首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have identified a cohort of zebrafish expressed sequence tags encoding eight Na,K-ATPase alpha subunits and five beta subunits. Sequence comparisons and phylogenetic analysis indicate that five of the zebrafish alpha subunit genes comprise an alpha1-like gene subfamily and two are orthologs of the mammalian alpha3 subunit gene. The remaining alpha subunit clone is most similar to the mammalian alpha2 subunit. Among the five beta subunit genes, two are orthologs of the mammalian beta1 isoform, one represents a beta2 ortholog, and two are orthologous to the mammalian beta3 subunit. Using zebrafish radiation hybrid and meiotic mapping panels, we determined linkage assignments for each alpha and beta subunit gene. Na,K-ATPase genes are dispersed in the zebrafish genome with the exception of four of the alpha1-like genes, which are tightly clustered on linkage group 1. Comparative mapping studies indicate that most of the zebrafish Na,K-ATPase genes localize to regions of conserved synteny between zebrafish and humans. The expression patterns of Na,K-ATPase alpha and beta subunit genes in zebrafish are quite distinctive. No two alpha or beta subunit genes exhibit the same expression profile. Together, our data imply a very high degree of Na,K-ATPase isoenzyme heterogeneity in zebrafish, with the potential for 40 structurally distinct alpha/beta subunit combinations. Differences in expression patterns of alpha and beta subunits suggest that many of the isoenzymes are also likely to exhibit differences in functional properties within specific cell and tissue types. Our studies form a framework for analyzing structure function relationships for sodium pump isoforms using reverse genetic approaches.  相似文献   

3.
4.
The AMPA type glutamate receptors mediate the majority of fast synaptic transmission in the vertebrate nervous system. Whereas mammals have four subunit genes, Gria1-4, zebrafish has retained a duplicated set of eight genes named gria1-4a and b. We give here a detailed overview of the expression patterns of all eight zebrafish subunits within the developing central nervous system and sensory organs at 24, 48, and 72 hr after fertilization. Expression domains include distinct neuronal subsets in the developing forebrain, midbrain, hindbrain, and spinal cord, as well as in the ganglion- and inner nuclear layers of the retina. As a general rule, each pair of duplicated gria genes is differentially expressed, indicating subfunctionalization of AMPA receptor subunit expression in the teleost lineage. Our findings suggest that zebrafish can serve as a useful model system to investigate the role of AMPA receptors and their differential expression in the vertebrate nervous system.  相似文献   

5.
While there is a good conceptual framework of dorsoventral and anterioposterior axes formation in most vertebrate groups, understanding of left-right axis initiation is fragmentary. Diverse mechanisms have been implied to contribute to the earliest steps of left-right asymmetry, including small molecule signals, gap junctional communication, membrane potential, and directional flow of extracellular liquid generated by monocilia in the node region. Here we demonstrate that a mutation in the zebrafish Na,K-ATPase subunit atp1a1a causes left-right defects including isomerism of internal organs at the anatomical level. The normally left-sided Nodal signal spaw as well as its inhibitor lefty are expressed bilaterally, while pitx2 may appear random or bilateral. Monocilia movement and fluid circulation in Kupffer's vesicle are normal in atp1a1a(m883) mutant embryos. Therefore, the Na,K-ATPase is required downstream or in parallel to monocilia function during initiation of left-right asymmetry in zebrafish.  相似文献   

6.
Cadherins are cell surface molecules that mediate cell-cell adhesion through homophilic interactions. Cadherin-2 (also called N-cadherin), a member of classic cadherin subfamily, has been shown to play important roles in development of a variety of tissues and organs, including the nervous system. We recently reported that cadherin-2 was strongly expressed by the majority of cranial ganglia and lateral line system of developing zebrafish. To gain insight into cadherin-2 role in the formation of these structures, we have used several markers to analyze zebrafish embryos injected with a specific cadherin-2 antisense morpholino oligonucleotide (cdh2MO). We find that development of several cranial ganglia, including the trigeminal, facial, and vagal ganglia, and the lateral line ganglia and neuromasts of the cdh2MO-injected embryos are severely disrupted. These phenotypes were confirmed by analyzing a cadherin-2 mutant, glass onion. Our results suggest that cadherin-2 function is crucial for the normal formation of the zebrafish lateral line system and a subset of cranial ganglia.  相似文献   

7.
Branching processes such as nerves and vessels share molecular mechanisms of path determination. Our study focuses on unc5b, a member of the unc5 axon guidance gene family. Here, we have cloned the full-length zebrafish ortholog of unc5b, mapped its chromosome location in the zebrafish genome, and compared its expression patterns to robo4, another axon guidance family member. In situ show that unc5b is expressed predominantly in sensory structures such as the eye, ear, and brain. Both unc5b and robo4 show robust expression in all three compartments of the embryonic brain, namely forebrain, midbrain, and hindbrain. In particular, the hindbrain rhombomere expression displays interesting patterns in that robo4 is expressed in medial rhombomere cell clusters when compared to unc5b expressed in lateral rhombomere clusters. A similar medial-lateral theme is observed in other neural structures such as the neural tube. Our expression analysis provides a starting point for studying the role of axon guidance genes in embryonic hindbrain patterning.  相似文献   

8.
We mined the zebrafish genomic sequence database and identified contigs containing segments of several dopamine receptor genes. By using a polymerase chain reaction amplification strategy, we generated full-length cDNAs encoding a single dopamine D3 receptor and three distinct D2 receptor subtypes. Zebrafish dopamine receptor genes were mapped by using the T51 radiation hybrid panel. The D3 receptor gene (drd3) mapped to linkage group (LG) 24. The three D2 receptor genes were localized to LG 15 (drd2a), LG 16, (drd2b), and LG 5 (drd2c). With the exception of the drd2b gene, each of these map positions was syntenic with regions of human chromosomes containing orthologs of the zebrafish dopamine receptor genes. Whole-mount in situ hybridization was used to investigate expression of the D2 and D3 receptor genes. Expression of the drd3 gene was first detected at mid-somitogenesis and was particularly prominent in somites. Thereafter, the drd3 gene was expressed diffusely throughout the brain and spinal cord. The three D2 receptor genes were expressed throughout the central nervous system (CNS) in distinct but overlapping patterns. In early embryos, the drd2a gene was expressed exclusively in the epiphysis, whereas the drd2c gene was localized to the notochord. After 24 hpf, the drd2a, drd2b, and drd2c genes were differentially expressed throughout the CNS. The identification of dopamine receptor genes in zebrafish should allow us to use the power of zebrafish genetics to analyze the functional properties of this important class of neurotransmitter receptors.  相似文献   

9.
The distribution and levels of messenger RNAs encoding the alpha 1, beta 1, beta 2, beta 3, and gamma 2 subunits of the GABAA receptor in the developing and adult rat brain were investigated using quantitative in situ hybridization histochemistry and subunit-specific probes. Regional localization of the subunit messenger RNAs was determined with film autoradiography and expression in identified neuronal cell populations was examined using higher resolution techniques. Each of the GABAA receptor subunit messenger RNAs exhibits a distinct pattern of localization in the developing and adult brain. Of the subunits examined, the alpha 1, beta 2, and gamma 2 are the most abundant and are found in many brain regions, including the olfactory bulb, cortex, hippocampus, thalamic nuclei, and inferior colliculus. In addition, these subunit messenger RNAs are prominent in the cerebellum where virtually all cells of the deep cerebellar nuclei and Purkinje cell layer are labeled. The levels of most of the subunit messenger RNAs, with the exception of that encoding the beta 1 subunit, increase during postnatal development. While the alpha 1, beta 2, and gamma 2 subunit messenger RNAs rise in parallel in many regions and identified cell populations, different subsets of receptor subunit messenger RNAs are co-ordinately expressed at other sites. The greatest increases in subunit messenger RNA levels occur in the cerebellar cortex during the second postnatal week, a period coincident with cerebellar maturation. The co-distribution of different GABAA receptor subunit messenger RNAs in various regions of the developing and adult nervous systems supports the hypothesis that multiple receptor compositions exist. Moreover, that different subunit messenger RNAs exhibit coordinate changes in expression in different regions and cell populations suggests that receptor gene expression is modulated by cell type-specific signals. The temporal changes in subunit messenger RNA levels in the cerebellum raise the possibility that synaptogenesis may play a role in receptor gene regulation in this brain region.  相似文献   

10.
11.
Inducible nitric oxide synthase (NOS2) catalyzes the production of nitric oxide (NO), and is one of the factors establishing innate immunity. In zebrafish, Nos2 is represented by nos2a and nos2b. Here, we report the cloning and expression pattern of the zebrafish nos2b gene, which does not seem to participate in induced immune response. nos2b was mapped to zebrafish linkage group 15. The spatial and temporal expression pattern of nos2b in embryonic zebrafish was analyzed by whole-mount in situ hybridization. nos2b is expressed constitutively in two primordia located along the ventral midline. The first group of cells contributes to the neurohypophysis. Initially at the level of the ventral hindbrain, the second group of cells migrates closely with the thyroid primordium to its final position at the basihyal by 3 dpf. Thus, the analysis of expression pattern of nos2b reveals complex morphogenetic movements resulting in its expression surrounding the oral cavity.  相似文献   

12.
We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig-1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley-Liss, Inc.  相似文献   

13.
The sensory organs of the zebrafish lateral-line system (neuromasts) originate from migrating primordia that move along precise pathways. The posterior primordium, which deposits the neuromasts on the body and tail of the embryo, migrates along the horizontal myoseptum from the otic region to the tip of the tail. This migration is controlled by the chemokine SDF1, which is expressed along the prospective pathway, and by its receptor CXCR4, which is expressed by the migrating cells. In this report, we describe another zebrafish gene that is heterogeneously expressed in the migrating cells, tacstd. This gene codes for a membrane protein that is homologous to the TACSTD1/2 mammalian proteins. Inactivation of the zebrafish tacstd gene results in a decrease in proneuromast deposition, suggesting that tacstd is required for the deposition process.  相似文献   

14.
Kucenas S  Li Z  Cox JA  Egan TM  Voigt MM 《Neuroscience》2003,121(4):935-945
P2X receptors are non-selective cation channels gated by extracellular ATP and are encoded by a family of seven subunit genes in mammals. These receptors exhibit high permeabilities to calcium and in the mammalian nervous system they have been linked to modulation of neurotransmitter release. Previously, three complementary DNAs (cDNAs) encoding members of the zebrafish gene family have been described. We report here the cloning and characterization of an additional six genes of this family. Sequence analysis of all nine genes suggests that six are orthologs of mammalian genes, two are paralogs of previously described zebrafish subunits, and one remains unclassified. All nine subunits were physically mapped onto the zebrafish genome using radiation hybrid analysis. Of the nine gene products, seven give functional homo-oligomeric receptors when recombinantly expressed in human embryonic kidney cell line 293 cells. In addition, these subunits can form hetero-oligomeric receptors with phenotypes distinct from the parent subunits. Analysis of gene expression patterns was carried out using in situ hybridization, and seven of the nine genes were found to be expressed in embryos at 24 and 48 h post-fertilization. Of the seven that were expressed, six were present in the nervous system and four of these demonstrated considerable overlap in cells present in the sensory nervous system. These results suggest that P2X receptors might play a role in the early development and/or function of the sensory nervous system in vertebrates.  相似文献   

15.
We have isolated a cDNA encoding a member of the Tlx/Hox11 family of homeodomain factors from the zebrafish, most closely related to the vertebrate Tlx-1/Hox11 and Tlx-3/Hox11L2 proteins. The gene is expressed in a set of early differentiating neurons that project to a common tract, the lateral longitudinal fascicle. We show that the gene is specifically expressed in spinal cord Rohon Beard neurons, in nucleus of the posterior commissure neurons of the midbrain, in a set of hindbrain neurons that include RoL3 reticulospinal interneurons, and in the trigeminal, statoacoustic, anterior lateral line, glossopharyngeal, and vagal cranial sensory ganglia. Timing of expression of the gene in these neurons correlates with the phase of axonal outgrowth and target innervation. Expression of the gene is also observed in several non-neural tissues, including the pharyngeal arches, budding gill filaments, outgrowing semicircular protrusions in the otic vesicle, and in the pectoral fin buds.  相似文献   

16.
The mechano and chemosensory organs of adult teleosts undergoes a continuous cell renewal and turnover which is regulated in part by growth factors. Here, we investigated the occurrence and the cell localization of epidermal growth factor (EGF) in the lateral line system and taste bud of adult zebrafish, using Western blot and immunohistochemistry associated to a polyclonal antibody against mammalian EGF. Furthermore, the distribution of S100 protein was studied in parallel to label hair sensory cells in the lateral line system. Western blot revealed one unique protein band with an estimated molecular weight of about 13 kDa, equivalent to the EGF of mammals. Specific immunoreactivity for EGF was observed in the epithelial basal and/or supporting cells of the neuromasts of the lateral line system and taste buds. Conversely, the sensory cells in both sensory structures were devoid of immunostaining. Present results demonstrate the occurrence of EGF in mechano and sensory system of adult zebrafish, suggesting a role for this molecule in the cell renewal and turnover of these structures.  相似文献   

17.
Vacuolar ATPase (V‐ATPase) is a multi‐subunit enzyme that plays an important role in the acidification of a variety of intracellular compartments. ATP6V0C is subunit c of the V0 domain that forms the proteolipid pore of the enzyme. In the present study, we investigated the neuron‐specific expression of atp6v0c2, a novel isoform of the V‐ATPase c‐subunit, during the development of the zebrafish CNS. Zebrafish atp6v0c2 was isolated from a genome‐wide analysis of the zebrafish mibta52b mutant designed to identify genes differentially regulated by Notch signaling. Whole‐mount in situ hybridization revealed that atp6v0c2 is expressed in a subset of CNS neurons beginning several hours after the emergence of post‐mitotic neurons. The ATP6V0C2 protein is co‐localized with the presynaptic vesicle marker, SV2, suggesting that it is involved in neurotransmitter storage and/or secretion in neurons. In addition, the loss‐of‐function experiment suggests that ATP6V0C2 is involved in the control of neuronal excitability. Developmental Dynamics 239:2501–2508, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Sensory gating refers to the ability of the brain to inhibit irrelevant sensory input. In several studies, a pathogenic role of the CHRNA7 gene and the CHRNA7-like gene, respectively, is suggested. In linkage analysis concerning familial centrotemporal spikes and sharp waves (CTS) and benign rolandic epilepsy, evidence for linkage was found to a region on chromosome 15q14, close to the alpha-7 subunit gene of the neuronal nicotinic acetylcholine receptor (CHRNA7). According to these findings, P50 evoked potentials to paired click stimuli were studied in 13 children with CTS in the EEG to determine whether they had normal sensory gating. The control group consisted of 13 healthy probands matched for gender and age. Children with CTS showed a significant sensory gating deficit (p=0.001). These results (1) suggest an inhibitory deficit in early pre-attentive auditory sensory processing in children with CTS and (2) confirm the assumption of a cholinergic pathology in CTS.  相似文献   

19.
The zebrafish (Danio rerio) possesses two mechanosensory organs believed to be homologous to each other: the inner ear, which is responsible for the senses of audition and equilibrium, and the lateral line organ, which is involved in the detection of water movements. Eight zebrafish circler or auditory/vestibular mutants appear to have defects specific to sensory hair cell function. The circler genes may therefore encode components of the mechanotransduction apparatus and/or be the orthologous counterparts of the genes underlying human hereditary deafness. In this report, we show that the phenotype of the circler mutant, mariner, is due to mutations in the gene encoding Myosin VIIA, an unconventional myosin which is expressed in sensory hair cells and is responsible for various types of hearing disorder in humans, namely Usher 1B syndrome, DFNB2 and DFNA11. Our analysis of the fine structure of hair bundles in the mariner mutants suggests that a missense mutation within the C-terminal FERM domain of the tail of Myosin VIIA has the potential to dissociate the two different functions of the protein in hair bundle integrity and apical endocytosis. Notably, mariner sensory hair cells display morphological and functional defects that are similar to those present in mouse shaker-1 hair cells which are defective in Myosin VIIA. Thus, this study demonstrates the striking conservation of the function of Myosin VIIA throughout vertebrate evolution and establishes mariner as the first fish model for human hereditary deafness.  相似文献   

20.
We previously reported that cadherin-4 (also called R-cadherin) was expressed by the majority of the developing zebrafish cranial and lateral line ganglia. Cadherin-4 (Cdh4) function in the formation of these structures in zebrafish was studied using morpholino antisense technology. Differentiation of the cranial and lateral line ganglia and lateral line nerve and neuromasts of the cdh4 morphants was analyzed using multiple neural markers. We found that a subset of the morphant cranial and lateral line ganglia were disorganized, smaller, with reduced staining, and/or with altered shape compared to control embryos. Increased cell death in the morphant ganglia likely contributed to these defects. Moreover, cdh4 morphants had shorter lateral line nerves and a reduced number of neuromasts, which was likely caused by disrupted migration of the lateral line primordia. These results indicate that Cdh4 plays a role in the normal formation of the zebrafish lateral line system and a subset of the cranial ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号