首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conventional approaches to the diagnosis of mitochondrial respiratory chain diseases, using enzyme assays and histochemistry, are laborious and give limited information concerning the genetic basis of a deficiency. We have evaluated the diagnostic value of 12 monoclonal antibodies to subunits of the four respiratory chain enzyme complexes and F(1)F(0)-ATP synthase. Antibodies were used in immunological studies with skin fibroblast cultures derived from patients with diverse mitochondrial diseases, including patients in which the disease was caused by a nuclear genetic defect and patients known to harbor a heteroplasmic mutation in a mitochondrial tRNA gene. Immunoblotting experiments permitted the identification of specific enzyme assembly deficits and immunocytochemical studies provided clues regarding the genetic origin of the disease. The immunological findings were in agreement with the biochemical and genetic data of the patients. Our study demonstrates that characterization of the fibroblast cultures with the monoclonal antibodies provides a convenient technique to complement biochemical assays and histochemistry in the diagnosis of mitochondrial respiratory chain disorders.  相似文献   

2.
We report a patient with relatively mild Leigh syndrome and mitochondrial respiratory chain complex II deficiency caused by a homozygous G555E mutation in the nuclear encoded flavoprotein subunit of succinate dehydrogenase. This mutation has previously been reported in a lethal-infantile presentation of complex II deficiency. Such marked phenotypic heterogeneity, although typical of heteroplasmic mutations in the mitochondrial genome, is unusual for nuclear mutations. Comparable activities and stability of mitochondrial respiratory chain enzymes were demonstrated in both patients, so other reasons for the phenotypic variability are considered.  相似文献   

3.
Mitochondrial diseases are relatively common inherited metabolic diseases due to mitochondrial respiratory chain dysfunction. Their clinical presentation is extremely diverse, multisystemic or confined to a single tissue, sporadic or transmitted, by maternal or mendelian inheritance. The diagnosis of mitochondrial disorders is difficult. It is based upon several types of clues both clinical (family history, type of symptoms but also their association in syndromic presentation,...) and biological (alteration of the lactate metabolism, brain imaging, morphological alterations especially of muscle tissue). The diagnosis relies upon the demonstration of a defect of the respiratory chain activities and/or upon the identification of the underlying genetic alteration. Molecular diagnosis remains quite difficult and up to-date concerns essentially mitochondrial DNA mutations. On one hand, clinical and biological presentations as well as enzymatic defects lack specificity. On the other hand, candidate genes are very numerous and part of them are probably still unknown.  相似文献   

4.
Clinical spectrum and diagnosis of mitochondrial disorders   总被引:16,自引:0,他引:16  
Respiratory chain deficiencies have long been regarded as neuromuscular diseases mostly originating from mutations in the mitochondrial DNA. Actually, oxidative phosphorylation, i.e., adenosine triphosphate (ATP) synthesis-coupled electron transfer from substrate to oxygen through the respiratory chain, does not only occur in the neuromuscular system. For this reason, a respiratory chain deficiency can theoretically give rise to any symptom, in any organ or tissue, at any age and with any mode of inheritance, owing to the dual genetic origin of respiratory chain enzymes (nuclear DNA and mitochondrial DNA). In recent years, it has become increasingly clear that genetic defects of oxidative phosphorylation account for a large variety of clinical symptoms in both childhood and adulthood. Diagnosis of a respiratory chain deficiency is difficult initially when only one symptom is present, and easier when additional, seemingly unrelated, symptoms are observed. The clinical heterogeneity is echoed by the genetic heterogeneity illustrated by the increasing number of nuclear genes that have been shown to be involved in these diseases. In the absence of clear-cut genotype-phenotype correlations and in front of the large number of possibly involved genes, biochemical analyses are still the cornerstone of the diagnosis of this condition.  相似文献   

5.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

6.
Mitochondrial respiratory chain dysfunction causes a wide range of primary diseases in adults and children, with highly variable organ involvement. Diagnosis involves weighing evidence from a number of sources, including the clinical presentation, metabolic measurements in vivo, imaging studies, analysis of respiratory chain function or enzyme activities in vitro, studies of mitochondrial morphology after biopsy, and mitochondrial (mt) DNA mutation analysis. Irrespective of the category of the information, it can be difficult to determine whether abnormal results are due to primary defects of the respiratory chain or to practical problems that complicate the diagnostic methodology. This review describes six sources of such problems: genetic complexity, tissue and temporal variation, methodological limitations, secondary effects, logistical issues, and questions of interpretation. When these issues are all addressed, a reliable categorization of the diagnosis as definite, probable, or possible respiratory chain defect becomes possible.  相似文献   

7.
Mitochondrial disorders   总被引:1,自引:0,他引:1  
  相似文献   

8.
By combining exome sequencing in conjunction with genetic mapping, we have identified the first mutation in large mitochondrial ribosomal protein MRPL3 in a family of four sibs with hypertrophic cardiomyopathy, psychomotor retardation, and multiple respiratory chain deficiency. Affected sibs were compound heterozygotes for a missense MRPL3 mutation (P317R) and a large-scale deletion, inherited from the mother and the father, respectively. These mutations were shown to alter ribosome assembly and cause a mitochondrial translation deficiency in cultured skin fibroblasts resulting in an abnormal assembly of several complexes of the respiratory chain. This observation gives support to the view that exome sequencing combined with genetic mapping is a powerful approach for the identification of new genes of mitochondrial disorders.  相似文献   

9.
Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.  相似文献   

10.
Most patients with mitochondrial disorders are diagnosed by finding a respiratory chain enzyme defect or a mutation in the mitochondrial DNA (mtDNA). The provision of accurate genetic counseling and reproductive options to these families is complicated by the unique genetic features of mtDNA that distinguish it from Mendelian genetics. These include maternal inheritance, heteroplasmy, the threshold effect, the mitochondrial bottleneck, tissue variation, and selection. Although we still have much to learn about mtDNA genetics, it is now possible to provide useful guidance to families with an mtDNA mutation or a respiratory chain enzyme defect. We describe a range of current reproductive options that may be considered for prevention of transmission of mtDNA mutations, including the use of donor oocytes, prenatal diagnosis (by chorionic villus sampling or amniocentesis), and preimplantation genetic diagnosis, plus possible future options such as nuclear transfer and cytoplasmic transfer. For common mtDNA mutations associated with mitochondrial cytopathies (such as NARP, Leigh Disease, MELAS, MERRF, Leber's Hereditary Optic Neuropathy, CPEO, Kearns-Sayre syndrome, and Pearson syndrome), we summarize the available data on recurrence risk and discuss the relative advantages and disadvantages of reproductive options.  相似文献   

11.
背景:多项研究表明恶性血液病可以出现线粒体的突变,但尚未有关于慢性再生障碍性贫血中线粒体变化的研究。目的:研究肾阴虚和肾阳虚型慢性再生障碍性贫血患者线粒体突变情况,探讨母系遗传的本质——线粒体与肾阴虚型慢性再障发生、发展的关系,以期进一步研究慢性再障的发病机制。方法:收集10例诊断明确的肾阴虚型5例肾阳虚型慢性再生障碍性贫血患者骨髓和口腔黏膜上皮,提取DNA,进行线粒体DNA的全测序,比较线粒体基因。结果与结论:肾阴虚型慢性再生障碍性贫血患者线粒体全测序表明许多患者的突变位点发生在与线粒体氧化呼吸链密切相关的区域,涵盖了还原态烟酰胺腺嘌呤二核苷酸脱氢酶1~2、4~6,细胞色素B等多个线粒体DNA的编码基因。而肾阳虚型慢性再生障碍性贫血患者线粒体突变不明显。提示线粒体基因突变引起的呼吸链酶复合体表达水平的改变,造成细胞能量代谢障碍,可能在造血干细胞衰竭的发生发展中起到关键作用。而这一变化是与肾阴虚——母系遗传息息相关的。  相似文献   

12.
Cytochrome c oxidase (COX) defects are found in a clinically and genetically heterogeneous group of mitochondrial disorders. To date, mutations in only two nuclear genes causing COX deficiency have been described. We report here a genetic linkage study of a consanguineous family with an isolated COX defect and subsequent identification of a mutation in a third nuclear gene causing a deficiency of the enzyme. A genome-wide search for homozygosity allowed us to map the disease gene to chromosome 17p13.1-q11.1 (Z (max)= 2.46; theta = 0.00 at the locus D17S799). This region encompasses two genes, SCO1 and COX10, encoding proteins involved in COX assembly. Mutation analysis followed by a complementation study in yeast permitted us to ascribe the COX deficiency to a homozygous missense mutation in the COX10 gene. This gene encodes heme A:farnesyltransferase, which catalyzes the first step in the conversion of protoheme to the heme A prosthetic groups of the enzyme. All three nuclear genes now linked to isolated COX deficiency are involved in the maturation and assembly of COX, emphasizing the major role of such genes in COX pathology.  相似文献   

13.
Defects in NADH:ubiquinone oxidoreductase, the complex I of the mitochondrial respiratory chain represents the most frequent cause of mitochondrial diseases and is associated with a wide clinical spectrum varying from severe lactic acidosis in infants to muscle weakness in adults. Here, we report a patient with Leigh syndrome (LS), born to consanguineous parents, with severe complex I defect and a novel mutation in the NDUFS7 gene subunit. The homozygous mutation at nucleotide (nt) 434 G>A resulted in the modification of the arginine 145 to histidine in a highly conserved region of the protein. Parents were heterozygous carriers for this mutation. The mutation was absent from over than 100 healthy controls from the same ethnic origin. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us to understand how moleculardefects can lead to complex I deficiency.  相似文献   

14.
The VACTERL association of vertebral, anal, cardiovascular, tracheo-esophageal, renal, and limb defects is one of the more common congenital disorders with limb deficiency arising during blastogenesis. The cause is probably heterogeneous; a molecular basis has not yet been defined. We report on a family in which a female infant with VACTERL was born in 1977 and died at age 1 month due to renal failure. Because her mother and sister later developed classical mitochondrial cytopathy associated with the A-G point mutation at nucleotide position (np) 3243 of mitochondrial (mt) DNA, we performed a molecular analysis of mt DNA in preserved kidney tissue from the VACTERL case. We discovered 100% mutant mt DNA in multicystic and 32% mutant mt DNA in normal kidney tissue. Mild deficiency of complex I respiratory chain enzyme activity was found in the mother's muscle biopsy. Other maternal relatives were healthy but had low levels of mutant mt DNA in blood. This is the first report to provide a precise molecular basis for a case of VACTERL. The differing tissue pathology depending on the percentage of mutant mt DNA suggests a causal connection between the mutation and symptoms. VACTERL, and this type of multicystic renal dysplasia, are new phenotypes for the np 3243 point mutation. The possibility of a mitochondrial disorder should be born in mind and also that VACTERL may occur as a first manifestation of a mutation that has been present for generations. This would have major implications for patient management and for genetic counselling regarding both the risk of recurrence and risk of other mitochondrial syndromes in affected families. © 1996 Wiley-Liss, Inc.  相似文献   

15.
《Genetics in medicine》2020,22(7):1254-1261
PurposeThe utility of genome sequencing (GS) in the diagnosis of suspected pediatric mitochondrial disease (MD) was investigated.MethodsAn Australian cohort of 40 pediatric patients with clinical features suggestive of MD were classified using the modified Nijmegen mitochondrial disease severity scoring into definite (17), probable (17), and possible (6) MD groups. Trio GS was performed using DNA extracted from patient and parent blood. Data were analyzed for single-nucleotide variants, indels, mitochondrial DNA variants, and structural variants.ResultsA definitive MD gene molecular diagnosis was made in 15 cases and a likely MD molecular diagnosis in a further five cases. Causative mitochondrial DNA (mtDNA) variants were identified in four of these cases. Three potential novel MD genes were identified. In seven cases, causative variants were identified in known disease genes with no previous evidence of causing a primary MD. Diagnostic rates were higher in patients classified as having definite MD.ConclusionGS efficiently identifies variants in MD genes of both nuclear and mitochondrial origin. A likely molecular diagnosis was identified in 67% of cases and a definitive molecular diagnosis achieved in 55% of cases. This study highlights the value of GS for a phenotypically and genetically heterogeneous disorder like MD.  相似文献   

16.
Genetic mitochondrial defects of the respiratory chain show marked phenotypic variability. Laboratory diagnosis is complicated and includes biochemical screening tests, tissue histopathology, functional enzyme studies, and molecular tests where available. Normal respiratory chain function necessitates the co-ordinated expression of over 100 different gene loci, and the interaction of two genetic systems, the nuclear and mitochondrial genomes. Thus genetic counselling for the mitochondrial disorders is extremely challenging. In this review, the classes of mitochondrial and nuclear defects that give rise to functional abnormalities of the mitochondrial respiratory chain are discussed, with specific instructive examples described in some detail.  相似文献   

17.
Diseases owing to defects of oxidative phosphorylation (OXPHOS) affect approximately 1 in 8,000 individuals. Clinical manifestations can be extremely variable and range from single-affected tissues to multisystemic syndromes. In general, tissues with a high energy demand, like brain, heart and muscle, are affected. The OXPHOS system is under dual genetic control, and mutations in both nuclear and mitochondrial genes can cause OXPHOS diseases. The expression and segregation of mitochondrial DNA (mtDNA) mutations is different from nuclear gene defects. The mtDNA mutations can be either homoplasmic or heteroplasmic and in the latter case disease becomes manifest when the mutation exceeds a tissue-specific threshold. This mutation load can vary between tissues and often an exact correlation between mutation load and phenotypic expression is lacking. The transmission of mtDNA mutations is exclusively maternal, but the mutation load between embryos can vary tremendously because of a segregational bottleneck. Diseases by nuclear gene mutations show a normal Mendelian inheritance pattern and often have a more constant clinical manifestation. Given the prevalence and severity of OXPHOS disorders and the lack of adequate therapy, existing and new methods for the prevention of transmission of OXPHOS disorders, like prenatal diagnosis (PND), preimplantation genetic diagnosis (PGD), cytoplasmic transfer (CT) and nuclear transfer (NT), are technically and ethically evaluated.  相似文献   

18.
Mitochondrial respiratory chain disorders (MRC) are amongst the most common group of inborn errors of metabolism. MRC, of which complex I deficiency accounts for approximately a quarter, are very diverse, causing a wide range of clinical problems and can be difficult to diagnose. We report an illustrative MRC case whose diagnosis was elusive. Clinical signs included failure to thrive caused by recurrent vomiting, hypotonia and progressive loss of motor milestones. Initial brain imaging suggested Leigh syndrome but without expected diffusion restriction. Muscle respiratory chain enzymology was unremarkable. Whole-genome sequencing identified a maternally inherited NDUFV1 missense variant [NM_007103.4 (NDUFV1):c.1157G > A; p.(Arg386His)] and a paternally inherited synonymous variant [NM_007103.4 (NDUFV1):c.1080G > A; (p.Ser360=)]. RNA sequencing demonstrated aberrant splicing. This case emphasizes the diagnostic odyssey of a patient in whom a confirmed diagnosis was elusive because of atypical features and normal muscle respiratory chain enzyme (RCE) activities, along with a synonymous variant, which are often filtered out from genomic analyses. It also illustrates the following points: (1) complete resolution of magnetic resonance imaging changes may be part of the picture in mitochondrial disease; (2) analysis for synonymous variants is important for undiagnosed patients; and (3) RNA-seq is a powerful tool to demonstrate pathogenicity of putative splicing variants.  相似文献   

19.
Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disease causing acute or subacute, bilateral optic atrophy mainly in young men. It is found to be a mitochondrial disorder with the primary mitochondrial DNA (mtDNA) mutations at 11,778, 3460, and 14,484. The incidence of each mutation is reported to be race-dependent. Point mutations at mtDNA nucleotide position 11,778 and 14,484 have been reported in Korean patients with LHON, however there has been no report of mtDNA mutation at nucleotide position 3460. Molecular genetic analyses at four primary sites (11,778, 14,484, 15,257, and 3460) of mitochondrial DNA using the polymerase chain reaction, restriction enzyme digestion, and direct sequencing were performed in a 35-yr-old man with severe visual loss. A point mutation in the mtDNA at nucleotide position 3460 was identified and a conversion of a single alanine to a threonine was confirmed. To our knowledge, this is the first report confirming mtDNA mutation at nucleotide position 3460 in Korean patients with LHON. Detailed molecular analyses would be very helpful for the correct diagnosis of optic neuropathy of unknown etiology and for genetic counseling.  相似文献   

20.
We describe two brothers with sensorineural deafness, diabetes mellitus, progressive neurological deterioration with photomyoclonic epilepsy, and progressive deterioration in renal function, resulting in death in the third decade of life. Autopsy showed diffuse atherosclerosis and arteriolosclerosis of the systemic vasculature. There was no evidence of these abnormalities in the patients' 2 sisters or either parent. Mitochondrial enzyme analysis documented partial deficiencies of Complex III and IV of the respiratory chain. This deficiency was expressed in skin fibroblasts, kidney and liver but not in muscle. This suggests that the disease-causing mutation is either in the mitochondrial or nuclear DNA. Various modes of inheritance are considered, including maternal, autosomal recessive, or X-linked recessive. We suggest this is a new genetic syndrome characterized by an underlying metabolic disease and premature atherosclerosis, possibly of mitochondrial origin. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号