首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothetical protein encoded by Chlamydia pneumoniae open reading frame cpn0308 was detected in inclusion membranes of C. pneumoniae-infected cells using antibodies raised with Cpn0308 fusion proteins. The anti-Cpn0308 antibodies did not cross-react with IncA, a known C. pneumoniae inclusion membrane protein, although the anti-Cpn0308 antibody staining overlapped with the anti-IncA antibody labeling. The labeling of the inclusion membrane by the anti-Cpn0308 antibody was specifically blocked by the Cpn0308 but not IncA fusion proteins. The Cpn0308 antigen was detectable 24 h after infection and remained in the inclusion membrane throughout the infection course.  相似文献   

2.
Cpn0585, encoded by a hypothetical open reading frame in Chlamydia pneumoniae genome, was detected in the inclusion membrane during C. pneumoniae infection using both polyclonal and monoclonal antibodies raised with Cpn0585 fusion protein. The anti-Cpn0585 antibodies specifically recognized the endogenous Cpn0585 without cross-reacting with IncA (a known inclusion membrane protein of C. pneumoniae) or other control antigens. A homologue of Cpn0585 in the C. caviae species (encoded by the ORF CCA00156) was also localized in the inclusion membrane of the C. caviae-infected cells. The Cpn0585 protein became detectable 24h while CCA00156 as early as 8h after infection. Once expressed, both proteins remained in the inclusion membrane throughout the rest of infection course.  相似文献   

3.
4.
5.
We report the expression of several chlamydial effector proteins in Chlamydophila pneumoniae, as well as their time-dependent secretion into the inclusion membrane. Localization of the respective genes within type III secretion gene clusters as well as bioinformatic analysis suggest that the identified proteins are type III-secreted effector proteins. Immunocytochemistry with antisera raised against CpMip (C. pneumoniae macrophage infectivity potentiator, Cpn0661), Pkn5 (Cpn0703), Cpn0709, Cpn0712 and Cpn0827 showed secretion of the respective proteins into the inclusion membrane at 20 h postinfection (hpi). CpMip was detected within the inclusion membrane from 20 to 72 hpi, whereas Cpn0324 (CopN) was located in this compartment at 72 hpi only. This was confirmed by co-localization of the respective proteins with IncA, an inclusion membrane marker protein. These data illustrate the fact that different effectors are being expressed and secreted during different time intervals of the infection cycle. Proteins Cpn0706 and Cpn0808 were not secreted by C. pneumoniae. The immunophilin FK506, known to inhibit the activity of Legionella, C. trachomatis and C. psittaci Mip proteins, was shown to interfere with chlamydial infection. Here we report the putatively type III-dependent secretion of CpMip into the inclusion membrane as well as the effect of its inhibition on C. pneumoniae infection of HEp-2 cells.  相似文献   

6.
The chlamydiae are obligate intracellular pathogens that occupy a nonacidified vacuole, termed an inclusion, throughout their developmenal cycle. When an epithelial cell is infected with multiple Chlamydia trachomatis elementary bodies, they are internalized by endocytosis into individual phagosomal vacuoles that eventually fuse to form a single inclusion. In the course of large-scale serotyping studies in which fluorescent antibody staining of infected cells was used, a minority of strains that had an alternate inclusion morphology were identified. These variants formed multiple nonfusogenic inclusions in infected cells, with the number of independent inclusions per cell varying directly with the multiplicity of infection. Overall the nonfusogenic phenotype was found in 1.5% (176 of 11,440) of independent isolates. Nonfusing variants were seen in C. trachomatis serovars B, D, D-, E, F, G, H, Ia, J, and K. The nonfusing phenotype persisted through repeated serial passage, and the phenotype was consistent in four mammalian host cell lines. Fluorescence microscopy and immunoblotting with antisera directed at proteins in the C. trachomatis inclusion membrane revealed that one such protein, IncA, was not detected in the inclusion membrane in each tested nonfusogenic strain. The distributions of other chlamydial proteins, including one additional Inc protein, were similar in wild-type and variant strains. The incA coding and upstream regions were amplified and sequenced from the prototype serovar D and two nonfusing serovar D((s)) strains. Three nucleotide changes were discovered in the D((s)) incA gene, leading to two amino acid changes within the predicted D((s)) IncA sequence. These studies demonstrate a subgroup of variant C. trachomatis isolates that form nonfusing inclusions; the variant phenotype is associated with the absence of detectable IncA and with an altered incA sequence that modifies the characteristic hydrophobic domain of the IncA protein.  相似文献   

7.
Reggie-1/flotillin-2 is a plasma membrane-associated cytoplasmic protein, which defines non-caveolar raft microdomains. Reggie-1/flotillin-2 is enriched in detergent insoluble (TX100) membrane fractions (DIG), co-localizes with activated GPI-linked proteins and the fyn-kinase in neurons and T cells, and thus apparently participates in the assembly of protein complexes essential for signal transduction. In T cells activated by crosslinking the GPI-linked protein Thy-1 or by crosslinking the ganglioside GM1, reggie-1/flotillin-2 co-localizes with the T cell receptor. To determine whether reggie-1/flotillin-2 is also expressed in B cells, primary B cells from human blood and cell lines representing the developmental stages of pro, pre, mature and plasma B cells were analyzed by Western blotting, RT-PCR and immunofluorescence. Here, we show that reggie-1/flotillin-2 is expressed throughout B cell development, as well as in primary B cells, purified by cell sorting. On non-activated mature B cell Raji cell line we found reggie-1/flotillin-2 are exclusively in the detergent (TX100) insoluble membrane fractions that are staining positive for the raft marker GM1. Immunofluorescence microscopy showed that reggie-1/flotillin-2 is localized at the plasma membrane and marks intracellular spots in PBMCs. Confocal co-localization studies showed that reggie-1/flotillin-2 is associated with the plasma membrane, and the centrosomes (microtubule organizing centers) in these PBMCs. Comparison of reggie-1/flotillin-2 cDNA sequences with the genomic sequence database allowed us to determine the exon/intron structures in mouse and human. The gene organizations are highly conserved suggesting an important function of reggie-1/flotillin-2. Since reggie/flotillin proteins co-cluster with the T cell receptor and fyn kinases upon T cell stimulation, our findings of reggie-1/flotillin-2 in B cells suggest a similar role in B cell function.  相似文献   

8.
Chlamydiae are obligate intracellular bacteria that replicate within an inclusion that is trafficked to the peri-Golgi region where it fuses with exocytic vesicles. The host and chlamydial proteins that regulate the trafficking of the inclusion have not been identified. Since Rab GTPases are key regulators of membrane trafficking, we examined the intracellular localization of several green fluorescent protein (GFP)-tagged Rab GTPases in chlamydia-infected HeLa cells. GFP-Rab4 and GFP-Rab11, which function in receptor recycling, and GFP-Rab1, which functions in endoplasmic reticulum (ER)-to-Golgi trafficking, are recruited to Chlamydia trachomatis, Chlamydia muridarum, and Chlamydia pneumoniae inclusions, whereas GFP-Rab5, GFP-Rab7, and GFP-Rab9, markers of early and late endosomes, are not. In contrast, GFP-Rab6, which functions in Golgi-to-ER and endosome-to-Golgi trafficking, is associated with C. trachomatis inclusions but not with C. pneumoniae or C. muridarum inclusions, while the opposite was observed for the Golgi-localized GFP-Rab10. Colocalization studies between transferrin and GFP-Rab11 demonstrate that a portion of GFP-Rab11 that localizes to inclusions does not colocalize with transferrin, which suggests that GFP-Rab11's association with the inclusion is not mediated solely through Rab11's association with transferrin-containing recycling endosomes. Finally, GFP-Rab GTPases remain associated with the inclusion even after disassembly of microtubules, which disperses recycling endosomes and the Golgi apparatus within the cytoplasm, suggesting a specific interaction with the inclusion membrane. Consistent with this, GFP-Rab11 colocalizes with C. trachomatis IncG at the inclusion membrane. Therefore, chlamydiae recruit key regulators of membrane trafficking to the inclusion, which may function to regulate the trafficking or fusogenic properties of the inclusion.  相似文献   

9.
Chlamydia trachomatis is an obligate intracellular human pathogen responsible for ocular and genital infections. To establish its membrane-bound intracellular niche, the inclusion, C. trachomatis relies on a set of effector proteins that are injected into the host cells or inserted into the inclusion membrane. We previously proposed that insertion of the C. trachomatis effector protein IncD into the inclusion membrane contributes to the recruitment of the lipid transfer protein CERT to the inclusion. Due to the genetically intractable status of C. trachomatis at that time, this model of IncD-CERT interaction was inferred from ectopic expression of IncD and CERT in the host cell. In the present study, we investigated the impact of conditionally expressing a FLAG-tagged version of IncD in C. trachomatis. This genetic approach allowed us to establish that IncD-3×FLAG localized to the inclusion membrane and caused a massive recruitment of the lipid transfer protein CERT that relied on the PH domain of CERT. In addition, we showed that the massive IncD-dependent association of CERT with the inclusion led to an increased recruitment of the endoplasmic reticulum (ER)-resident protein VAPB, and we determined that, at the inclusion, CERT-VAPB interaction relied on the FFAT domain of CERT. Altogether, the data presented here show that expression of the C. trachomatis effector protein IncD mediates the recruitment of the lipid transfer protein CERT and the ER-resident protein VAPB to the inclusion.  相似文献   

10.
11.
Using antibodies raised with chlamydial fusion proteins, we have localized a protein encoded by hypothetical open reading frame CT813 in the inclusion membrane of Chlamydia trachomatis. The detection of the C. trachomatis inclusion membrane by an anti-CT813 antibody was blocked by the CT813 protein but not unrelated fusion proteins. The CT813 protein was detected as early as 12 h after chlamydial infection and was present in the inclusion membrane during the entire growth cycle. All tested serovars from C. trachomatis but not other chlamydial species expressed the CT813 protein. Exogenously expressed CT813 protein in HeLa cells displayed a cytoskeleton-like structure similar to but not overlapping with host cell intermediate filaments, suggesting that the CT813 protein is able to either polymerize or associate with host cell cytoskeletal structures. Finally, women with C. trachomatis urogenital infection developed high titers of antibodies to the CT813 protein, demonstrating that the CT813 protein is not only expressed but also immunogenic during chlamydial infection in humans. In all, the CT813 protein is an inclusion membrane protein unique to C. trachomatis species and has the potential to interact with host cells and induce host immune responses during natural infection. Thus, the CT813 protein may represent an important candidate for understanding C. trachomatis pathogenesis and developing intervention and prevention strategies for controlling C. trachomatis infection.  相似文献   

12.
Chlamydia psittaci produces a collection of proteins, termed IncA, IncB, and IncC, that are localized to the chlamydial inclusion membrane. In this report we demonstrate that IncA is also produced by Chlamydia trachomatis. C. trachomatis IncA is structurally similar to C. psittaci IncA and is also localized to the inclusion membrane. Immunoblot analysis demonstrated that sera from C. trachomatis-infected patients and from experimentally infected monkeys both recognized C. trachomatis IncA.  相似文献   

13.
14.
15.
Chlamydia pneumoniae is an obligate intracellular human pathogen that causes acute respiratory diseases such as pneumonia and bronchitis. Previous studies have established that C. pneumoniae can induce cytokines in mouse and/or human cells, but little information is available on the cytokine response of respiratory epithelial cells, a first line of infection. In this study, heparin treatment of C. pneumoniae significantly reduced its ability to induce interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) mRNA in human lung carcinoma cells, indicating that cytadherence is an important early stimulus for induction of proinflammatory mediators. Although the IL-8, gamma interferon, and TNF-alpha message was consistently induced by infection of A549 cells not treated with heparin, only an elevation of IL-8 protein was detected in A549 supernatants. A549 IL-beta and IL-6 mRNA and supernatant protein profiles were not significantly changed by infection. Heat or UV inactivation of C. pneumoniae only partially reduced the cytokine response, and inhibition of C. pneumoniae protein or DNA synthesis did not affect its ability to induce cytokine gene expression. To prevent stress-induced cytokine release by the A549 cells, centrifugation was not utilized for infection experiments. These experiments establish the importance of cytadherence in cytokine release by cells of respiratory epithelial origin and suggest that further work in the area of cytokine mediators is warranted to gain valuable pathogenic and therapeutic insights.  相似文献   

16.
Chlamydiae, which are obligate intracellular bacteria, replicate in a nonlysosomal vacuole, termed an inclusion. Although neither the host nor the chlamydial proteins that mediate the intracellular trafficking of the inclusion have been clearly identified, several enhanced green fluorescent protein (GFP)-tagged Rab GTPases, including Rab4A, are recruited to chlamydial inclusions. GFP-Rab4A associates with inclusions in a species-independent fashion by 2 h postinfection by mechanisms that have not yet been elucidated. To test whether chlamydial inclusion membrane proteins (Incs) recruit Rab4 to the inclusion, we screened a collection of chlamydial Incs for their ability to interact with Rab4A by using a yeast two-hybrid assay. From our analysis, we identified a specific interaction between Rab4A and Chlamydia trachomatis Inc CT229, which is expressed during the initial stages of infection. CT229 interacts with only wild-type Rab4A and the constitutively active GTPase-deficient Rab4AQ67L but not with the dominant-negative GDP-restricted Rab4AS22N mutant. To confirm the interaction between CT229 and Rab4A, we demonstrated that DsRed-CT229 colocalized with GFP-Rab4A in HeLa cells and more importantly wild-type and constitutively active GFP-Rab4A colocalized with CT229 at the inclusion membrane in C. trachomatis serovar L2-infected HeLa cells. Taken together, these data suggest that CT229 interacts with and recruits Rab4A to the inclusion membrane and therefore may play a role in regulating the intracellular trafficking or fusogenicity of the chlamydial inclusion.  相似文献   

17.
Chlamydia pneumoniae is a common intracellular human pathogen that has been associated with several severe pathological conditions, including coronary heart disease and atherosclerosis. There is no vaccine against C. pneumoniae infection, but CD8(+) T cells have been shown to be crucial for protection during experimental infection. However, the effector functions and epitope specificity of the protective CD8(+) T cell remain unknown. The aim of this study was to identify C. pneumoniae-derived mouse CD8 epitopes by using a recent epitope prediction method. Of four C. pneumoniae proteins (the major outer membrane protein, outer membrane protein 2, polymorphic outer membrane protein 5, and heat shock protein 60), 53 potential CD8(+) T-cell epitopes were predicted by H-2 class I binding algorithms. Nineteen of the 53 peptides were identified as CD8 epitopes by testing for induction of a cytotoxic response after immunization. To test whether the predicted epitopes are naturally processed and presented by C. pneumoniae-infected cells, we generated a panel of seven peptide-specific cytotoxic T lymphocyte lines that were subsequently tested for recognition of C. pneumoniae-infected target cells. By using this strategy, we were able to identify three C. pneumoniae CD8 epitopes that were, indeed, processed and presented on infected cells. Identification of these natural CD8 epitopes provides tools for characterization of CD8(+) T-cell function in vivo and generation of epitope-specific prevention strategies.  相似文献   

18.
We examined intracellular survival and growth of pathogenic mycoplasmas (Mycoplasma penetrans, Mycoplasma pneumoniae and Mycoplasma genitalium) in cultured human cells. By using the eukaryotic nuclear DNA synthesis inhibitor, aphidicolin, we detected the selective synthesis of mycoplasma (My) and mitochondria (Mt) DNA, which could be further differentiated by restriction enzyme analyses. Also, intracellular M. pneumoniae and M. penetrans infectivity of human cells was detected over 6 months using subfractionation of infected cells and determination of mycoIplasma colony forming units (cfu). For M. genitalium, which we failed to re-grow from infected cells, species-specific PCR primers were used to implicate long-term mycoplasma survivability. Data indicated that pathogenic mycoplasmas reside and replicate intracellularly over extended periods in human cells, consistent with the ability of mycoplasmas to circumvent antibiotic therapy and immune surveillance and establish chronic infections.  相似文献   

19.
Members of the genus Chlamydia are strict obligate intracellular pathogens that exhibit marked differences in host range and tissue tropism despite sharing a remarkable level of genomic synteny. These pathobiotype differences among chlamydiae are also mirrored in their early interactions with cultured mammalian host cells. Chlamydial attachment and entry is known to trigger protein tyrosine phosphorylation. In this study, we examined the kinetics and pattern of protein tyrosine phosphorylation induced by infection with a comprehensive collection of chlamydial strains exhibiting diversity in host, tissue, and disease tropisms. We report new findings showing that protein tyrosine phosphorylation patterns induced by infection directly correlate with the pathobiotype of the infecting organism. Patterns of protein tyrosine phosphorylation were induced following early infection that unambiguously categorized chlamydial pathobiotypes into four distinct groups: (i) Chlamydia trachomatis trachoma biovars (serovars A to H), (ii) C. trachomatis lymphogranuloma venereum biovars (serovars L1 to L3), (iii) C. muridarum, and (iv) C. pneumoniae and C. caviae. Notably, chlamydia-infected murine and human epithelial cells exhibited the same protein tyrosine phosphorylation patterns; this is indirect evidence suggesting that the phosphorylated protein(s) is of chlamydial origin. If our hypothesis is correct, these heretofore-uncharacterized proteins may represent a novel class of bacterial molecules that influence pathogen-host range or tissue tropism.  相似文献   

20.
Previous studies from this laboratory provided evidence that the intracellular bacterial pathogen Chlamydophila (Chlamydia) pneumoniae is present in the late-onset Alzheimer's disease (AD) brain. Here we report culture of the organism from two AD brain samples, each of which originated from a different geographic region of North America. Culturable organisms were detectable after one and two passages in HEp-2 cells for the two samples. Both isolates, designated Tor-1 and Phi-1, were demonstrated to be authentic C. pneumoniae using PCR assays targeting the C. pneumoniae-specific genes Cpn0695, Cpn1046, and tyrP. Assessment of inclusion morphology and quantitation of infectious yields in epithelial (HEp-2), astrocytic (U-87 MG), and microglial (CHME-5) cell lines demonstrated an active, rather than a persistent, growth phenotype for both isolates in all host cell types. Sequencing of the omp1 gene from each isolate, and directly from DNA prepared from several additional AD brain tissue samples PCR-positive for C. pneumoniae, revealed genetically diverse chlamydial populations. Both brain isolates carry several copies of the tyrP gene, a triple copy in Tor-1, and predominantly a triple copy in Phi-1 with a minor population component having a double copy. This observation indicated that the brain isolates are more closely related to respiratory than to vascular/atheroma strains of C. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号