodynamic study results indicate that duloxetine may enhance the effects of benzodiazepines, but not alcohol or warfarin. An increase in gastric pH produced by histamine H(2)-receptor antagonists or antacids did not impact the absorption of duloxetine. While duloxetine is generally well tolerated, it is important to be knowledgeable about the potential for pharmacokinetic interactions between duloxetine and drugs that inhibit CYP1A2 or drugs that are metabolized by CYP2D6 enzymes.  相似文献   

14.
There is accumulating evidence that many compounds, known as phytochemicals (PCs), which are derived from dietary plants and herbs, may have a role in combating a number of chronic diseases. Despite many in vitro studies elucidating the mechanism(s) of action of various PCs, there are still reservations with regard to their health benefits in vivo, particularly as there is a paucity of research on their oral bioavailability, their pharmacokinetics, and the concentrations achieved at their site(s) of action. Recently various transporters, including the ATP-binding cassette (ABC) and the solute carrier (SLC) transporters, have been cloned and functional analyses have suggested that they play significant roles in the absorption and disposition of most drugs and PCs. While some SLC transporters facilitate absorption of PCs into the systemic circulation, various efflux pumps, including the ABC transporters, actively transport the PC back into the gastro-intestinal (GI) lumen, thus preventing further penetration into the body. Some ABC transporters also act in concert with Phase 1 and 2 metabolizing enzymes as a defensive barrier in the intestines and liver. If the PC overcomes the defence mechanisms of the gut and the liver, it will enter the systemic circulation and be distributed to the other organs of the body and possible site(s) of action. PCs can usually pass with ease through the pores of the capillaries of organs such as the heart and lungs, but with difficulty into pharmacological sanctuaries, such as the brain, testis, or foetus. Such sanctuaries contain a number of efflux transporters in their protective membrane, which restrict the penetration of xenobiotics, including PCs. The ABC and SLC transporters are also abundantly expressed in the liver and kidney and regulate the excretion of many compounds, including PCs and their metabolites. It is also becoming apparent that there is a complex interplay between various PCs and their ability to modulate the activity of these transporters involved in the processes of absorption, metabolism, distribution and excretion, which control the extent of xenobiotic exposure in the body. This review describes the importance of the ABC and SLC transporters in the pharmacokinetics of dietary and herbal PCs, and their interactions with other xenobiotics.  相似文献   

15.
Over the past few decades, a tremendous amount of work has been done on the molecular characterization of transport proteins in animals and humans, leading to a better understanding of the physiological roles of a number of transport proteins. Furthermore, there is increasing preclinical and clinical evidence to support the importance of transport proteins in the pharmacokinetics and toxicokinetics of a wide variety of structurally diverse drugs. As a consequence, the degree of expression and functionality of transport proteins may directly affect the therapeutic effectiveness, safety and target specificity of drugs. Recently, there has also been increased awareness about potential drug-drug, drug-herb and drug-food interactions involving transporters. Traditionally, a change in metabolic clearance of a drug, particularly via cytochrome P450-mediated metabolism, has been considered the cause of many clinically important drug interactions. However, increasing evidence suggests that some drug interactions result from changes in the activity and/or expression of drug transporters. Accordingly, assessment of the clinical relevance of transporter-mediated drug interactions has become a regulatory issue during the drug approval process and also the evaluation of drug interaction potential has become an integral part of risk assessment during drug development processes. Therefore, this review will highlight the role of some selected drug transporters in drug interactions, as well as their clinical implication.  相似文献   

16.
17.
ATP-binding cassette (ABC) transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are membrane proteins that couple the energy derived from ATP hydrolysis to efflux many chemically diverse compounds across the plasma membrane, thereby playing a critical and important physiological role in protecting cells from xenobiotics. These transporters are also implicated in the development of multidrug resistance (MDR) in cancer cells that have been treated with chemotherapeutics. One approach to blocking the efflux capability of an ABC transporter in a cell or tissue is inhibiting the activity of the transporters with a modulator. Since ABC transporter modulators can be used in combination with chemotherapeutics to increase the effective intracellular concentration of anticancer drugs, the possible impact of modulators of ABC drug transporters is of great clinical interest. Another possible clinical use of modulators that has recently attracted attention is their ability to increase oral bioavailability or increase tissue penetration of drugs transported by the transporters. Several preclinical and clinical studies have been performed to evaluate the feasibility and the safety of this approach. The primary focus of this review is to discuss progress made in recent years in the identification and applicability of compounds that may serve as ABC transporter modulators and the possible role of these compounds in altering the pharmacokinetics and pharmacodynamics of therapeutic drugs used in the clinic.  相似文献   

18.
19.
20.
PURPOSE: To assess the frequency of potential azole-drug interactions and consequences of interactions between fluconazole and other drugs in routine inpatient care. METHODS: We performed a retrospective cohort study of hospitalized patients treated for systemic fungal infections with an oral or intravenous azole medication between July 1997 and June 2001 in a tertiary care hospital. We recorded the concomitant use of medications known to interact with azole antifungals and measured the frequency of potential azole drug interactions, which we considered to be present when both drugs were given together. We then performed a chart review on a random sample of admissions in which patients were exposed to a potential moderate or major drug interaction with fluconazole. The list of azole-interacting medications and the severity of interaction were derived from the DRUGDEX System and Drug Interaction Facts. RESULTS: Among the 4,185 admissions in which azole agents (fluconazole, itraconazole or ketoconazole) were given, 2,941 (70.3%) admissions experienced potential azole-drug interactions, which included 2,716 (92.3%) admissions experiencing potential fluconazole interactions. The most frequent interactions with potential moderate to major severity were co-administration of fluconazole with prednisone (25.3%), midazolam (17.5%), warfarin (14.7%), methylprednisolone (14.1%), cyclosporine (10.7%) and nifedipine (10.1%). Charts were reviewed for 199 admissions in which patients were exposed to potential fluconazole drug interactions. While four adverse drug events (ADEs) caused by fluconazole were found, none was felt to be caused by a drug-drug interaction (DDI), although in one instance fluconazole may have contributed. CONCLUSIONS: Potential fluconazole drug interactions were very frequent among hospitalized patients on systemic azole antifungal therapy, but they had few apparent clinical consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号