首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30–60?µm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8?h following 2?h incubation in SGF and was found to retain 75% activity using the ARCHITECT® assay. Lysozyme was released completely in SIF in 10?h following 2?h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

2.
Propranolol hydrochloride was directly encapsulated in alginate gel microspheres (40-50?μm in diameter) using a novel method involving impinging aerosols of CaCl(2) cross-linking solution and sodium alginate solution containing the drug. Microspheres formulated using 0.1?M CaCl(2) exhibited the highest drug loading (14%, w/w of dry microspheres) with 66.5% encapsulation efficiency. Less than 4% and 35% propranolol release occurred from hydrated and dried microspheres, respectively, in 2?h in simulated gastric fluid (SGF). The majority of the drug load (90%) was released in 5 and 7?h from hydrated and dried microspheres, respectively, in simulated intestinal fluid (SIF). Prior incubation of hydrated microspheres (cross-linked using 0.5?M CaCl(2)) in SGF prolonged the time of release in SIF to 10?h, which has implications for the design of protocols and correlation with in?vivo release behaviour. Restricted propranolol release in SGF and complete extraction in SIF demonstrate the potential of alginate gel microspheres for oral delivery of pharmaceuticals.  相似文献   

3.
《Journal of drug targeting》2013,21(10):831-841
Microencapsulation of a hydrophilic active (gentamicin sulphate (GS)) and a hydrophobic non-steroidal anti-inflammatory drug (ibuprofen) in alginate gel microparticles was accomplished by molecular diffusion of the drug species into microparticles produced by impinging aerosols of alginate solution and CaCl2 cross-linking solution. A mean particle size in the range of 30–50 µm was measured using laser light scattering and high drug loadings of around 35 and 29% weight/dry microparticle weight were obtained for GS and ibuprofen respectively. GS release was similar in simulated intestinal fluid (phosphate buffer saline (PBS), pH 7.4, 37°C) and simulated gastric fluid (SGF) (HCl, pH 1.2, 37°C) but was accelerated in PBS following incubation of microparticles in HCl. Ibuprofen release was restricted in SGF but occurred freely on transfer of microparticles into PBS with almost 100% efficiency. GS released in PBS over 7?h, following incubation of microparticles in HCl for 2?h was found to retain at least 80% activity against Staphylococcus epidermidis while Ibuprofen retained around 50% activity against Candida albicans. The impinging aerosols technique shows potential for producing alginate gel microparticles of utility for protection and controlled delivery of a range of therapeutic molecules.  相似文献   

4.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6 microm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

5.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6?µm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

6.
Alginate-chitosan (ALG-CS) blend gel beads were prepared based on Ca2+ or dual crosslinking with various proportions of alginate and chitosan. The homogeneous solution of alginate and chitosan was dripped into the solution of calcium chloride; the resultant Ca2+ single crosslinked beads were dipped in the solution of sodium sulfate sequentially to prepare dual crosslinked beads. The dual crosslinkage effectively promoted the stability of beads under gastrointestinal tract conditions. The sustained release profiles of single and dual crosslinked gel beads loaded bovine serum albumin (BSA), a model protein drug, were investigated in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). In SGF, compared to Ca2+ single crosslinked beads, from which BSA released fast and the cumulative drug release percentages were about 80% of all formations in 4 h, the BSA total release from dual crosslinked gel beads was no more than 3% in 8 h. In SIF and SCF, Ca2+ single crosslinked beads were disrupted soon associating with the fast drug release. As to the dual crosslinked beads, the BSA total release from the ALG-CS mass ratio 9:1 (81.24%) was higher than that of 7:3 and 5:5 (less than 60%) in 8 h in SIF; the BSA release from all beads was much faster in SCF than in SIF. The dual crosslinked beads incubated in gastrointestinal tract conditions, the BSA cumulative release of ALG-CS mass ratios 9:1, 7:3 and 5:5 were respectively 2.35, 1.96, 1.76% (in SGF 4 h), 82.86, 78.83, 52.91% (in SIF 3 h) and 97.84, 96.81, 87.26% (in SCF 3 h), which suggested that the dual crosslinked beads have potential small intestine or colon site-specific drug delivery property.  相似文献   

7.
目的:研究羟丙基甲基纤维素(HPMC)的凝胶特性及其对曲尼司特缓释片释放行为的影响。方法:采用称重法、图像法和体积测量法,研究HPMC辅料片和曲尼司特缓释片在不同pH环境中的水合度和溶胀度。结果:辅料片在SGF和SIF中的水合速率常数分别为0.897 h-1和0.681 h-1;溶胀速率常数分别为1.005 h-1和0.713 h-1。曲尼司特缓释片在SGF中,在0.5 h内迅速水合和溶胀,其后呈负增长;而在SIF中,重量和体积都缓慢增加,5 h后重量稍有下降,体积保持不变。结论:HPMC水凝胶的形成速度和形态与介质的pH有关,凝胶层的溶蚀速度控制药物的释放。  相似文献   

8.
In the present study, spherical microspheres able to prolong the release of INH were produced by a modified emulsification method, using sodium alginate as the hydrophilic carrier. The shape and surface characteristics were determined by scanning electron microscopy using gold sputter technique. Particle sizes of both placebo and drug-loaded formulations were measured by SEM and the particle size distribution was determined by an optical microscope. The physical state of the drug in the formulation was determined by differential scanning calorimetry (DSC). The release profiles of INH from microspheres were examined in simulated gastric fluid (SGF pH 1.2) and simulated intestinal fluid (SIF pH 7.4). Gamma-scintigraphic studies were carried out to determine the location of microspheres on oral administration and the extent of transit through the gastrointestinal tract (GIT). The microspheres had a smoother surface and were found to be discreet and spherical in shape. The particles were heterogeneous with the maximum particles of an average size of 3.719mum. Results indicated that the mean particle size of the microspheres increased with an increase in the concentration of polymer and the cross-linker as well as the cross-linking time. The entrapment efficiency was found to be in the range of 40-91%. Concentration of the cross-linker up to 7.5% caused increase in the entrapment efficiency and the extent of drug release. Optimized isoniazid-alginate microspheres were found to possess good bioadhesion (72.25+/-1.015%). The bioadhesive property of the particles resulted in prolonged retention in the small intestine. Microspheres could be observed in the intestinal lumen at 4h and were detectable in the intestine 24h post-oral administration, although the percent radioactivity had significantly decreased (t(1/2) of (99m)Tc=4-5h). Increased drug loading (91%) was observed for the optimized formulation suggesting the efficiency of the method. Nearly 26% of INH was released in SGF pH 1.2 in 6h and 71.25% in SIF pH 7.4 in 30h. No significant drug-polymer interactions were observed in FT-IR studies. Dissolution and gamma-scintigraphy studies have shown promising results proving the utility of the formulation for enteric drug delivery.  相似文献   

9.
Propranolol-HCl-loaded calcium alginate (ALG) beads, propranolol-resin complex (resinate)-loaded calcium alginate (RALG) beads and polyethyleneimine (PEI)-treated RALG (RALG-PEI) beads were prepared by ionotropic gelation/polyelectrolyte complexation method. The beads were evaluated and compared in respect of drug entrapment efficiency (DEE) and release characteristics in simulated gastric fluid (SGF, 0.1(N) HCl, pH 1.2) and simulated intestinal fluid (SIF, phosphate buffer, pH 6.8). DEE of RALG beads was considerably higher than that of ALG beads containing unresinated drug. However, DEE of RALG beads decreased with increase in both gelation time and concentration of the gel forming Ca2+ ions due to drug displacement from resinate. PEI treatment of RALG beads further decreased DEE as the polycation also displaced the drug from the resinate. The release of drug from all the beads was slow and incomplete in SGF owing to considerably less swelling of the beads and the decrease in drug release from the beads followed the order: RALG-PEI相似文献   

10.
BACKGROUND AND THE PURPOSE OF THE STUDY: Pectin derivatives have been utilized for colonic drug delivery (CDD). In this study the effects of different formulation variables upon the characteristics of pectinate microparticles (MPs) prepared by ionotropic gelation technique for colonic delivery of mesalazine was investigated. METHODS: In-vitro drug release of MPs was studied using USP XXIV dissolution apparatus type I, in different fluids e.g. simulated gastric fluid (SGF: pH 1.2), simulated intestinal fluid (SIF: pH 7.4), and simulated colonic fluid (SCF: pH 6.8) of volume 900 ml, at 100 rpm maintained at 37±0.2°C. This study was also performed in the presence of 4% w/v rat caecal content (RCC) using phosphate buffer saline (pH 6.8) as SCF. Gamma scintigraphy study was performed on New Zealand rabbit animal model using (99m) Tc. RESULTS: The results showed that maximum entrapment of mesalazine (86.1±1.7%) and strength of gel network zinc pectinate gel microparticles (ZPGD2) was achieved in cross-linking solution of pH 1.6. Batch of ZPGD2 showed least swelling ratio and drug release. In RCC medium the t(50%) value of CPG-MPs was 3-4 folds greater than ZPG-MPs. Scintigram showed the residence of ZPG-MPs (filled in enteric coated capsule) in colon more than 9 hrs and delivery of almost all the drug loading dose in colon. MAJOR CONCLUSION: The results of this study suggest the designed formulation of ZPG-MPs has the potential to serve as a colonic drug delivery system.  相似文献   

11.
Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl2, diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease.  相似文献   

12.
Because Helicobacter pylori infection is localized in the gastric mucus layer and at the mucus layer-epithelial cell interface, we have developed amoxycillin- and metronidazole-containing chitosan microspheres for stomach-specific drug delivery. Drug-loaded porous chitosan microspheres were prepared by simultaneous crosslinking and precipitation with sodium tripolyphosphate. The release of antibacterial agents into simulated gastric fluid (SGF, pH 1.2), and the stability and permeability through gastric mucin, were examined at 37 degrees C. Because of the high porosity of drug-loaded chitosan microspheres, all the amoxycillin and metronidazole were released in 2 h. High-performance liquid chromatography assays of the antibacterial agents in SGF at 37 degrees C indicated 40% degradation of amoxycillin after 10 h. Metronidazole was completely stable for up to 24 h in SGF. Amoxycillin and metronidazole were highly permeable through the gastric mucin gel layer. The results of this study show that acid-stable antibacterial agents, such as metronidazole, that rapidly permeate the gastric mucus layer would be very effective for the complete eradication of H. pylori infection when delivered specifically at the site of infection in the stomach.  相似文献   

13.
In this study, alginate microspheres containing BCG were prepared at a diameter of approximately 10 microm by emulsification-internal gelation of an alginate-BCG solution dispersed in olive oil using a high rate speed stirrer. The stability of BCG was assayed at 4 degrees C showing that the encapsulated BCG was more stable than free BCG at least for 5 weeks; however, BCG in sodium alginate solution was not stable at all. On the other hand, the studies using media with different pH (1.2, 4.4, 6.2, 6.8 and 7.5) have demonstrated that the alginate microspheres are stable in acidic medium for upto 1.5 h without any sign of disintegration. Moreover, BCG incorporated in alginate microspheres demonstrated an almost 9-fold increase in viable bacilli in simulated gastric fluid (SGF) after 1.5 h in comparison with free BCG.  相似文献   

14.
In this study, alginate microspheres containing BCG were prepared at a diameter of ~10?µm by emulsification–internal gelation of an alginate–BCG solution dispersed in olive oil using a high rate speed stirrer. The stability of BCG was assayed at 4°C showing that the encapsulated BCG was more stable than free BCG at least for 5 weeks; however, BCG in sodium alginate solution was not stable at all. On the other hand, the studies using media with different pH (1.2, 4.4, 6.2, 6.8 and 7.5) have demonstrated that the alginate microspheres are stable in acidic medium for upto 1.5?h without any sign of disintegration. Moreover, BCG incorporated in alginate microspheres demonstrated an almost 9-fold increase in viable bacilli in simulated gastric fluid (SGF) after 1.5?h in comparison with free BCG.  相似文献   

15.
The solubility of non cross-linked chitosan in weak acid solutions restricts its utility in microspheres for drug delivery. The primary aim of this study was to produce pentasodium tripolyphosphate cross-linked chitosan microspheres with higher acid resistance for controlled release of ampicillin. The microspheres were prepared by two different microencapsulation procedures (by emulsification and by spray-drying) and characterized by their particle size, surface morphology, stability, drug entrapment efficiency and drug release. The size of the microspheres was <10 microm with a narrow size distribution. The entrapment of ampicillin in the microspheres was more than 80%. Stability of uncross-linked and cross-linked microspheres was affected by the pH of simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.5). The inclusion of the enzymes pepsin and pancreatin did not affect the stability of the microspheres. The inclusion of lysozyme in phosphate buffer saline resulted in increased solubilization. The release of the drug was affected by cross-linking of microspheres with tripolyphosphate (TPP). The cross-linked microspheres were more stable in simulated gastric fluid and showed slower but sustained release of ampicillin. The antimicrobial activity of the released ampicillin was confirmed by Staphylococcus aureus bioassay.  相似文献   

16.
ABSTRACT

Formulation and preparation parameters of drug/ion-exchange particles microencapsulated in cross-linked chitosan were evaluated for controlled release of the water-soluble drug chlorpheniramine maleate (CPM) in a suspension. An emulsion solvent evaporation method was used to produce CPM-resinates embedded in glutaraldehyde (GTA) crosslinked chitosan microspheres (MCSs). Crosslinking extent in the chitosan was monitored by swelling measurements. Controlled release was evaluated by dissolution tests in simulated gastric fluid without enzyme (SGF) and in simulated intestinal fluid without enzyme (SIF). CPM-resinates contained 62% (w/w) of drug. MCSs were spherical, ranging from 82 to 420 μm in diameter, and contained multiple resinates. The sizes of MCSs prepared with safflower oil and Span 80 were controlled by surfactant concentration, stirring speed, and duration of stirring. Maximum crosslinking was produced with 240 mg GTA per 250 mg of chitosan. Maximum drug release from free CPM-resinates was about 60% by 1 hr in SGF, and was about 100% by 3 hr in SIF. CPM release was slower from MCSs crosslinked with 120 mg of GTA compared to 5 mg GTA in both media. By 8.3 hr, the more crosslinked MCSs released about 30% CPM in SGF, and about 60% in SIF. Because of the apparent ceiling on release in SGF, the final experiments were conducted in SIF. Increasing the weight ratio of the chitosan coating to CPM-resinate ratio from 1:1 to 4:1 moderately decreased release profiles carried out to 33 hr. Increasing MCS diameters from 82 to 163 μm moderately decreased release profiles. Microencapsulation of CPM-resinates with crosslinked chitosan demonstrated controlled release of CPM in SGF and SIF without enzymes. The retardation effect increased when the crosslinking extent and chitosan to resin ratio increased.  相似文献   

17.
The present study describes the fabrication of insulin loaded chitosan succinate microspheres to improve the efficacy of orally administered insulin. Chitosan succinate polymer was synthesized and its microspheres were prepared by emulsion phase separation technique. The microspheres were characterized by FT-IR spectroscopy, scanning electron microscopy, particle size, X-ray diffraction, and swelling index. Insulin was loaded into the microspheres by passive absorption technique. The ability of microspheres to protect insulin from gastric enzymatic degradation was investigated. Stability of insulin in the microspheres was determined by gel electrophoresis and circular dichroism (CD). In vitro release studies were performed under simulated gastric and intestinal pH conditions (pH 2.0 and pH 7.4). The pharmacokinetic parameters were monitored after oral administration of insulin loaded chitosan succinate microspheres, chitosan succinate-insulin solution, as well as after subcutaneous injection of insulin to diabetic rats. The degree of succinate substitution in the synthesized polymer was 16%. The prepared microspheres were spherical with an average diameter of 49 +/- 2 microm. The insulin-loading capacity was 62%. Chitosan succinate microspheres were found to protect the degradation of insulin from gastric enzymes. The encapsulated insulin was quickly released in simulated intestinal fluid (SIF, pH 7.4), whereas a small fraction of insulin was released in simulated gastric fluid (pH 2.0). The relative pharmacological efficacy for chitosan succinate microspheres (16 +/- 4%) was almost fourfold higher than the efficacy of the chitosan succinate-insulin solution administration (4 +/- 1.5%). The results suggest that chitosan succinate microspheres could be used as a potential carrier for oral insulin delivery.  相似文献   

18.
Formulation and preparation parameters of drug/ion-exchange particles microencapsulated in cross-linked chitosan were evaluated for controlled release of the water-soluble drug chlorpheniramine maleate (CPM) in a suspension. An emulsion solvent evaporation method was used to produce CPM-resinates embedded in glutaraldehyde (GTA) crosslinked chitosan microspheres (MCSs). Crosslinking extent in the chitosan was monitored by swelling measurements. Controlled release was evaluated by dissolution tests in simulated gastric fluid without enzyme (SGF) and in simulated intestinal fluid without enzyme (SIF). CPM-resinates contained 62% (w/w) of drug. MCSs were spherical, ranging from 82 to 420 microns in diameter, and contained multiple resinates. The sizes of MCSs prepared with safflower oil and Span 80 were controlled by surfactant concentration, stirring speed, and duration of stirring. Maximum crosslinking was produced with 240 mg GTA per 250 mg of chitosan. Maximum drug release from free CPM-resinates was about 60% by 1 hr in SGF, and was about 100% by 3 hr in SIF. CPM release was slower from MCSs crosslinked with 120 mg of GTA compared to 5 mg GTA in both media. By 8.3 hr, the more crosslinked MCSs released about 30% CPM in SGF, and about 60% in SIF. Because of the apparent ceiling on release in SGF, the final experiments were conducted in SIF. Increasing the weight ratio of the chitosan coating to CPM-resinate ratio from 1:1 to 4:1 moderately decreased release profiles carried out to 33 hr. Increasing MCS diameters from 82 to 163 microns moderately decreased release profiles. Microencapsulation of CPM-resinates with crosslinked chitosan demonstrated controlled release of CPM in SGF and SIF without enzymes. The retardation effect increased when the crosslinking extent and chitosan to resin ratio increased.  相似文献   

19.
The release of drugs having very different aqueous solubilities and partitioning properties, such as salicylamide (SAM), nicotinamide (NAM), clonidine·HCl (CHC) and prednisolone (PDN), from 1 mm thick silicone discs containing, in dispersion, around 35 wt% medicated granules of a pH-sensitive hydrogel, is studied in vitro. The hydrogel is a poly(acrylic acid) (PAA):poly(ethylene oxide) interpenetrating polymer network (IPN). The matrices are eluted with simulated GI fluids, i.e., with a medium of pH 1.2 for 2 h, followed by a medium of pH 6.8 for 2 h, followed by a medium of pH 7.4 for 5 h. The release rate pattern is always bimodal and is determined by the pH-dependent swelling of the IPN granules in matrix. In simulated gastric fluid (SGF) the IPN swelling degree is low and the release is limited to an initial burst, followed by a rapid decline. In simulated intestinal fluid (SIF), PAA in the IPN becomes ionized, the IPN swelling degree increases and the release rate rises to a second maximum. The drug fraction released is always preponderant in SIF compared to SGF. The matrix swelling and drug release rates are influenced by the granule size. With a loading dose of 5 wt% in IPN granules in the 355–425 μm size range, SAM, NAM and PDN show the same release rates in SIF. Differences arise when the load is raised to 20 wt% and/or the granule size range is reduced to 105–250 μm. CHC shows an ionic interaction with PAA in the IPN, which limits the release rate in SIF. The release of drugs not ionically interacting with PAA is virtually uninfluenced by ample variations in osmolality, ionic strength and buffer molarity of dissolution medium.  相似文献   

20.
A series of mesocellular foams (MCFs)-based mesoporous silica nanospheres (DH-MCF-P123-n, (n=12, 2, 0.5)) were synthesized as controlled-release deliveries for a typical antidepressant drug, venlafaxine. The foams were 3-(2,3-dihydroxypropoxyl)propyl-grafted and the P123 template partially preserved. We studied the release profiles of venlafaxine-loaded DH-MCF-P123-n in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively, as well as their corresponding venlafaxine loading capacities. Appropriate amounts of P123 template preserved in mesopores showed an efficient synergetic effect on increasing venlafaxine loading capacity and controlled-release property. Up to 90.87% (mass fraction) of venlafaxine could be loaded into DH-MCF-P123-2. For this carrier, 36% of venlafaxine was released after 1h of incubation in SGF and 53% of venlafaxine was released after 12h in SIF. The mechanisms of the loading and releasing processes were tentatively described based on the release behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号