首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SHPTP2 is a ubiquitously expressed tyrosine-specific protein phosphatase that contains two amino-terminal Src homology 2 (SH2) domains responsible for its association with tyrosine-phosphorylated proteins. In this study, expression of dominant interfering mutants of SHPTP2 was found to inhibit insulin stimulation of c-fos reporter gene expression and activation of the 42-kDa (Erk2) and 44-kDa (Erk1) mitogen-activated protein kinases. Cotransfection of dominant interfering SHPTP2 mutants with v-Ras or Grb2 indicated that SHPTP2 regulated insulin signaling either upstream of or in parallel to Ras function. Furthermore, phosphotyrosine blotting and immunoprecipitation identified the 125-kDa focal adhesion kinase (pp125FAK) as a substrate for insulin-dependent tyrosine dephosphorylation. These data demonstrate that SHPTP2 functions as a positive regulator of insulin action and that insulin signaling results in the dephosphorylation of tyrosine-phosphorylated pp125FAK.  相似文献   

2.
Csk (C-terminal Src kinase), a protein-tyrosine kinase, bearing the Src homology 2 and 3 (SH2 and SH3) domains, has been implicated in phosphorylation of c-Src Tyr-527, resulting in suppression of c-Src kinase activity. We found that mutations in the SH2 or SH3 domain of Csk, though they did not affect its kinase activity, resulted in a loss of suppression of c-Src activity in fibroblasts. In normal fibroblasts, tyrosine-phosphorylated paxillin and focal adhesion kinase pp125FAK, which colocalize at focal adhesion plaques, were the major proteins to which the Csk SH2 domain bound. Loss of binding to these proteins by the Csk SH2 mutants correlated with loss of the activity to suppress c-Src. Consistent with this observation, the levels of tyrosine phosphorylation of paxillin and pp125FAK were greatly reduced during mitosis, whereas the kinase activity of c-Src was elevated. We suggest that the SH2 domain is required for Csk to suppress c-Src, perhaps in combination with the SH3 domain, by anchoring Csk to a particular subcellular location where c-Src may exist. Our data also indicate that a certain fraction of the Csk and Src family kinases function at the focal adhesion plaques. The activity of the c-Src kinase localized at the focal adhesion plaques appears to be regulated by cell adhesion to the extracellular matrix.  相似文献   

3.
Although hepatitis C virus (HCV) infection is an emerging global epidemic causing severe liver disorders, the molecular mechanisms of HCV pathogenesis remain elusive. The NS5A nonstructural protein of HCV contains several proline-rich sequences consistent with Src homology (SH) 3-binding sites found in cellular signaling molecules. Here, we demonstrate that NS5A specifically bound to growth factor receptor-bound protein 2 (Grb2) adaptor protein. Immunoblot analysis of anti-Grb2 immune complexes derived from HeLa S3 cells infected with a recombinant vaccinia virus (VV) expressing NS5A revealed an interaction between NS5A and Grb2 in vivo. An inactivating point mutation in the N-terminal SH3 domain, but not in the C-terminal SH3 domain, of Grb2 displayed significant diminished binding to NS5A. However, the same mutation in both SH3 regions completely abrogated Grb2 binding to NS5A, implying that the two SH3 domains bind in cooperative fashion to NS5A. Further, mutational analysis of NS5A assigned the SH3-binding region to a proline-rich motif that is highly conserved among HCV genotypes. Importantly, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was inhibited in HeLa S3 cells infected with NS5A-expressing recombinant VV but not recombinant VV control. Additionally, HeLa cells stably expressing NS5A were refractory to ERK1/2 phosphorylation induced by exogenous epidermal growth factor. Moreover, the coupling of NS5A to Grb2 in these cells was induced by epidermal growth factor stimulation. Therefore, NS5A may function to perturb Grb2-mediated signaling pathways by selectively targeting the adaptor. These findings highlight a viral interceptor of cellular signaling with potential implications for HCV pathogenesis.  相似文献   

4.
The docking protein FRS2 is a major downstream effector that links fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein kinase signaling cascade. In this report, we demonstrate that FRS2 also plays a pivotal role in FGF-induced recruitment and activation of phosphatidylinositol 3-kinase (PI3-kinase). We demonstrate that tyrosine phosphorylation of FRS2alpha leads to Grb2-mediated complex formation with the docking protein Gab1 and its tyrosine phosphorylation, resulting in the recruitment and activation of PI3-kinase. Furthermore, Grb2 bound to tyrosine-phosphorylated FRS2 through its SH2 domain interacts primarily via its carboxyl-terminal SH3 domain with a proline-rich region in Gab1 and via its amino-terminal SH3 domain with the nucleotide exchange factor Sos1. Assembly of FRS2alpha:Grb2:Gab1 complex induced by FGF stimulation results in activation of PI3-kinase and downstream effector proteins such as the S/T kinase Akt, whose cellular localization and activity are regulated by products of PI3-kinase. These experiments reveal a unique mechanism for generation of signal diversity by growth factor-induced coordinated assembly of a multidocking protein complex that can activate the Ras/mitogen-activated protein kinase cascade to induce cell proliferation and differentiation, and PI3-kinase to activate a mediator of a cell survival pathway.  相似文献   

5.
Grb2 is a 25-kDa adaptor protein composed of a Src homology 2 (SH2) domain and two flanking Src homology 3 (SH3) domains. One function of Grb2 is to couple tyrosine-phosphorylated proteins (through its SH2 domain) to downstream effectors (through its SH3 domains). Using an overlay assay, we have identified four major Grb2-binding proteins in synaptic fractions. These proteins interact with wild-type Grb2 but not with Grb2 containing point mutations in each of its two SH3 domains corresponding to the loss of function mutants in the Caenorhabditis elegans Grb2 homologue sem-5. Two of the proteins, mSos and dynamin, were previously shown to bind Grb2. The third protein of 145 kDa is brain specific and to our knowledge has not been previously described. The fourth protein is synapsin I. Dynamin is required for synaptic vesicle endocytosis and synapsin I is thought to mediate the interaction of synaptic vesicles with the presynaptic cytomatrix. These data suggest that Grb2, or other proteins containing SH3 domains, may play a role in the regulation of the exo/endocytotic cycle of synaptic vesicles and therefore of neurotransmitter release.  相似文献   

6.
β1 integrins play crucial roles in a variety of cell processes such as adhesion, migration, proliferation, and differentiation of lymphocytes. To understand the molecular mechanisms of these various biological effects, it is particularly important to analyze cell signaling through the β1 integrins. Our previous study showed that PLC-γ, pp125FAK (focal adhesion kinase), pp105, paxillin, p59fyn, p56lck, and ERK1/2 are phosphorylated in their tyrosine residues upon engagement of β1 integrins. We identified pp105 as Cas (Crk-associated substrate)-related protein and successfully cloned its cDNA. pp105 is a Cas homologue predominantly expressed in the cells of lymphoid lineage, which led us to designate it Cas-L. Like p130Cas, Cas-L contains a single SH3 domain and multiple SH2-binding sites (YXXP motif), which are suggested to bind SH2 domains of Crk, Nck, and SHPTP2. Subsequent studies revealed that pp125FAK binds Cas-L on its SH3 domain and phosphorylates its tyrosine residues upon β1 integrin stimulation. Since Cas-L is preferentially expressed in lymphocytes, it is conceivable that Cas-L plays an important role in lymphocyte-specific signals. We have shown that Cas-L is involved in the T-cell receptor (TCR)/CD3 signaling pathway as well as the β1 integrin signaling pathway. Cas-L is transiently phosphorylated following CD3 crosslinking and tyrosine-phosphorylated Cas-L binds to Crk and C3G. Furthermore, a Cas-L mutant (Cas-LΔSH3), which lacks the binding site for FAK, is still tyrosine-phosphorylated upon CD3 crosslinking but not upon β1 integrin crosslinking, suggesting that FAK is not involved in CD3-dependent Cas-L phosphorylation. Finally, we have identified a crucial role of Cas-L in β1 integrin-mediated T-cell co-stimulation. We have found that this co-stimulatory pathway is impaired in the Jurkat T-cell line, and that the expression level of Cas-L is reduced in the Jurkat cells compared to peripheral T-cells. The transfection of Cas-L cDNA into Jurkat cells restored the β1 integrin-mediated co-stimulation, while the transfection of Cas-LΔSH3 mutant failed to do so, which contrasts with the case of CD3-mediated signaling. These results indicate that Cas-L plays a key role, through the association and phosphorylation by FAK, in β1 integrin-mediated T-cell co-stimulation. Moreover, tyrosine phosphorylation of Cas-L is critical for T-cell receptor and β1 integrin-induced T-lymphocyte migration. Taken together, Cas-L might be the bi-modal docking protein which assembles the signals through β1 integrins and TCR/CD3, and which participates in a variety of T-cell functions. Received: August 24, 1999 / Accepted: August 31, 1999  相似文献   

7.
Shear-induced platelet aggregation (SIPA) involves the sequential interaction of von Willebrand factor (VWF) with both glycoprotein Ib (GPIb) and alphaIIbbeta3 receptors. Type 2B recombinant VWF (2B-rVWF), characterized by an increased affinity for GPIb, induces strong SIPA at a high shear rate (4000 s-1). Despite the increased affinity of 2B-rVWF for GPIb, patients with type 2B von Willebrand disease have a paradoxical bleeding disorder, which is not well understood. The purpose of this study was to determine if SIPA induced by 2B-rVWF was associated with alphaIIbbeta3-dependent platelet activation. To this end, we have addressed the influence of 2B-rVWF (Val553Met substitution) on SIPA-dependent variations of tyrosine protein phosphorylation (P-Tyr) and the effect of alphaIIbbeta3 blockers. At a high shear rate, 2B-rVWF induced a strong SIPA, as shown by a 92.7% +/- 0.4% disappearance of single platelets (DSP) after 4.5 minutes. In these conditions, increased P-Tyr of proteins migrating at positions 64 kd, 72 kd, and 125 kd were observed. The band at 125 kd was identified as pp125FAK using anti-phospho-FAK antibody. This effect, which required a high level of SIPA (> 70% DSP), was observed at 4000 s-1 but not at 200 s-1. Monoclonal antibodies (MoAbs) 6D1 (anti-GPIb) and 328 (anti-VWF A1 domain), completely abolished SIPA and p125FAK phosphorylation mediated by 2B-rVWF. In contrast, neither RGDS peptide nor MoAb 7E3, both known to block alphaIIbbeta3 engagement, had any effect on SIPA and pp125FAK. The size of aggregates formed at a high shear rate in the presence of 2B-rVWF was decreased by genistein, demonstrating the biologic relevance of pp125FAK. These findings provide a unique mechanism whereby the enhanced interaction of 2B-rVWF with GPIb, without engagement of alphaIIbbeta3, is sufficient to induce SIPA but does not lead to stable thrombus formation.  相似文献   

8.
Specificity and affinity motifs for Grb2 SH2-ligand interactions   总被引:2,自引:0,他引:2       下载免费PDF全文
Protein-protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection.  相似文献   

9.
Li  J; Avraham  H; Rogers  RA; Raja  S; Avraham  S 《Blood》1996,88(2):417-428
We have recently isolated a cDNA encoding a novel human intracellular tyrosine kinase, termed RAFTK (for a related adhesion focal tyrosine kinase). The RAFTK cDNA, which encodes a polypeptide of 1,009 amino acids, shares 65% homology to the focal adhesion kinase (FAK), including several consensus motifs. In this report, we describe the biochemical characterization and functional analysis of the RAFTK protein. Coexpression of RAFTK and FAK proteins in megakaryocytic cells and blood platelets was observed. Using a specific antibody to RAFTK and the monoclonal antibody 2A7 to FAK, FAK and RAFTK could be distinguished antigenically. RAFTK had intrinsic tyrosine kinase and autokinase activities. It was phosphorylated on tyrosine in growing cultures of COS cells transfected with the pCDNAIII/flag-RAFTK expression vector containing the RAFTK cDNA ligated with the 8 amino acid flag peptide sequence. Similar to FAK, dephosphorylation of RAFTK was observed when adherent transfected COS cells were detached. Phosphorylation was regained upon replating of these cells on the fibronectincoated dishes. Analysis of tyrosine-phosphorylated RAFTK from adherent transfected COS cells showed that the Src homology 2 (SH2) domains of the Src and Fyn protein kinases as well as the Grb2 adaptor protein were able to specifically associate with RAFTK. Tyrosine phosphorylation of endogenous RAFTK was observed upon fibronectin-induced activation of human megakaryocytic cells. Furthermore, colocalization of RAFTK protein with vinculin, a focal adhesion protein, was observed by confocal microscopy in focal adhesion- like structures in adherent CMK cells and in transfected pCDNAIII/flag- RAFTK COS cells upon fibronectin activation. These data suggest that RAFTK is a novel member of the FAK family, that it localizes to focal adhesion-like structures in CMK megakaryocytic cells, that it participates in integrinmediated signaling pathways in megakaryocytes, and that it is able to associate with the tyrosine kinases Src and Fyn as well as the adaptor protein Grb2 via SH2-phosphotyrosine interactions.  相似文献   

10.
Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth.  相似文献   

11.
12.
Cbl is one of the major tyrosine-phosphorylated proteins in Bcr-Abl-expressing cells. A direct association between the SH2 domain of Bcr-Abl and tyrosine-phosphorylated Cbl has been demonstrated. The purpose of this study was to determine if and how unphosphorylated Cbl and Bcr-Abl may associate.Interactions between Cbl and Bcr-Abl were investigated in yeast two- and three-hybrid systems, gel overlay assays, and immunoprecipitates from mammalian cells expressing wild-type and the Y177F mutant of Bcr-Abl.No direct interaction between Bcr-Abl and unphosphorylated Cbl was observed. Bcr-Abl did, however, associate with Grb2, an adaptor protein that binds tyrosine 177 of Bcr-Abl. Additionally, Grb2 interacted with Cbl. In a yeast three-hybrid assay, Grb2 mediated an interaction between Cbl and Bcr-Abl that was dependent on a functional Grb2 binding site. This interaction was confirmed in vitro using purified proteins. In cells expressing Bcr-Abl with a mutation in the Grb2 binding site, binding of Cbl to Bcr-Abl was significantly reduced, but Cbl tyrosine phosphorylation was maintained. Imatinib treatment of these cells further reduced but did not abrogate Cbl binding, reflecting residual kinase activity.Multiple phosphotyrosine-dependent and -independent interactions stabilize the interaction between Cbl and Abl. Grb2 or another, yet unidentified, protein may mediate an initial interaction between Cbl and Bcr-Abl that is independent of Cbl tyrosine phosphorylation. Following this initial interaction, Cbl can then become tyrosine phosphorylated and interact with the SH2 domain of Bcr-Abl, further stabilizing the complex.  相似文献   

13.
Characterization of Ggrb4, an adapter protein interacting with Bcr-Abl   总被引:2,自引:1,他引:1  
We report here the characterization of an adapter protein identified in a yeast 2-hybrid screen with the use of Bcr-Abl as the bait. Grb4 bound to Bcr-Abl in a variety of systems, both in vitro and in vivo, and is an excellent substrate of the Bcr-Abl tyrosine kinase. The association of Grb4 and Bcr-Abl in intact cells was mediated by an src homology (SH)2-mediated phosphotyrosine-dependent interaction as well as an SH3-mediated phosphotyrosine-independent interaction. Grb4 has 68% homology to the adapter protein Nck and has similar but distinct binding specificities in K562 lysates. Subcellular localization studies indicate that Grb4 localizes to both the nucleus and the cytoplasm. Coexpression of kinase-active Bcr-Abl with Grb4 resulted in the translocation of Grb4 from the cytoplasm and the nucleus to the cytoskeleton to colocalize with Bcr-Abl. In addition, expression of Grb4 with kinase-active Bcr-Abl resulted in a redistribution of actin-associated Bcr-Abl. Finally, coexpression of Grb4 and oncogenic v-Abl strongly inhibited v-Abl-induced AP-1 activation. Together, these data indicate that Grb4 in conjunction with Bcr-Abl may be capable of modulating the cytoskeletal structure and negatively interfering with the signaling of oncogenic Abl kinases. Grb4 may therefore play a role in the molecular pathogenesis of chronic myelogenous leukemia. (Blood. 2000;96:618-624) (Blood. 2000;96:618-624)  相似文献   

14.
Dynamin is a 100-kDa GTPase that plays a critical role in the initial stages of endocytosis. Dynamin binds to microtubules, which potently stimulate its GTPase activity. Binding to Src homology 3 (SH3) domains of proteins involved in signal transduction has also recently been reported. In the present study, the protein was digested with a variety of proteases to define its functional domains. Limited digestion with papain split the protein into an approximately 7- to 9-kDa microtubule-binding fragment and a 90-kDa nonbinding fragment. Immunoblotting with an antibody to the C-terminal 20 amino acids of rat dynamin showed the small fragment to derive from the C-terminal end of the polypeptide. Microtubule-activated GTPase activity, but not basal GTPase activity, was abolished by papain digestion, identifying the basic, proline-rich C-terminal region of dynamin as an important regulatory site. Bacterially expressed growth factor receptor-bound protein 2 (GRB2) and the SH3 domain of c-Src were also found to stimulate GTPase activity, although to a lesser extent than microtubules. Stimulation of GTPase activity by the recombinant proteins was similarly abolished by papain digestion. These results identify the basic, proline-rich C-terminal region of dynamin as the binding site for both microtubules and SH3 domains and demonstrate an allosteric interaction between this region of the molecule and the N-terminal GTPase domain.  相似文献   

15.
The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.  相似文献   

16.
PTEN is a tumor suppressor gene implicated in both sporadic cancers and inherited tumor-prone syndromes. Here we show that pten+/- mice display a partially penetrant embryonic lethality. This lethality is associated with defects in both neural and placental development. Notably, this lethality is completely rescued by grb2 haploinsufficiency. In contrast, grb2 heterozygosity did not alter tumorigenesis in either pten+/- or T cell-specific pten-/- mice. grb2-/hypomorph murine embryonic fibroblasts (MEFs) show decreased activation of both PKB and Erk upon stimulation with epidermal growth factor, whereas grb2-/hypomorph; pten+/- MEFs activate PKB but not Erk normally. Similarly, grb2-/hypomorph fibroblasts die in low serum, and this phenotype is rescued by pten haploinsufficiency. Activation of both PKB and Erk as well as survival in low serum-containing media are all rescued by reexpression of Grb2 containing mutations within the N-terminal Src homology 3 (SH3) domain, but not by C-terminal SH3 domain mutants. The N-terminal SH3 domain mutants fail to bind to Sos, whereas the C-terminal SH3 domain mutants fail to bind to Gab1, suggesting that Erk and PKB activation in fibroblasts in response to epidermal growth factor depends on Gab1 or other C-terminal SH3 domain-interacting proteins, but not on Sos. Thus, PTEN/phosphatidylinositol 3' kinase signaling requires Grb2 during both embryonic development and fibroblast survival, but Grb2 heterozygosity does not effect tumorigenesis in pten-deficient mice. In fibroblasts, survival signals emanating from the epidermal growth factor receptor appear to be PKB-dependent, and this activation depends on the C-terminal SH3 domain of Grb2, likely through the interaction of Grb2 with Gab1.  相似文献   

17.
Despite of several lines of evidence indicating a pathophysiologic role of platelets in pulmonary hypertension, the occurrence of chronic endogenous platelet activation has been a matter of debate. It was hypothesized that the pattern of tyrosine phosphorylation of platelet proteins examined ex vivo could provide information on the state of platelet activation. This was examined in 10 patients with pulmonary arterial hypertension aged 18 to 53 years. Phosphotyrosine density and the amounts of specific proteins were analyzed in resting platelets after reaction with anti-phosphotyrosine, anti-pp60(s-src), anti-pp125(FAK), and anti-alphaIIbbeta3 antibodies. There was a 79% increase in protein-associated phosphotyrosine in patients in comparison to levels in controls (p<0.05). In particular, phosphorylation on tyrosine residues of pp120 and pp125(FAK) increased 24% and 57%, respectively (p<0.05). Although pp60(s-src)-associated phosphotyrosine was not altered in the patient group as a whole, it was clearly decreased in three subjects. Platelet content of beta3 integrin, pp60(s-src), and pp125(FAK), was not altered. This pattern of phosphorylation suggests an ongoing process of platelet activation. Because phosphorylation of pp125(FAK) is a late, integrin-dependent event, results suggest that platelet activation and aggregation occur in vivo in these patients.  相似文献   

18.
Dufresne AM  Smith RJ 《Endocrinology》2005,146(10):4399-4409
The growth factor IGF-I is critical for normal human somatic growth and development. Growth factor receptor-bound protein (Grb)10 is a protein that interacts with the IGF-I receptor and may thus regulate IGF-I-stimulated growth. However, the role of endogenous Grb10 in regulating IGF-I action is not known. The objective of this study was to determine the function of endogenous Grb10 in IGF signaling responses. Using small interfering RNA, we demonstrate that knockdown of Grb10 enhances IGF-I-mediated phosphorylation of insulin receptor substrate proteins, Akt/protein kinase B, and ERK1/2 and leads to a corresponding increase in DNA synthesis. Although IGF-I receptor autophosphorylation normally correlates with receptor signaling, we demonstrate a decrease in IGF-I-stimulated receptor phosphorylation in Grb10 knockdown cells. Pretreatment of cells with the protein-tyrosine phosphatase inhibitor pervanadate partially reverses this effect of Grb10 knockdown on receptor phosphorylation, indicating that endogenous Grb10 may block phosphatase access to the activated IGF-I receptor. Marked small interfering RNA knockdown of Grb10 does not result in increased or decreased expression of the related proteins Grb7 or Grb14. As further evidence for Grb10 functional specificity, the recently identified Grb10 interacting GYF proteins are shown to interact specifically with Grb10 and not with Grb7 or Grb14, using yeast two-hybrid assays. We conclude that Grb10 functions as a specific endogenous suppressor of IGF-I-stimulated cell signaling and DNA synthesis. Modulation of the Grb10-IGF-I receptor pathway may represent a mechanism that regulates IGF-I-responsive cell and tissue growth.  相似文献   

19.
Stimulation via the T-cell growth factor interleukin 2 (IL-2) leads to tyrosine phosphorylation of Shc, the interaction of Shc with Grb2, and the Ras GTP/GDP exchange factor, mSOS. Shc also coprecipitates with the IL-2 receptor (IL-2R), and therefore, may link IL-2R to Ras activation. We have further characterized the Shc-IL-2R interaction and have made the following observations. (i) Among the two phosphotyrosine-interaction domains present in Shc, the phosphotyrosine-binding (PTB) domain, rather than its SH2 domain, interacts with the tyrosine-phosphorylated IL-2R beta chain. Moreover, the Shc-PTB domain binds a phosphopeptide derived from the IL-2R beta chain (corresponding to residues surrounding Y338, SCFTNQGpYFF) with high affinity. (ii) In vivo, mutant IL-2R beta chains lacking the acidic region of IL-2Rbeta (which contains Y338) fail to phosphorylate Shc. Furthermore, when wild type or mutant Shc proteins that lack the PTB domain were expressed in the IL-2-dependent CTLL-20 cell line, an intact Shc-PTB domain was required for Shc phosphorylation by the IL-2R, which provides further support for a Shc-PTB-IL-2R interaction in vivo. (iii) PTB and SH2 domains of Shc associate with different proteins in IL-2- and T-cell-receptor-stimulated lysates, suggesting that Shc, through the concurrent use of its two different phosphotyrosine-binding domains, could assemble multiple protein complexes. Taken together, our in vivo and in vitro observations suggest that the PTB domain of Shc interacts with Y338 of the IL-2R and provide evidence for a functional role for the Shc-PTB domain in IL-2 signaling.  相似文献   

20.
Glutathione-S-transferase (GST)-Grb2 fusion proteins have been used to identify the potential role of Grb2-binding proteins in platelet activation by the platelet low-affinity IgG receptor, Fc gamma RIIA. Two tyrosine phosphoproteins of 38 and 63 kD bind to the SH2 domain of Grb2 following Fc gamma RIIA stimulation of platelets. Both are located in the particulate fraction following platelet activation and are also able to bind to a GST-construct containing the SH2 and SH3 domains of phospholipase C gamma 1. p38 also forms a complex with the tyrosine kinase csk in stimulated cells and is a substrate for the kinase. The SH3 domains of Grb2 form a stable complex with SOS1 and two proteins of 75 kD and 120 kD, which undergo tyrosine phosphorylation in Fc gamma RIIA stimulated cells. The 75-kD protein is recognized by antibodies to SLP-76, which has recently been isolated from T cells and sequenced. Tyrosine phosphorylation of p38 and p63 is also observed in platelets stimulated by the tyrosine kinase-linked receptor agonist collagen and by the G protein-coupled receptor agonist thrombin, although phosphorylation of SLP-76 is only observed in collagen-stimulated platelets. p38 and p63 may provide a docking site for Grb2, thereby linking Grb2 SH3-binding proteins SOS1, SLP-76, and p120 to downstream signalling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号