首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 研究中国人Noonan综合征患者非受体型蛋白酪氨酸磷酸酯酶(protein-tyrosine phosphatase,nonreceptor-type 11,PTPN11)基因的突变.方法 收集遗传咨询门诊3例散发的Noonan综合征患者及其无症状父母,外周血提取基因组DNA,PCR产物直接测序法对患者PTPN11基因的全部15个编码区外显子及其邻接的内含子区域进行测序,检出突变后再对其父母的相应外显子区域进行测序,并通过限制性内切酶检测100名无亲缘关系的正常人相应碱基改变以排除多态性,利用网上ClustalW工具分析突变位点所在氨基酸在多个物种中的保守性.结果 在1例患者的第3外显子区域检出一杂合的c.181G>A碱基取代,导致第61位的天冬氨酸改变为天冬酰胺(p.D61N),在其无症状父母和100名正常个体中无此突变;该位点在多个物种中高度保守.另外2例患者PTPN11基因的编码区未检到突变.结论 p.D61N突变在文献中已有报道,本例患者为新生突变.本研究进一步肯定了 p.D61N为Noonan综合征的致病突变,基因诊断的结果验证了该患者的临床诊断.另外两例Noonan综合征患者可能由其他基因的突变所致,反映了该病的遗传异质性.  相似文献   

2.
Noonan syndrome (NS) is an autosomal dominant disorder characterized by short stature, typical craniofacial dysmorphism, skeletal anomalies, congenital heart defects, and predisposition to malignant tumors. In approximately 50% of cases, the disease is caused by missense mutations in the PTPN11 gene. To date, solid tumors, and particularly brain tumors and rhabdomyosarcomas, have been documented in patients with NS; however, few cases of neuroblastoma associated with NS have been reported. Here we report an unusual case of neuroblastoma with mediastinal, retroperitoneal, and medullar locations associated in a NS patient carrying a PTPN11 germline missense mutation (p.G60A). This missense mutation occurs within the N-SH2 domain of the PTPN11 gene and has been reported to be associated with acute leukemia in NS patients. The association of this p.G60A PTPN11 mutation with neuroblastoma provides new evidence that gain of function PTPN11 mutations may play an important role in the pathogenesis of solid tumors associated with Noonan syndrome.  相似文献   

3.
LEOPARD syndrome (lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) is an autosomal dominant condition. The main clinical features include multiple lentigines, cardiovascular defects, and facial anomalies, some of which are shared with Noonan syndrome (NS). Recent reports have shown that LEOPARD syndrome can be caused by mutations in PTPN11, the gene in which mutations can produce NS. Here we report the findings of mutation screening and linkage analysis of PTPN11 in three families with LEOPARD syndrome. We identified a novel mutation in one family. The mutation (1529A>C) substitutes proline for glutamine at amino acid 510 (Gln510Pro). No variations in sequence were observed in the other two families, and negative LOD scores excluded linkage to the PTPN11 locus, showing that LEOPARD syndrome is genetically heterogeneous.  相似文献   

4.
Noonan syndrome (NS) is an autosomal dominant disorder, characterized by short stature, minor facial anomalies, and congenital heart defects. In approximately 50% of cases the condition is caused by missense mutations in the PTPN11 gene on chromosome 12, resulting in a gain of function of the protein SHP-2. In this study, PTPN11 mutation analysis was performed in 170 NS patients. In 76 (45%) of them a mutation was identified. We report on the distribution of these mutations, as well as on genotype-phenotype relationships. The benefit of the NS scoring system developed by van der Burgt et al. [(1994); Am J Med Genet 53:187-191] is shown, among physicians who consequently based their diagnosis on the NS scoring system the percentage mutation positive subjects was 54%, whereas this percentage was only 39% among physicians who made less use of the scoring system. In two patients with some uncommon manifestations mutations were found in the C-SH2 domain, a region in which defects are not often identified in NS. A trend was observed in patients carrying the 922A --> G change (Asn308Asp) receiving normal education. In one patient with NS and mild juvenile myelomonocytic leukemia (JMML) the mutation 218C --> T (Thr73Ile) was found. This confirms previous findings indicating that individuals with NS with specific mutations in PTPN11 are at risk of developing JMML.  相似文献   

5.
Noonan syndrome (NS, MIM 163950) is an autosomal dominant condition characterised by facial dysmorphy, congenital cardiac defects and short stature. Recently missense mutations in PTPN11, the gene encoding the nonreceptor protein tyrosine phosphatase SHP-2 on 12q24, were identified in 50% of analysed Noonan cases. A large four-generation Belgian family with NS and some features suggestive of cardio-facio-cutaneous syndrome (CFC) was previously used to fine map the Noonan syndrome candidate region to a 5 cM region in 12q24. We now report the identification of a mutation (Gln79Arg) in the PTPN11 gene in this large family. In D. melanogaster and C. elegans the PTPN11 gene has been implicated in oogenesis. In this family two affected females had dizygous twins. This suggests that PTPN11 might also be involved in oogenesis and twinning in humans.  相似文献   

6.
Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8-38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0-5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance.  相似文献   

7.
Noonan (NS) and multiple lentigines/LEOPARD syndromes (LS) have proved to be associated with distinct PTPN11 mutations. Noonan-like/multiple giant cell lesion syndrome (NLS) is a rare disease, characterised by short stature, facial dysmorphisms, congenital heart defect (CHD) and central giant cell lesions. PTPN11 gene mutations have been reported in a single NLS family and two sporadic patients. Here we report a patient with a complex phenotype progressing throughout the years from NS at birth towards LS and NLS. PTPN11 gene analysis disclosed a novel missense mutation (Ala461Thr) in exon 12, affecting the consensus sequence of the SHP2-active site. This observation joins together NS and LS to NLS into a unique genetic defect, broadening the clinical and molecular spectrum of PTPN11-related disorders.  相似文献   

8.
PTPN11 gene mutations are common to both patients with Noonan (NS) and LEOPARD syndrome (LS). So far only two recurrent mutations have been identified in LS patients by different research groups, i.e., Tyr279Cys and Thr468Met. In this work we describe the third PTPN11 mutation that has been found in a single LS patient. The mutation (c.1517A>C) substitutes a proline for a glutamine at amino acid 506 (Gln506Pro) in the phosphatase domain (PTP) of the PTPN11 peptide SHP2. This region is a mutation hotspot. Changes at amino acids 501 to 504 cause NS. Gln506Pro is predicted, by modeling analysis, to seriously disrupt the normal contacts between the regulating N-SH2 and the active PTP domains, leading to hyperactivity of the phosphatase. This report demonstrates that rarer mutations other than Tyr279Cys and Thr468Met can be found in LS patients and the need of screening the whole gene in those negative for the commonest mutations.  相似文献   

9.
Noonan syndrome with multiple giant cell lesions (NS/MGCL) was recently shown to be a phenotypic variation within the syndromes of the Ras/MAPK pathway and not an independent entity as previously thought. Here we report on a 13-year-old boy with a typical phenotype of NS including atrial septal defect, pulmonic stenosis, short stature, and combined pectus carinatum/excavatum, pronounced MGCL of both jaws, and a de novo mutation in PTPN11, c.236A>G (which predicts p.Q79R). Mutations in PTPN11 are the most frequent cause of NS and p.Q79R is a recurrent mutation in exon 3. Including this patient, 24 patients with molecularly confirmed NS, LEOPARD, or CFC/MGCL syndrome have been reported to date, of these 21 patients have PTPN11, SOS1, or RAF1 mutations and three have BRAF or MAP2K1 mutations, confirming that MGCL is a rare complication of the deregulated RAS/MAPK pathway. In all patients, the lesions of the mandible and to a lesser extent of the maxilla were first noted between ages 2 and 19 years (median 11 years), and were combined with enlargement of the jaws in 11/24 patients (46%). In this case and, with one exception (mutation not reported), all previous cases the NS/MGCL was caused by known mutations in the PTPN11, SOS1, RAF1, BRAF1, and MAP2K1 genes that were previously reported with RASopathies without MGCL. ? 2012 Wiley Periodicals, Inc.  相似文献   

10.
Noonan syndrome (NS) is a tumor predisposing disorder. Leukemia is observed in 1-3% of patients with NS, with rare occurrences of solid tumors. It also appears to predispose to non-malignant tumors. We report on a 26-year-old female with features of Noonan syndrome-Multiple Lentigines and a heterozygous mutation: c.1517A > C-p.Gln506Pro in the PTPN11 gene. The patient developed an unusual extensive lipomatosis and we discuss possible relationship between her lipomatosis and NS.  相似文献   

11.
Germline mutations in the PTPN11 gene have been associated with Noonan syndrome (NS) and LEOPARD syndrome. Both germline and somatic mutations in this gene have been reported in association with malignancies. However, the T507K mutation in the PTPN11 gene, has only been reported in malignancies and in a fetus with hydrops fetalis but not in a live patient with NS. We report the autopsy findings in a fetus with the T507K mutation who presented prenatally with hydrops fetalis, cystic hygroma and 46, XX karyotype. On autopsy, the patient was found to have testes, male external genitalia, but absent Wolffian ducts.  相似文献   

12.
Noonan syndrome (NS) is a heterogeneous disorder caused by activating mutations in the RAS-MAPK signaling pathway. It is associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity, and typical facial features and the inheritance is autosomal dominant. Here, we present a clinical and molecular characterization of a patient with Noonan-like syndrome with loose anagen hair phenotype and additional features including mild psychomotor developmental delay, osteoporosis, gingival hyperplasia, spinal neuroblastoma, intrathoracic extramedullary hematopoiesis, and liver hemangioma. Mutation analysis of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1, MEK2, NRAS, and SHOC2 was conducted, revealing a co-occurrence of two heterozygous previously identified mutations in the index patient. The mutation SHOC2 c.4A > G; p.Ser2Gly represents a de novo mutation, whereas, PTPN11 c.1226G > C; p.Gly409Ala was inherited from the mother and also identified in the brother. The mother and the brother present with some NS manifestations, such as short stature, delayed puberty, keratosis pilaris, café-au-lait spots, refraction error (mother), and undescended testis (brother), but no NS facial features, supporting the notion that the PTPN11 p.Gly409Ala mutation leads to a relatively mild phenotype. We propose that, the atypical phenotype of the young woman with NS reported here is an additive effect, where the PTPN11 mutation acts as a modifier. Interestingly, co-occurrence of RAS-MAPK mutations has been previously identified in a few patients with variable NS or neurofibromatosis-NS phenotypes. Taken together, the results suggest that co-occurrence of mutations or modifying loci in the RAS-MAPK pathway may contribute to the clinical variability observed among NS patients.  相似文献   

13.
Noonan syndrome (NS) is an autosomal dominant disorder characterized by short stature, facial anomalies, webbed neck, sternal deformity, heart defects, and, in males, cryptorchidism. PTPN11 encodes SHP2, an important component of several signal transduction pathways that acts as a positive regulator of RAS-mitogen activated protein kinase signaling. Neurofibromatosis type 1 (NF1) is another autosomal dominant disorder characterized by hamartomas in multiple organs. The NF1 gene encodes a GAP-related protein, which acts as a negative regulator of the Ras-mediated signal transduction pathway. Clinical overlap between both syndromes, neurofibromatosis-Noonan syndrome (NFNS) is well known. We studied a female patient with typical findings of NFNS and found two mutations: a novel PTPN11 transversion, 1909A --> G, resulting in Gln510Arg, and an NF1 transversion, 2531A --> G, resulting in Leu844Arg. She inherited the PTPN11 mutation from her father and had a de novo NF1 mutation. This is the first report of molecular concurrence of both disorders in the same patient.  相似文献   

14.
Noonan syndrome (NS) is a common autosomal dominant condition characterized by short stature, congenital heart defects, and dysmorphic facial features caused in approximately 50% of cases by missense mutations in the PTPN11 gene. NS patients are predisposed to malignancies including myeloproliferative disorders or leukemias. We report a female NS patient carrying a PTPN11 germline mutation c.417 G?>?C (p.E139D), who developed in her second year of life an acute lymphoblastic leukemia (ALL) and after remission, she developed at 4 years of age a juvenile myelomonocytic leukemia (JMML). Molecular genetic analysis of lymphoblastic blasts at the time of the ALL diagnosis revealed the germline mutation in a heterozygous state, while in the myelomonocytic blasts occurring with JMML diagnosis, the mutation p.E139D was found in a homozygous state due to a uniparental disomy (UPD). These findings lead to the suggestion that the pathogenesis of ALL and JMML in our patient is due to different mechanisms including somatically acquired secondary chromosomal abnormalities.  相似文献   

15.
Noonan syndrome (NS) is an autosomal dominant disorder characterized by short stature, congenital heart defects and distinctive facies. The disorder is genetically heterogeneous with approximately 50% of patients having PTPN11 mutations. Prenatally, the diagnosis of NS has been suspected following certain ultrasound findings, such as cystic hygroma, increased nuchal translucency (NT) and hydrops fetalis. Studies of fetuses with cystic hygroma have suggested an NS prevalence of 1–3%. A retrospective review was performed to assess the utility of PTPN11 testing based on prenatal sonographic findings ( n = 134). The most commonly reported indications for testing were increased NT and cystic hygroma. Analysis showed heterozygous missense mutations in 12 fetuses, corresponding to a positive test rate of 9%. PTPN11 mutations were identified in 16% and 2% of fetuses with cystic hygroma and increased NT, respectively. Among fetuses with isolated cystic hygroma, PTPN11 mutation prevalence was 11%. The mutations observed in the three fetuses with hydrops fetalis had previously been reported as somatic cancer mutations. Prenatal PTPN11 testing has diagnostic and possible prognostic properties that can aid in risk assessment and genetic counseling. As NS is genetically heterogeneous, negative PTPN11 testing cannot exclude the diagnosis and further study is warranted regarding the other NS genes.  相似文献   

16.
Noonan syndrome (NS) is an autosomal dominant disorder comprising short stature, facial dysmorphism, short and/or webbed neck, heart defects, and cryptorchidism in males. The gene responsible for the disorder (PTPN11) was recently identified, and explains 30-50% of the cases clinically diagnosed as NS. Cardiofaciocutaneous (CFC) syndrome, a similar but distinct entity, is characterized by relative macrocephaly, characteristic facial appearance, ectodermal abnormalities (sparse and friable hair, sparse eyebrows, hyperkeratotic skin), congenital heart defects, and growth and mental retardation. We describe on a young woman who presents clinical features of NS (short stature, triangular facies, with downslanting palpebral fissures and apparent hypertelorism, webbed neck, pulmonary stenosis, bleeding diathesis, prominent corneal nerves), but with a more prominent ectodermal involvement (sparse and very coarse hair, sparse eyebrows and eyelashes) and developmental delay/mental retardation, which are characteristic of CFC patients. Sequencing of the PTPN11 gene showed a T411M substitution, not previously described in patients with NS. The same mutation was found in her mother and older sister, not initially considered to be affected by NS, but with very subtle clinical findings compatible with this diagnosis. Molecular dynamic studies indicate that this new mutation, similar to other previously described mutations, favors a more active protein conformation. However, the main disruptive effect is not directly in the catalytic domain, suggesting that the location of this mutation could make the protein more susceptible to gene-gene or gene-environment interactions. Atypical cases of NS should be screened for mutations in the PTPN11 gene and in the case of a positive result, first-degree relatives should also be tested for the specific mutation.  相似文献   

17.
PTPN11 has been identified as a causative gene in Noonan syndrome (NS), responsible for about 50% of cases of NS. Given the association between NS and an increased risk of some malignancies, notably leukemia and probably some solid tumors including neuroblastoma (NB) and rhabdomyosarcoma (RMS), recent studies have reported that gain-of-function somatic mutations in PTPN11 occur in some hematological malignancies, especially de novo juvenile myelomonocytic leukemia (JMML) and in some solid tumors such as NB, although at a low frequency. In a screen for mutations of PTPN11 in 7 cell lines and 30 fresh tumors of RMS and in 25 cell lines and 40 fresh tumors of NB, we identified a missense mutation (A72T) in an embryonal RMS patient. In the RMS samples, we also detected mutations of NRAS in 1 cell line and 1 patient; both mutations were in embryonal RMSs and had no PTPN11 mutations. No mutations of PTPN11 were detected in NB. In 95 leukemia cell lines and 261 fresh leukemia samples including 22 JMMLs, 9 kinds of missense mutations were detected in 17 leukemia samples, which included 11 (50.0%) mutations in JMML samples and lower frequencies in other hematological malignancies. Furthermore, we identified 4 (18.2%) NRAS mutations and 1 (4.5%) KRAS mutation in 5 JMML samples, 1 of which had a concomitant PTPN11 mutation. Our data suggest that mutations of PTPN11 as well as RAS play a role in the pathogenesis of not only myeloid hematological malignancies but also a subset of RMS malignancies.  相似文献   

18.
Noonan syndrome (NS) is characterized by short stature, characteristic facial features, and heart defects. Recently, missense mutations of PTPN11, the gene encoding protein tyrosine phosphatase (PTP) SHP-2, were identified in patients with NS. Further, somatic mutations in PTPN11 were detected in childhood leukemia. Recent studies showed that the phosphatase activities of five mutations identified in NS and juvenile myelomonocytic leukemia (JMML) were increased. However, the functional properties of the other mutations remain unidentified. In this study, in order to clarify the differences between the mutations identified in NS and leukemia, we examined the phosphatase activity of 14 mutants of SHP-2. We identified nine mutations, including a novel F71I mutation, in 16 of 41 NS patients and two mutations, including a novel G503V mutation, in three of 29 patients with leukemia. Immune complex phosphatase assays of individual mutants transfected in COS7 cells showed that ten mutants identified in NS and four mutants in leukemia showed 1.4-fold to 12.7-fold increased activation compared with wild-type SHP-2. These results suggest that the pathogenesis of NS and leukemia is associated with enhanced phosphatase activity of mutant SHP-2. A comparison of the phosphatase activity in each mutant and a review of previously reported cases showed that high phosphatase activity observed in mutations at codons 61, 71, 72, and 76 was significantly associated with leukemogenesis.  相似文献   

19.
Here we report on a family with two siblings born to unrelated healthy parents, one with neurofibromatosis type 1 (NF1) and the other with Noonan syndrome (NS). Molecular investigations performed on the NF1 and PTPN11 genes showed two independent de novo mutations as a cause for NF1 in the NF1 proband and NS in her affected brother. Both de novo mutations were potentially of paternal origin, given the advanced paternal age at the time of conception. ? 2012 Wiley Periodicals, Inc.  相似文献   

20.
The PTPN11 gene encodes SHP-2, a widely expressed cytoplasmic protein tyrosine phosphatase functioning as a signaling transducer. Germ-line PTPN11 mutations cause Noonan syndrome (NS), a developmental disorder characterized by an increased risk of malignancies. Recently, a novel class of activating mutations in PTPN11 has been documented as a somatic event in a heterogeneous group of leukemias. Because of the relatively higher prevalence of certain solid tumors in children with NS and the positive modulatory function of SHP-2 in RAS signaling, a wider role for activating PTPN11 mutations in cancer has been hypothesized. Here, we screened a number of solid tumors, including those documented in NS or in which deregulated RAS signaling occurs at significant frequency, for PTPN11 mutations. No disease-associated mutation was identified in rhabdomyosarcoma (n = 13), neuroblastoma (n = 32), melanoma (n = 50), thyroid (n = 85), and colon (n = 48) tumors; a novel missense change, promoting an increased basal phosphatase activity of SHP-2, was observed in one glioma specimen. Our data document that deregulated SHP-2 function does not represent a major molecular event in pediatric and adult tumors, further supporting our previous evidence indicating that the oncogenic role of PTPN11 mutations is cell-context specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号