首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The influence of the chronic administration of the 5-HT1A receptor agonist 8-OH-DPAT (0.05 mg/kg, s.c.) and the 5-HT1A receptor antagonist NAN-190 (0.1 mg/kg, i.p.) alone or in combination with 17beta-estradiol (0.5 microg per animal, i.m.) for 14 days on the depression behavior and the monoamine level in hippocampus has been studied in adult ovariectomized (OVX) female rats. The model of depression in rats was realized under the Porsolt test conditions. The levels of monoamine and its metabolites were determined using HPLC. It was established that the chronic administration of 8-OH-DPAT alone produces an antidepressant effect in OVX rats. The chronic administration of 8-OH-DPAT in combination with 17beta-estradiol potentiated the antidepressant action of both preparations. The antidepressant effect of 8-OH-DPAT in OVX rats was correlated with the restoration of noradrenergic, serotoninergic, and dopaminergic neurotransmission in the hippocampus. The obtained data are indicative of a close interaction between the ovarian hormonal system and the cerebral serotoninergic system in the realization of depression mechanisms.  相似文献   

2.
8-OH-DPAT, a selective 5-HT1A agonist, and mCPP, which has preferential affinity for 5-HT1B and 5-HT1C receptors, were studied for their effects on aversive brain stimulation in rats. Opposite effects were found with these two agonists: D, L-8-hydroxy-N,N-dipropyl-2-aminotetralin HBr (8-OH-DPAT; 0.1-1.0 mg/kg i.p.) dose dependently decreased the threshold for neurostimulation-induced escape behaviour while mCPP (0.1-1.0 mg/kg i.p.) dose dependently increased the threshold. The proaversive effect of 8-OH-DPAT and the antiaversive effect of mCPP suggest that 5-HT1A and non-5-HT1a (5-HT1B or 5-HT1C) receptors play distinct roles in mechanisms of aversion, perhaps at different locations in the CNS.  相似文献   

3.
The microdialysis technique was used to examine interactions between 5-HT(1A) and galanin receptors in the dorsal raphe nucleus (DRN), by measuring the extracellular levels of 5-HT in the ventral hippocampus of awake rats. The rats were pretreated with the 5-HT(1A) receptor agonist (R,S)-8-OH-DPAT (0.3 mg/kg, s.c.) or saline. 8-OH-DPAT caused a time-dependent reduction of basal 5-HT levels down to 43-48% at 40 min while at 140 min, the hippocampal 5-HT had returned to control values. At that time point, the rats received a second injection of 8-OH-DPAT or galanin (0.15, 0.5 and 1.5 nmol/0.5 microl) infused into the lateral ventricle. The second injection of 8-OH-DPAT caused a significantly smaller reduction of hippocampal 5-HT levels. In contrast, galanin at all three doses in the 8-OH-DPAT-pretreated groups, was significantly more potent in reducing 5-HT levels (maximal reduction to 74%, 52% and 49%, respectively) than it was in saline-pretreated rats (maximal reduction to 96%, 85% and 69%, respectively). The inhibitory effect of galanin (1.5 nmol) on extracellular 5-HT levels in the rat hippocampus was significantly attenuated by co-administration of the 5-HT(1A) receptor antagonists WAY-100635 (0.3 and 0.6 mg/kg s.c.) and, to a lesser extent, with pindolol (20 mg/kg s.c.). These data provide direct in vivo evidence of agonistic 5-HT(1A)-galanin receptor interaction at the presynaptic level. Furthermore, the findings indicate that a down-regulation of the somato-dendritic 5-HT(1A) autoreceptors, following their stimulation with 8-OH-DPAT and possibly also indirectly with 5-HT reuptake inhibitors, may be compensated by a subsequent 'sensitization' of the inhibitory galanin receptors in the DRN. Thus, the enhanced galanin receptor-mediated inhibition of 5-HT neurotransmission may contribute to the pathophysiology of depression or to the reduced and delayed efficacy of antidepressant therapies.  相似文献   

4.
In the rat forced swimming test, systemic application of the serotonin 1A (5-HT(1A)) receptor agonist 8-OH-DPAT reduced immobility (ID(50) 0.17-1.37mg/kg, depending on route of application and application schedule). Intracerebroventricular (i.c.v.) or local application into the dorsal raphe nucleus (DRN), a brain area rich in presynaptic 5-HT(1A) receptors, resulted in a parallel shift of the dose-response curve to the left (ID(50) 5.1 and 3.9μg/rat, respectively). Systemic application of the 5-HT(1A) receptor partial agonist ipsapirone resulted in a U-shaped dose-response curve (maximal effect about 30% immobility reduction at 3-10mg/kg). Local application of ipsapirone in the DRN reduced immobility (maximal effect 40% at 60μg/rat). However, 8-OH-DPAT and ipsapirone were still effective after depletion of brain 5-HT by means of 5,7-DHT (150μg, i.c.v.) or pCPA (either 2 x 150mg/kg or 2 x 350mg/kg, i.p.) Additionally, in non-lesioned rats: (1) the putative (postsynaptic) 5-HT(1A) antagonist NAN-190, but not spiperone, haloperidol, prazosin or 1-PP, was able to block the anti-immobility effects of 8-OH-DPAT in a behaviorally specific manner; (2) local application of 8-OH-DPAT and ipsapirone in the lateral septum (a brain area rich in postsynaptic 5-HT(1A) receptors) reduced immobility (8-OH-DPAT: ID(50) 11.4μg/rat; ipsapirone; maximal effect at 30μg/rat 38%); and (3) pretreatment with ipsapirone resulted in an attenuation of the effect of 8-OH-DPAT when both compounds were administered either systemically or in the lateral septum but not when both compounds were microinjected into the DRN. It is hypothesized that the anti-immobility effects of 5-HT(1A) receptor agonists are mediated by pre- and postsynaptic 5-HT(1A) receptors and that they closely reflect the intrinsic activity of these compounds at these receptors.  相似文献   

5.
Studies using selective drugs and knockout mice have demonstrated that the 5-HT(7) receptor plays an instrumental role in serotonin-induced hypothermia. There is also evidence supporting an involvement of the 5-HT(1A) receptor, although mainly from studies using 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT(1A/7) receptor agonist. Here we studied the effects of 8-OH-DPAT and selective antagonists for the 5-HT(1A) and 5-HT(7) receptors on body temperature in rats, wild-type (5-HT(7)(+/+)) mice and knockout (5-HT(7)(-/-)) mice. At lower doses (0.3-0.6 mg/kg, i.p.), 8-OH-DPAT decreased body temperature in 5-HT(7)(+/+) mice but not in 5-HT(7)(-/-) mice. At a higher dose (1 mg/kg, i.p.) 8-OH-DPAT induced hypothermia in both 5-HT(7)(-/-) and 5-HT(7)(+/+) mice. The 5-HT(1A) receptor antagonist (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazine-1-yl)-2-phenylpropanamide (WAY-100135) (10 mg/kg, i.p.) inhibited the effect of 8-OH-DPAT at all doses in rats and mice. In 5-HT(7)(+/+) mice the selective 5-HT(7) receptor antagonist (R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970) (10 mg/kg, i.p.) fully inhibited the hypothermia induced by 0.3 mg/kg 8-OH-DPAT, but not that of higher doses. In rats, SB-269970 caused a 60% inhibition of the hypothermia induced by 0.3 mg/kg 8-OH-DPAT. Thus, both 5-HT(7) and 5-HT(1A) receptors are involved in a complex manner in thermoregulation, with the 5-HT(7) receptor being more important at lower, possibly more physiological, concentrations.  相似文献   

6.
Glucocorticoid hormones are known to be elevated in depression, and to interact with serotonin 5-HT(1A) receptors at both the presynaptic and postsynaptic levels. Since one of the presumed mechanisms of action of antidepressant drugs is induction of changes in sensitivity of 5-HT(1A) and also 5-HT(1B) receptors, the effects of repeated administration of corticosterone (50 mg/kg s.c. b.i.d. for 10 days) on activities of these receptors were determined using in vivo microdialysis in freely moving rats. Presynaptic 5-HT(1A) receptor activity, as measured by the effect of a challenge dose (0.2 mg/kg s.c.) of the 5-HT(1A) agonist 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT) to reduce 5-HT levels in the hypothalamus, was not affected by corticosterone administration. Presynaptic 5-HT(1B) receptor activity, as measured by the effect of the 5-HT(1B) receptor antagonist (N-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl)[1,1'-biphenyl]-carboxamide (GR 127935) (5 mg/kg s.c.) to increase 5-HT levels, was increased in hypothalamus but not hippocampus of corticosterone-treated rats. Postsynaptic 5-HT(1A) receptor activity, as measured by the effect of 8-OH-DPAT to increase cyclic AMP levels in the hippocampus, was not affected by corticosterone administration. The decrease in presynaptic 5-HT(1B) receptor activity after chronic administration of antidepressant drugs complements the increases in 5-HT(1B) receptor number observed in animal models of depression.  相似文献   

7.
1. The 5-hydroxytryptamine (5-HT)1A agonist 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT) has been evaluated in a mouse model for detecting potential antidepressants (Porsolt test). The effects of various receptor antagonists, lesions of brain monoaminergic neurones and chronic drug treatments on this 8-OH-DPAT-induced response have also been determined. 2. 8-OH-DPAT (0.3-10.0 mg kg-1, s.c.) dose-dependently increased the mobility of mice in the Porsolt test. Other selective 5-HT1A receptor ligands (0.3-30 mg kg-1, s.c.) either mimicked the 8-OH-DPAT response (ipsapirone, at 10 and 30 mg kg-1, s.c.) or were inactive (buspirone and gepirone). However, each of these compounds (< or = 100 mg kg-1, p.o.) inhibited the response to 8-OH-DPAT (3 mg kg-1, s.c.) when given concurrently. 3. The putative 5-HT1A antagonists, spiroxatrine (1-30 mg kg-1, p.o.), (+/-)-pindolol (30 mg kg-1, p.o.) and methiothepin (3-10 mg kg-1, p.o.), each attenuated the 8-OH-DPAT (3 mg kg-1, s.c.)-induced increase in mobility. 4. The dopamine D1 receptor antagonist, SCH 23390 (3-10 mg kg-1, p.o.), weakly reversed the 8-OH-DPAT response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aim of the present study was to investigate a putative modulation of rat 5-HT system by the muscarinic receptor antagonist atropine using in-vivo electrophysiological and behavioural techniques. In the dorsal raphe nucleus, administration of atropine (1 mg/kg i.v.) prevented the suppressant effect of the selective serotonin reuptake inhibitor paroxetine (0.5 mg/kg i.v.) on the spontaneous firing activity of 5-HT neurons, suggesting that atropine could induce an attenuation of somatodendritic 5-HT1A autoreceptors responsiveness. The 5-HT1A receptor agonist 8-OH-DPAT decreased both immobility in the forced swim test and the body core temperature. Pre-treatment with atropine (5 and 10 mg/kg i.p.) enhanced antidepressant-like effect of 8-OH-DPAT (1 mg/kg s.c.) and reduced 8-OH-DPAT (0.1 mg/kg s.c.)-induced hypothermia. In conclusion, the present study reports a functional role of muscarinic receptors in the modulation of pre- and post-synaptic 5-HT1A receptors mediated responses.  相似文献   

9.
Clomipramine is a tricyclic antidepressant drug with a high affinity for the serotonin (5-HT) uptake site or transporter. Electrophysiological experiments have provided evidence that repeated administration of clomipramine induces an increase in the sensitivity of postsynaptic 5-HT(1A) receptors in the hippocampus. We have studied the effects of clomipramine, administered to rats at a dose of 10mg/kg/day for 28 days by osmotic minipumps, on presynaptic 5-HT(1A) and 5-HT(1B) autoreceptors in the hypothalamus, and on postsynaptic 5-HT(1A) receptors in the hippocampus, by using in vivo microdialysis to measure 5-HT and cyclic adenosine monophosphate (cAMP) levels. Postsynaptic 5-HT(1A) receptor sensitivity in the hypothalamus was determined by means of a neuroendocrine challenge procedure. Although the sensitivity of presynaptic 5-HT(1A) autoreceptors, as measured by the effect of a subcutaneous (s.c.) injection of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.2mg/kg or 50 microg/kg) to reduce 5-HT levels, did not change, there was a reduction in sensitivity of presynaptic 5-HT(1B) receptors, as measured by the effect of an injection of the 5-HT(1B/1D) antagonist GR 127935 (5mg/kg, s.c.) to increase 5-HT levels. This effect probably accounted for the increase in basal 5-HT levels observed in the hypothalamus after chronic clomipramine administration. Postsynaptic 5-HT(1A) receptor sensitivity in the hippocampus, measured by the effect of 8-OH-DPAT to increase cAMP levels in the dialysate, was increased after chronic clomipramine. Animals that had received daily intraperitoneal injections of 10mg/kg clomipramine for 28 days did not show a change in postsynaptic 5-HT(1A) receptor sensitivity in the hypothalamus as measured by the ability of 8-OH-DPAT (50 microg/kg, s.c.) to stimulate secretion of corticosterone. Taken together with the results of previous experiments involving the cerebral cortex, these in vivo results show that chronic clomipramine exerts effects on both pre- and postsynaptic serotonin receptors, but that these effects are highly region-specific.  相似文献   

10.
We have studied the influence of a chronic administration of the 5-HT(2A/2C) receptor antagonist ketanserin (0.1 mg/kg, i.p.) and the 5-HT(1A) receptor antagonist NAN-190 (0.1 mg/kg, i.p.) alone or in combinations with 17beta-estradiol (0.5 mg per animal, i.m.) for 14 days on the depressive behavior and expression of c-Fos protein in the paraventricular nucleus of hypothalamus in adult ovariectomized (OVX) female rats. The depression in rats was modeled by the Porsolt test. The c-Fos protein expression in the paraventricular nucleus of hypothalamus was determined using immunohistochemical techniques. In the Porsolt test, 17beta-estradiol in OVX rats reduced the immobilization time to some extent. Ketanserin alone significantly decreased the immobilization time in OVX rats. The chronic administration of ketanserin in combination with 17beta-estradiol in OVX females potentiated the antidepressant effect of ketanserin. At the same time, ketanserin administration led to a significant decrease in the level of c-Fos protein in the hypothalamus in OVX rats as compared to the intact control. These results are indicative of a substantial interaction between the ovarian hormonal system and the serotoninergic brain system involved the mechanisms of depression.  相似文献   

11.
Recent clinical data suggest that coadministration of pindolol with an antidepressant, particularly the 5-hydroxytryptamine (5-HT) reuptake inhibitor fluoxetine, can shorten the time to onset of clinical activity and increase the proportion of responders. We have examined the interaction of antidepressants with 5-HT1A receptors using the forced swim test in rats using both (+/-)-pindolol and the selective 5-HT1A receptor antagonist WAY 100,635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl) cyclohexanecarboxamide trihydrochloride) in combination with either fluoxetine or the selective monoamine oxidase-A inhibitor befloxatone. 8-Hydroxy-dipropylaminotetralin (8-OH-DPAT; 0.125-1 mg/kg s.c.), used as a reference for 5-HT1A agonist activity, reduced immobility in the forced swim test and this effect was significantly antagonised by WAY 100,635. WAY 100,635 alone (0.01-0.1 mg/kg s.c.) was without effect, although a higher dose, 0.3 mg/kg s.c., had a nonsignificant tendency to increase immobility. In contrast, (+/-)-pindolol (1-16 mg/kg s.c.) significantly reduced immobility, but to a lesser extent than 8-OH-DPAT. As expected, the antidepressants fluoxetine (10-80 mg/kg p.o.) and befloxatone (0.03-1 mg/kg p.o.) dose-dependently reduced immobility time. When the antidepressants were combined with WAY 100,635 (0.1 mg/kg), WAY 100,635 either had no effect or, at relatively high doses, significantly reduced their activity in this test. Combination of the antidepressants with (+/-)-pindolol (2 or 4 mg/kg s.c.) failed to reveal a significant interaction. These results demonstrate that the anti-immobility effects of fluoxetine and befloxatone are neither facilitated nor antagonised by doses of WAY 100,635 that completely reverse the effects of 8-OH-DPAT. Furthermore, there was no evidence that coadministration of the antidepressants with (+/-)-pindolol was able to facilitate their antidepressant-like effects. Thus, whereas direct agonist activity at 5-HT1A receptors can modulate immobility in the forced swim test, this receptor subtype does not appear to play a major role in the antidepressant-like effects of fluoxetine or befloxatone under the conditions used in this study.  相似文献   

12.
Subchronic administration of fluoxetine to rats has been shown to induce subsensitivity of presynaptic 5-HT(1A) and 5-HT(1B) autoreceptors, and also postsynaptic 5-HT(1A) receptors in the hypothalamus. We investigated the effects of administration of fluoxetine (10 mg/kg i.p.) to rats for 6 days on presynaptic 5-HT(1A) receptor activity in the hypothalamus, postsynaptic 5-HT(1A) receptor activity in the hippocampus, and presynaptic 5-HT(1B) autoreceptor activity in both areas, using in vivo microdialysis. The effect of the 5-HT(1B/1D) antagonist (N-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-2'-methyl-4'-(5- methyl-1,2,4-oxadiazole-3-yl)[1,1'-biphenyl]-carboxamide (GR 127935) (5 mg/kg s.c.) to elevate 5-hydroxytryptamine (5-HT) levels was reduced in hippocampus but not hypothalamus of fluoxetine-treated rats. Fluoxetine did not alter either presynaptic 5-HT(1A) autoreceptor activity, as measured by the effect of injection of 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) (0.2 mg/kg or 50 microg/kg s.c.) on 5-HT levels in the hypothalamus, or postsynaptic 5-HT(1A) receptor activity, as measured by the effect of 8-OH-DPAT (0.2 mg/kg s.c.) on cyclic AMP accumulation, in the hippocampus.  相似文献   

13.
Several lines of evidence have indicated that the prevalence of depression in diabetic subjects is higher than that in the general population, however, little information is available on the effects of antidepressants in diabetes. In the present study, the antidepressant-like effect mediated by the activation of 5-HT(1A) receptors was examined using the tail suspension test in streptozotocin-induced diabetic mice. Long-lasting increases in 5-HT turnover rates were observed in the diabetic mouse midbrain and frontal cortex, but not in the hippocampus. Duration of immobility was significantly longer in diabetic than in nondiabetic mice in the tail suspension test. The 5-HT(1A) receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) (3-30 microg/kg, i.p.) reduced the duration of immobility in nondiabetic mice, and this effect was completely antagonized by pretreatment with N-[2-[4-(2-methoxyphenil)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635) (30 microg/kg, s.c.), a selective 5-HT(1A) receptor antagonist. In contrast, 8-OH-DPAT (3 microg/kg-3 mg/kg, i.p.) was ineffective in diabetic mice. The selective 5-HT reuptake inhibitor fluoxetine (3-56 mg/kg, i.p.) reduced the duration of immobility in both nondiabetic and diabetic mice. However, fluoxetine was less effective in diabetic mice than in nondiabetic mice. WAY-100635 (30 microg/kg, s.c.) reversed the suppression of the duration of immobility by fluoxetine (30 mg/kg, i.p.) in nondiabetic mice. On the other hand, the anti-immobility effect of fluoxetine (56 mg/kg, i.p.) was not antagonized by WAY-100635 (30 microg/kg, s.c.) in diabetic mice. The selective 5-HT(2) receptor antagonist 6-methyl-1-(1-methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY53,857) (30 microg/kg, s.c.) reversed the anti-immobility effect of fluoxetine in both nondiabetic and diabetic mice. Spontaneous locomotor activity in diabetic mice was not different from that in nondiabetic mice. 8-OH-DPAT (30 microg/kg, i.p.), but not fluoxetine, increased the spontaneous locomotor activity in both nondiabetic and diabetic mice. The number of 5-HT(1A) receptors in the mouse frontal cortex was unaffected by diabetes. Plasma corticosterone levels in diabetic mice were significantly higher than that in nondiabetic mice. These results suggest that the antidepressant-like effect mediated by 5-HT(1A) receptors may be attenuated by diabetes.  相似文献   

14.
The purpose of the present study was to analyze the influence of stress (24-h cold exposure) on presynaptic 5-HT1A receptors, and on postsynaptic 5-HT1A, 5-HT1C and 5-HT2 receptors. Cold exposure for 24 h affected neither pargyline-induced decreases in 5-hydroxyindoleacetic acid (5-HIAA) levels in midbrain and rest of brain, nor plasma glucose and corticosterone levels. Treatment with the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.5-1 mg/kg), 3-5 h after the end of cold exposure triggered less intense flat body posture and forepaw treading in cold-exposed rats than in controls. On the other hand, 15- and 30-min plasma glucose responses to 8-OH-DPAT (0.25-0.5 mg/kg, 3-5 h after cold) or to the alpha 2-adrenoceptor agonist, clonidine (0.025 mg/kg), were not affected by cold, while the 15-min, but not the 30 min, plasma corticosterone response to 8-OH-DPAT was slightly amplified in cold-exposed rats. Cold exposure affected neither the inhibitory effect of 8-OH-DPAT (0.25-0.5 mg/kg, 3-5 h after cold) on midbrain 5-HIAA levels, nor the hypothermic effect of 8-OH-DPAT (0.5-1 mg/kg, 3-5 h after cold). Lastly, the hypoactivity elicited by the 5-HT1C receptor agonist, m-chlorophenyl-piperazine (1.5-3 mg/kg, 3-5 h after cold), or head shakes elicited by the 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1-2 mg/kg, 3-5 h after cold), were of similar intensities in control and in cold-exposed rats.  相似文献   

15.
The effects of four 5-HT1-like receptor agonists (8-OH-DPAT, RU 24969, BEA 1654 and 5-carboxamidotryptamine) and some putative 5-HT1-like receptor antagonists on vigilance were examined in an attempt to clarify the role of 5-HT1-like receptors in the sleep-waking pattern of rats. Both 8-OH-DPAT (0.5-2.0 mg/kg, s.c.) and RU 24969 (0.5-2.0 mg/kg, s.c.) increased wakefulness and the latencies of slow wave and rapid eye movement (REM) sleep. The slow wave and REM sleep were correspondingly decreased or completely abolished. The two other 5-HT1-like receptor agonists had either a slight (BEA 1654, 1.0-5.0 mg/kg, s.c.) or no (5-carboxamidotryptamine, 0.5-2.0 mg/kg, s.c.) effect on sleep pattern. The arousal effect of 8-OH-DPAT was further potentiated in rats pretreated with reserpine (2.5 mg/kg, i.p.; 18 hr before 8-OH-DPAT). The non-selective 5-HT1-like and 5-HT2 receptor antagonist, methiothepin (2.0 mg/kg, i.p.) and the beta-adrenoceptor antagonist propranolol (16.0 mg/kg, s.c.), which is a putative antagonist at 5-HT1A and 5-HT1B receptor subtypes, significantly potentiated the arousal effect of RU 24969. The putative 5-HT1A and 5-HT1B receptor antagonist, cyanopinolol (4.0 mg/kg, s.c.), mixed 5-HT1A receptor agonist/antagonist MDL 72832 (1.0 mg/kg, s.c.) and the alpha 1-adrenoceptor antagonist prazosin (2.0 mg/kg) did not affect the vigilance, altered by RU 24969. These results suggest that the arousal effect of 5-HT1-like receptor agonists is probably not mediated by any of the subtypes of 5-HT1-like receptors or by an activation of a noradrenergic system.  相似文献   

16.
We examined the effect of adrenocorticotropic hormone (ACTH) on the immobilization of rats in the forced swim test after administration of the 5-HT(1A) receptor agonist, 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT). Imipramine (3-30 mg/kg, i.p.) or 8-OH-DPAT (0.1-1 mg/kg, s.c.) significantly decreased the duration of immobility in normal rats. The immobility-decreasing effect of imipramine was blocked when ACTH was administered for 14 days. On the other hand, the immobility-decreasing effect induced by 8-OH-DPAT was not blocked by chronic administration of ACTH for 14 days. These findings indicate that 8-OH-DPAT can be useful in an animal model of depressive conditions resistant to antidepressant treatment.  相似文献   

17.
The somatodendritic 5-HT1A agonist 8-OH-DPAT reduces serotonergic activity and stimulates feeding in freely feeding rats. Interactions between circulating glucose and 5-HT1A receptor expression related to feeding have been described. The aim of the present microdialysis study was to (1) describe the relation between feeding and glucose in the LH, (2) to investigate if peripherally administered 8-OH-DPAT itself has an effect on extracellular glucose in the lateral hypothalamus (LH) of conscious rats. Baseline glucose concentrations were significantly different in microdialysis samples obtained from food deprived rats compared to freely feeding rats. After re-feeding, a significant rise in glucose levels by 45% was observed in the formerly food deprived rats. In freely feeding rats, 8-OH-DPAT (0.3 mg/kg, i.p.) reduced glucose level in the LH significantly. The effect of 8-OH-DPAT on brain glucose was antagonized by pre-treatment with the 5-HT1A antagonist WAY 100635 (3 mg/kg i.p.) which had no effect on its own. The data indicate, therefore, that the effect of 8-OH-DPAT on hypothalamic glucose is mediated by 5-HT1A receptors. In contrast, the same dose of 8-OH-DPAT proven effective in the brain had no effect on peripheral glucose. Only a very high dose of the 5-HT1A agonist (1.8 mg/kg i.p.) had a hyperglycaemic effect in the periphery. In conclusion, the present results show for the first time, that glucose in the lateral hypothalamus increases with a meal. The data demonstrate furthermore 8-OH-DPAT-induced changes of hypothalamic glucose level, implicating 5-HT1A receptors being involved not only in the control of hypothalamic 5-HT as shown before, but also in the control of hypothalamic glucose.  相似文献   

18.
The effects of repeated treatment of rats with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), 1.0 mg/kg, subcutaneously, twice daily for 7 days, on the stimulation of post- and presynaptic 5-HT1A receptors were examined. The postsynaptic responses, hypothermia and inhibition of the cage-leaving response, evoked by 0.05 mg/kg 8-OH-DPAT, were measured 48 hr after the final injection. Another postsynaptic response, the 5-HT syndrome (flat body posture and forepaw treading) was observed after the third injection of 8-OH-DPAT (1.0 mg/kg s.c.). One presynaptic response examined was the 8-OH-DPAT-induced decrease in the concentration of 5-hydroxyindoleacetic acid (5-HIAA), that indicates a decrease in turnover of 5-HT, due to stimulation of 5-HT receptors on the cell bodies and measured as the ratio of 5-HIAA to 5-HT in the hippocampus, hypothalamus and medulla oblongata. Another presynaptic response was the 8-OH-DPAT-induced decrease in the accumulation of 5-hydroxytryptophan (5-HTP) in the hippocampus and hypothalamus, after inhibition of L-aromatic amino acid decarboxylase by 3-hydroxybenzylhydrazine (NSD 1015), that is due to stimulation of autoreceptors on the 5-HT cell bodies. The kinetic properties of 5-HT1A receptors in the cerebral cortex and hippocampus, hippocampus alone, hypothalamus and medulla oblongata were determined with [3H]8-OH-DPAT. It was found that the postsynaptic effects were markedly attenuated after the treatment, the hypothermic effect already after a single dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this study was to further examine the effect of activation of 5-HT(1A) and 5-HT(1B) receptors in the forced swim test in mice and to determine if activation of these receptors played a role in the mediation of the effects of the tricyclic antidepressant imipramine. The 5-HT(1A) agonist 8-OH-DPAT decreased immobility in the forced swim test in mice as previously described. Both the selective 5-HT(1B) agonist anpirtoline (1.25-5 mg/kg) and mixed 5-HT(1A/B) agonist RU24969 (0.6-2.5 mg/kg) significantly increased time spent swimming in the FST.  相似文献   

20.
The effects of the agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the capsaicin-induced cough reflex in rats were studied. I.p. injection of 8-OH-DPAT, at doses of 0.1 and 0.3 mg/kg, significantly decreased the number of coughs in a dose-dependent manner. The antitussive effect of 8-OH-DPAT (0.3 mg/kg) was blocked by prior injection of methysergide (3 mg/kg i.p.) and spiperone (0.3 mg/kg i.p.), whereas ketanserin (3 mg/kg i.p.) had no effect on the antitussive effect of 8-OH-DPAT. The antitussive effects of dihydrocodeine (1 mg/kg i.p.) and dextromethorphan (3 mg/kg i.p.) were also antagonized by methysergide and spiperone. However, these cough-depressant effects were not reduced by ketanserin. These results suggest that the antitussive action of 8-OH-DPAT may be related to the enhancement of the function of 5-HT1A receptors, and that antitussives interact with the 5-HT1A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号