首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined by Real-time PCR how prolonged inhibition of dopaminergic D-2 receptors (DA-2) in the hypothalamus of anestrous ewes by infusion of sulpiride into the third cerebral ventricle affected GnRH and GnRH-R gene expression in discrete parts of this structure and GnRH-R gene expression in the anterior pituitary. Blockaded DA-2 receptors significantly decreased GnRH mRNA levels in the ventromedial hypothalamus but did not evidently affect GnRH mRNA in the preoptic/ anteriorhypothalamicarea. Blockaded DA-2 receptors led to different responses in GnRH-R mRNA in various parts of the hypothalamus; increased GnRH-R mRNA levels in the preoptic/anterior hypothalamic area, and decreased GnRH-R mRNA amounts in the ventromedial hypothalamus stalk/median eminence. An infusion of sulpiride into the III-rd ventricle increased GnRH mRNA levels in the anterior pituitary gland and LH secretion. It is suggested that the increase of GnRH gene expression in the anterior pituitary gland and LH secretion in sulpiride-treated ewes are related with an increase of biosynthesis GnRH with concomitant decreased biosynthesis of GnRH-R protein in the ventromedial hypothalamus/stalk median eminence allowing to an increase of GnRH release.  相似文献   

2.
In order to compare the mechanism for the down regulation of the mRNA expression of pituitary receptors induced by GnRH antagonist (GnRHant) to that by GnRH agonist (GnRHa), we examined the effects of GnRHant (Cetrorelix, 333 mug/kg/day), GnRHa (leuprolide depot, 333 microg/kg), and GnRHant combined with GnRHa on LH response to exogenous GnRH, pituitary LH content, LH beta subunit mRNA, and GnRH receptor (GnRH-R) mRNA levels at 2, 5, 24, 72 hours, and 7 days after the treatment in ovariectomized rats. GnRHant significantly decreased serum LH, the LH response of the pituitary to exogenous GnRH, and the pituitary LH content compared to the control treatment, though GnRHa significantly increased serum LH. GnRHant with GnRHa significantly diminished the GnRHa-induced flare-up phenomenon. GnRHant significantly decreased LH beta mRNA and GnRH-R mRNA levels, but the magnitude of the decrease in these mRNA levels by GnRHant was significantly less than those by GnRHa until 72 hours following treatment. Prolonged treatment of GnRHant caused a marked inhibition of LH beta mRNA and GnRH-R mRNA expression, similar to that caused by GnRHa. Combination treatment with GnRHa and GnRHant was demonstrated to decrease LH beta mRNA and GnRH-R mRNA levels as much as GnRHa alone and GnRHant alone over 7 days of the treatment. The present study showed differences between GnRHant and GnRHa treatment in the reduction of GnRH-R mRNA levels up to 72 hours after the treatment, and indicated that the suppression of GnRH-R mRNA by GnRHant was the maximal by GnRHa 7 days after the treatment because more profound suppression was not observed upon additional treatment with GnRHa. The findings in the present study support the hypothesis that the mechanism by which GnRHant leads to down-regulation of the mRNA expression of pituitary receptors is similar to that of GnRHa.  相似文献   

3.
The demonstration of an inhibitory effect of gonadotropin-releasing hormone (GnRH) agonists upon steroidogenesis in hypophysectomized rats and the presence of mRNA coding for GnRH and GnRH receptors (GnRH-R) in rat gonads suggests that GnRH can act locally in the gonads. To assess this hypothesis, we investigated the effects of GnRH analogs, gonadotropins and testosterone on the levels of both GnRH and GnRH-R mRNA in the rat testis. Using dot blot hybridization, we measured the mRNA levels 2 to 120 h after the administration of the GnRH agonist, triptorelin. We observed an acute reduction of both GnRH and GnRH-R mRNAs 24 h after the injection (about 38% of control). However, the kinetics for testis GnRH-R mRNA were different from those previously found for pituitary GnRH-R mRNA under the same conditions. Initially, the concentrations of serum LH and FSH peaked, then declined, probably due to the desensitization of the gonadotrope cells. In contrast, the GnRH antagonist, antarelix, after 8 h induced a 2.5-fold increase in GnRH-R mRNA, but not in GnRH mRNA, while gonadotropins levels were reduced. Human recombinant FSH had no significant effect on either GnRH or GnRH-R mRNA levels. Inversely, GnRH-R mRNA levels markedly decreased by 21% of that of control 24 h after hCG injection. Finally, 24 h after testosterone injection, a significant increase in GnRH-R mRNA levels (2.3 fold vs control) was found, but a reduction in the concentration of serum LH, probably by negative feedback on the pituitary, was observed. In contrast, GnRH mRNA levels were not significantly altered following testosterone treatment. Since LH receptors, GnRH-R and testosterone synthesis are colocalized in Leydig cells, our data suggest that LH could inhibit the GnRH-R gene expression or decrease the GnRH-R mRNA stability in the testis. However, this does not exclude the possibility that GnRH analogs could also affect the GnRH-R mRNA levels via direct binding to testicular GnRH-R. In contrast, the regulation of GnRH mRNA levels appeared to be independent of gonadotropins. Taken together, our results suggest a regulation of GnRH and GnRH-R mRNA specific for the testis.  相似文献   

4.
Multiple GnRH receptors are known to exist in nonmammalian species, but it is uncertain which receptor type regulates reproduction via the hypothalamic-pituitary-gonadal axis. The teleost fish, Astatotilapia burtoni, is useful for identifying the GnRH receptor responsible for reproduction, because only territorial males reproduce. We have cloned a second GnRH receptor in A. burtoni, GnRH-R1(SHS) (SHS is a peptide motif in extracellular loop 3), which is up-regulated in pituitaries of territorial males. We have shown that GnRH-R1(SHS) is expressed in many tissues and specifically colocalizes with LH in the pituitary. In A. burtoni brain, mRNA levels of both GnRH-R1(SHS) and a previously identified receptor, GnRH-R2(PEY), are highly correlated with mRNA levels of all three GnRH ligands. Despite its likely role in reproduction, we found that GnRH-R1(SHS) has the highest affinity for GnRH2 in vitro and low responsivity to GnRH1. Our phylogenetic analysis shows that GnRH-R1(SHS) is less closely related to mammalian reproductive GnRH receptors than GnRH-R2(PEY). We correlated vertebrate GnRH receptor amino acid sequences with receptor function and tissue distribution in many species and found that GnRH receptor sequences predict ligand responsiveness but not colocalization with pituitary gonadotropes. Based on sequence analysis, tissue localization, and physiological response we propose that the GnRH-R1(SHS) receptor controls reproduction in teleosts, including A. burtoni. We propose a GnRH receptor classification based on gene sequence that correlates with ligand selectivity but not with reproductive control. Our results suggest that different duplicated GnRH receptor genes have been selected to regulate reproduction in different vertebrate lineages.  相似文献   

5.
Dexamethasone (Dex), when administered in high doses, has been shown to suppress spontaneous and GnRH-induced gonadotropin secretion, but the level and the mechanism(s) of this effect are unknown. We administered Dex to castrate testosterone-replaced male rats to determine if gonadotropin gene expression is affected and whether Dex differentially influences GnRH-modulated parameters of gonadotrope function: induction of GnRH receptors (GnRH-R) and gonadotropin synthesis and secretion. GnRH was given iv at 25 ng/pulse at 8, 30, and 120 min intervals for 48 h. Rapid GnRH injection frequency preferentially increased alpha and LH-beta messenger RNA (mRNA) responses to GnRH as well as LH secretion. Slower GnRH injection frequencies were required to increase levels of GnRH-R, FSH-beta mRNA, and FSH secretion. Dex selectively inhibited the serum LH, alpha, and LH-beta mRNA responses to GnRH, but not the serum FSH or FSH-beta mRNA responses. Additionally, it augmented the GnRH-induced increase in GnRH-R. We conclude: 1) induction of GnRH-R, gonadotropin synthesis, and secretion require different modes of GnRH stimulation; 2) Dex acts directly on the gonadotrope to differentially modulate GnRH-induced increases in GnRH-R levels, gonadotropin gene expression, and gonadotropin secretion; and 3) GnRH effects upon induction of GnRH-R, LH, and FSH synthesis and secretion are likely to be mediated via different cellular pathways.  相似文献   

6.
GnRH, the main regulator of reproduction, is produced in a variety of tissues outside of the hypothalamus, its main site of synthesis and release. We aimed to determine whether GnRH produced in the female rat pituitary and ovaries is involved in the processes leading to ovulation. We studied the expression patterns of GnRH and GnRH receptor (GnRH-R) in the same animals throughout the estrous cycle using real-time PCR. Hypothalamic levels of GnRH mRNA were highest at 1700 h on proestrus, preceding the preovulatory LH surge. No significant changes in the level of hypothalamic GnRH-R mRNA were detected, although fluctuations during the day of proestrus are evident. High pituitary GnRH mRNA was detected during the day of estrus, in the morning of diestrus 1, and at noon on proestrus. Pituitary GnRH-R displayed a similar pattern of expression, except on estrus, when its mRNA levels declined. Ovarian GnRH mRNA levels increased in the morning of diestrus 1 and early afternoon of proestrus. Here, too, GnRH-R displayed a somewhat similar pattern of expression to that of its ligand. To the best of our knowledge, this is the first demonstration of a GnRH expression pattern in the pituitary and ovary of any species. The different timings of the GnRH peaks in the three tissues imply differential tissue-specific regulation. We believe that the GnRH produced in the anterior pituitary and ovary could play a physiological role in the preparation of these organs for the midcycle gonadotropin surge and ovulation, respectively, possibly via local GnRH-gonadotropin axes.  相似文献   

7.
Ovariectomized (OVX) rats suckling 8 pups have a complete suppression of pulsatile LH secretion and a decrease in pituitary GnRH receptor (GnRH-R) content. Removing the suckling stimulus for 24 h results in a sharp increase in GnRH-R and a restoration of pulsatile LH secretion. These findings suggest that the suckling stimulus induces a suppression of GnRH secretion, and removal of the suckling stimulus permits the restoration of GnRH secretion. Indeed, if GnRH antiserum is injected at the time of pup removal, the restoration of pituitary GnRH-R and LH secretion is prevented. The present studies were designed to test our hypothesis that the deficits in pituitary gonadotroph function observed during lactation are due to suckling-induced suppression of GnRH. Exogenous GnRH was administered in a pulsatile regimen to OVX lactating rats on days 10 and 11 postpartum, and the effects on pituitary GnRH-R levels, pituitary sensitivity to GnRH, and pulsatile LH secretion were assessed. GnRH doses of 0, 0.5, 2.0 or 5.0 ng/pulse were administered every 50 min for 24 h beginning on day 10. Administration of 0.5 ng GnRH/pulse for 24 h increased GnRH-R from 35 +/- 3 to 63 +/- 8 fmol/pituitary. There was a clear GnRH dose-related upregulation of GnRH-R to approach nonsuckling levels (140-160 fmol/pituitary) with the 5 ng GnRH dose. At the beginning of GnRH administration, the pituitary was very unresponsive to GnRH. Consistent LH pulses were only observed with 5 ng GnRH/pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Endogenous opioid peptides have a role in the regulation of the hypothalamic-pituitary-adrenal axis. Recently, beta-endorphin (EP) has been thought to inhibit CRF release in vivo and in vitro. In the present study we examined the effects of central administration of EP on ACTH secretion and gene expression of both CRF in the hypothalamus and POMC in the anterior pituitary gland (AP) during basal and insulin-induced hypoglycemia in pentobarbital-anesthetized rats. Administration of EP in the lateral ventricle decreased basal CRF levels in the median eminence and inhibited basal and hypoglycemia-induced ACTH secretion in a dose-dependent manner. Hypoglycemia-induced POMC mRNA levels in the AP and CRF mRNA levels in the hypothalamus were also dose-dependently inhibited by the administration of EP. The inhibitory effect of EP was reversed by naloxone. These results suggest that 1) central administration of EP acts through the opioid receptor to inhibit hypoglycemia-induced CRF gene expression in the hypothalamus and CRF release, which results in a decrease in ACTH secretion and POMC mRNA levels in the AP; and 2) the active site of EP is the CRF neuron in the paraventricular nucleus.  相似文献   

9.
We recently described patterns of GnRH and GnRH receptor (GnRH-R) expression in the hypothalamus, pituitary and ovary throughout the rat estrus cycle. Here, we wished to distinguish between regulatory effects of ovarian factors and underlying circadian rhythmicity. We quantified GnRH and GnRH-R mRNA in the pituitary and hypothalamus of long-term ovariectomized (OVX) rats, at different times of day, using real-time PCR. Furthermore, we expanded our previous study of hypothalamic and pituitary GnRH and GnRH-R expression in intact rats by including more time points throughout the estrus cycle. We found different daily patterns of GnRH and GnRH-R expression in intact versus OVX rats, in both tissues. In the hypothalamus of OVX rats, GnRH mRNA peaked at 12, 16 and 20 h, whereas in the hypothalamus of intact rats we observed somewhat higher GnRH mRNA concentrations at 19 h on every day of the estrus cycle except proestrus, when the peak occurred at 17 h. In this tissue, GnRH-R fluctuated less significantly and peaked at 16 h in OVX rats. During the estrus cycle, we observed higher levels in the afternoon of each day except on estrus. In OVX rats, pituitary GnRH mRNA rose sharply at 9 h, with low levels thereafter. In these animals, pituitary GnRH-R also peaked at 9h followed by a second rise at 22 h. In intact rats pituitary GnRH was high at noon of diestrus-II and on estrus, whereas GnRH-R mRNA was highest in the evening of diestrus-II. This is the first demonstration of daily GnRH and GnRH-R mRNA expression patterns in castrated animals. The observed daily fluctuations hint at underlying tissue-specific circadian rhythms. Ovarian factors probably modulate these rhythms, yielding the observed estrus cycle patterns.  相似文献   

10.
Increased hypothalamic GnRH secretion appears to influence positively the number of pituitary GnRH receptors (GnRH-R). GnRH-R increase after castration in male rats, and this rise can be prevented by testosterone (T), anti-GnRH sera, or hypothalamic lesions. GnRH also increases serum LH and GnRH-R in hypothalamus-lesioned rats, and these animals injected with exogenous GnRH are, therefore, a good model in which to study the site of steroid feedback at the pituitary level. Adult male and female rats were gonadectomized, and radiofrequency lesions were placed in the hypothalamus. Males received T implants, and females received estradiol implants at the time of surgery. Empty capsules were placed in the control animals. Beginning 3-5 days later, animals in each group were injected every 8 h with vehicle (BSA) or GnRH (0.002-200 micrograms/day) for 2 days. After these GnRH injections, all rats received 6.6 micrograms GnRH, sc, 1 h before decapitation to determine acute LH and FSH responses. GnRH-R were determined by saturation analysis using 125I-D-Ala6-GnRH ethylamide as ligand. In males, GnRH injections increased GnRH-R. T inhibited acute LH and FSH responses to GnRH in all groups, but had little effect on GnRH-R, indicating that T inhibits gonadotropin secretion at a post-GnRH receptor site. In females, the GnRH-R response to GnRH was less marked, and only the 200 micrograms/day dose of GnRH increased GnRH-R, indicating that the positive feedback effects of estradiol at the pituitary level are also exerted at a site distal to the GnRH receptor. There was no positive correlation between the number of GnRH-R and GnRH-stimulated gonadotropin release in males or females. Female rats with hypothalamic lesions had markedly elevated serum PRL levels (greater than 300 ng/ml). Suppression of PRL secretion by bromocryptine resulted in augmented GnRH-R responses to GnRH, and GnRH-R concentrations rose to the same values induced in males. This suggests that hyperprolactinemia inhibits GnRH-R responses to GnRH in females by a direct action on the pituitary gonadotroph.  相似文献   

11.
12.
An acute transient fall in the number of pituitary GnRH receptors (GnRH-R) is observed before the preovulatory gonadotropin surge in cycling rats and before the afternoon daily gonadotropin surge in ovariectomized estradiol-treated rats. In the latter model, this fall can be reproduced by administration of the opioid antagonist naloxone, whereas the opioid agonist morphine acutely increases GnRH-R. In this study we investigated the mechanisms of this opioid effect and examined the effects of other neurotransmitter substances on modulation of pituitary GnRH-R. Administration of the dopaminergic agonists bromocriptine and L-dopa or the alpha-adrenergic receptor blocker phenoxybenzamine elevated GnRH-R acutely from average basal values of 240 +/- 22 and 254 +/- 21 fmol/mg protein to maximal values of 374 +/- 49, 441 +/- 67 and 461 +/- 75 fmol/mg, respectively, whereas the alpha-adrenergic agonist clonidine transiently decreased GnRH-R to 186 +/- 19 fmol/mg. Placement of radiofrequency lesions in the mediobasal hypothalamus or pretreatment with anti-GnRH serum completely abolished the ability of both morphine and naloxone to modulate the number of GnRH-R. These data indicate that the opioid-induced modulation of pituitary GnRH-R requires an intact hypothalamus and that both dopaminergic and alpha-adrenergic neurotransmitter systems may be involved. The final step of this action probably involves acute modulation of GnRH secretion (altered frequency and/or amplitude), which results in acute transient changes in the number of pituitary GnRH-R.  相似文献   

13.
To assess whether gonadotropin-releasing hormone (GnRH) release from the hypothalamus might be altered by hyperprolactinemia in the male rat, we measured in chronically hyperprolactinemic rats the pituitary GnRH receptor content and described the pattern of luteinizing hormone (LH) release during the postcastration rise in gonadotropin secretion 24 and 72 h after gonadectomy. In intact rats, the effect of hyperprolactinemia was determined by describing the pattern of LH secretion, pituitary GnRH receptor content and assessment of pituitary responsiveness to small doses of GnRH (1.0 ng). In addition, to determine the role endogenous opioids might play in inhibiting GnRH release in hyperprolactinemic rats, we examined the effect of both a continuous infusion and a bolus injection of the opioid antagonist naloxone on the pattern of LH release. Chronic hyperprolactinemia was achieved by implanting 4 pituitaries under the kidney capsules 3-4 weeks before study. Acute hyperprolactinemia was achieved by injecting rats with 1 mg ovine prolactin every 12 h for 3 days. Control animals were untreated or were chronically hyperprolactinemic rats in which the hyperprolactinemia was transiently reversed by treatment for 3 days with the dopamine agonist 2-alpha-bromoergocryptine. The mean LH concentration was greatly decreased at 24 postcastration in chronically hyperprolactinemic rats relative to controls. This decrease was associated with a decrease in LH pulse height and pulse amplitude and pituitary GnRH receptor content, but not with an increase in the LH interpulse interval. In contrast, the decrease in mean LH concentrations in hyperprolactinemic animals at 72 h postcastration was primarily associated with a significantly longer LH interpulse interval than that observed in control animals. Chronic hyperprolactinemia in intact rats decreased the pituitary GnRH receptor content, in addition to decreasing the mean LH concentrations during pulsatile GnRH administration. Chronic hyperprolactinemia also inhibited LH release relative to controls during the continuous 4-hour infusion of naloxone and in response to a bolus injection of naloxone. However, in acutely hyperprolactinemic intact male rats a bolus injection of naloxone increase LH secretion 20 min later to levels similar to those obtained in control rats. In summary, these results indicate that chronic hyperprolactinemia decreased LH secretion by primarily decreasing GnRH secretion as suggested by a decrease in pituitary GnRH receptor content and a decrease in LH pulse frequency and pulse amplitude.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
S Kawakami  S J Winters 《Endocrinology》1999,140(8):3587-3593
The mechanisms by which gonadal steroids regulate gonadotropin secretion remain incompletely understood. As previous studies suggest that the pituitary actions of testosterone (T) and estradiol (E) differ in male primates and rodents, we compared the effects of 10 nM T, 0.1 nM E, and 10 nM dihydrotestosterone (DHT) on the LH response to hourly pulses of GnRH as well as the GnRH receptor (GnRH-R) and LH subunit messenger RNA (mRNA) levels in dispersed pituitary cells from intact male monkeys and rats. T suppressed (P < 0.01) and E increased (P < 0.05) GnRH-stimulated LH secretion by rat pituitary cells. With monkey pituitary cells, on the other hand, there was no significant effect of either T or DHT on GnRH-stimulated LH secretion. In E-treated monkey cells, a period of initial enhancement (P < 0.05) was followed by significant suppression (P < 0.05) of LH secretion. GnRH-R mRNA was unchanged by T or E in either rat or monkey cells. T suppressed LHbeta (P < 0.01) and alpha-subunit (P < 0.01) mRNAs, whereas E increased alpha-subunit (P < 0.01), but did not alter LHbeta mRNA levels in rat cells. In monkey cells, however, neither T nor E affected LHbeta or alpha-subunit mRNA levels significantly. Our results identify different regulatory mechanisms by which testicular steroid hormones control LH secretion by the pituitary in male primates and rodents. We propose that the primary site of androgen negative feedback in the male primate is to restrain GnRH pulsatile secretion, whereas in the male rat T also decreases gonadotropin synthesis and secretion by directly affecting the pituitary. E suppresses GnRH-stimulated LH secretion in the primate pituitary, but amplifies the action of GnRH in the rat. Our data also reveal that the action of T to suppress LH secretion and subunit mRNA in male rats is not through decreased GnRH-R gene expression.  相似文献   

15.
The neural mechanism underlying the preovulatory surge of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) is thought to include reduced opioid inhibition of GnRH secretion (disinhibition). Possible mechanisms for disinhibition include reduced endogenous opioid peptide or receptor mRNA expression. Proenkephalin and opioid mu-receptor mRNA expression were measured by in situ hybridization using 35S-labeled cRNA probes and computer-assisted grain counting in hypothalamic nuclei of ovary-intact ewes (n = 4) killed on day 10 of the luteal phase or 24 or 48 h into the follicular phase. In a second experiment, proenkephalin and mu-receptor mRNA expression were compared in ewes killed on day 10 of the luteal phase or during the preovulatory LH surge. Cells expressing proenkephalin mRNA were more widely distributed in ovine hypothalamus than previously described. In the periventricular nucleus, there was a significant reduction in the grain count per cell and the number of labeled cells during the follicular phase and during the LH surge, as compared to the luteal phase. In the ventromedial hypothalamus, there was a significant reduction in the grain count per cell during the follicular phase and LH surge as compared to the luteal phase, but no change in the number of labeled cells. No differences in proenkephalin mRNA expression were detected in the medial septum, diagonal band of Broca, preoptic area, anterior hypothalamic area or paraventricular nucleus across the estrous cycle. Cells expressing opioid mu-receptor mRNA were also widely distributed. No difference in mu-receptor mRNA expression was detected in the medial septum, diagonal band, medial preoptic area, anterior hypothalamus or bed nucleus of the stria terminalis across the cycle. We conclude that in sheep, proenkephalin gene expression in the periventricular nucleus and ventromedial hypothalamus is reduced during the follicular phase and at the time of the LH surge. This may be part of the neural mechanism underlying the GnRH/LH surge in this species.  相似文献   

16.
It has been postulated that some endocrine responses to stressful stimuli are mediated through the activation of hypothalamic pro-opiomelanocortin (POMC)-derived peptides. The aim of the present study was to analyse the effect of chronic stress on expression of the POMC gene in the medial basal hypothalamus and pituitary, and on serum concentrations of LH, beta-endorphin and corticosterone. Adult male rats were killed after being subjected to restraint stress for 6 h/day over 2, 3 or 4 days. Chronic restraint induced an increase in serum concentrations of beta-endorphin and corticosterone and a decrease in serum LH levels. To determine whether chronic stress induced any change in POMC synthesis, a dot-blot method was used to measure POMC mRNA levels. No significant changes were detected either in the beta-endorphin content or in POMC mRNA levels in the medial basal hypothalamus after 2, 3 or 4 days of chronic restraint. This observation contrasts with the stimulation of POMC mRNA levels in both lobes of the pituitary. The data suggest that although chronic restraint induces an increase in POMC synthesis and secretion in the pituitary and a decrease in LH secretion, it has no effect on hypothalamic POMC neurones.  相似文献   

17.
In the ewe, estradiol and progesterone inhibit luteinizing hormone (LH) secretion during the breeding season. Endogenous opioid peptides (EOP) are also inhibitory to LH secretion, and both estrogen and progesterone have been reported to enhance EOP inhibition of LH release. Which EOP are involved in this inhibition is unclear. In this study, we concentrated on beta-endorphin because evidence for its ability to inhibit LH secretion exists in ewes. We first studied the distribution of beta-endorphin-immunoreactive neurons in 4 cycling ewes using immunocytochemistry. Cell bodies were found only within the medial basal hypothalamus (MBH) and were concentrated in arcuate nucleus and mammillary recess of the third ventricle, with a few in the median eminence. Extensive fiber tracts were seen in preoptic area (POA) and median eminence. We next tested the hypothesis that gonadal steroids increase the synthesis of EOP by measuring levels of mRNA for proopiomelanocortin (POMC), the precursor to beta-endorphin. Ovariectomized ewes were treated with no steroids (n = 7) or given subcutaneous Silastic implants containing either estradiol (n = 6) or progesterone (n = 6). After 4 days of treatment, EOP inhibition of LH secretion was measured by determining the LH response to WIN 44,441-3 (WIN), an EOP antagonist. LH pulse frequency and pulse amplitude were determined in blood samples collected at 12-min intervals for 3 h before and after intravenous administration of 12.5 mg WIN. WIN injection increased (p < 0.01) the LH pulse-frequency only in progesterone-treated and pulse amplitude only in estradiol-treated ewes. After blood sampling, the ewes were killed, and POA, MBH, and pituitary gland were removed. Total RNA was extracted from these tissues and dot blotted onto nitrocellulose membranes for hybridization with a DNA probe complementary to the POMC mRNA. The resulting autoradiographs were quantified densitometrically. Levels of POMC mRNA in the MBH were increased (p < 0.01) by both estradiol and progesterone as compared with the no steroid group. There was no detectable POMC mRNA in the POA. These results suggest that estrogen and progesterone enhance EOP inhibition of LH secretion by increasing POMC mRNA levels and thus synthesis of beta-endorphin.  相似文献   

18.
To examine the role of the GABAA receptor mediating systems in the control of gonadotropin releasing hormone (GnRH) release from the ventromedial-infundibular region (VEN/NI) of the hypothalamus of ewes during the follicular phase of the estrous cycle, the extracellular concentrations of GnRH, beta-endorphin (B-END), noradrenaline (NE), dopamine (DA), and their metabolites MHPG, DOPAC and concentration of luteinizing hormone (LH) in blood plasma were quantified during local stimulation or blockade of GABAA receptors with muscimol and bicuculline, respectively. Stimulation of GABAA receptors attenuated GnRH and LH release, increased beta-endorphin outflow and dopaminergic activity but had no evident effect on noradrenergic activity. Blockade of GABAA receptors decreased beta-endorphin release but had no evident effect on the extracellular concentration of GnRH, LH levels in the blood and catecholaminergic activity. It is suggested that suppression of GnRH/LH release under muscimol treatment may result from activation of GABAA receptors on GnRH nerve terminals and through GABAA receptor mechanism activated beta-endorphinergic and dopaminergic neurons in the VEN/NI. Lack of changes in NE and MHPG concentration during stimulation or blockade of GABAA receptors suggests, that during the follicular phase of the estrous cycle the noradrenergic system in the VEN/NI is not involved in the control of GnRH/LH release by GABA.  相似文献   

19.
M E Crowder  T M Nett 《Endocrinology》1984,114(1):234-239
Studies were undertaken to determine if the number of hypophyseal receptors for GnRH changes at the time of the preovulatory surge of LH in ewes. Concentrations of LH, FSH, progesterone, and estradiol in serum and concentrations of LH and FSH in pituitary were measured. The content of GnRH in the hypothalamus was also determined. Estrus was synchronized in 35 cross-bred ewes by injecting prostaglandin F2 alpha (PGF2 alpha) at 0 and 4 h (7.5 mg each, im) on day 14 of a naturally occurring estrous cycle, followed 30 h later by the injection of estradiol (25 micrograms in safflower oil, im). Five ewes were killed at each of the following times relative to the first injection of PGF2 alpha: 0, 24, 32, 44, 50, 56 and 96 h. Blood samples were collected throughout the course of the experiment. Concentrations of progesterone in serum decreased markedly by 8 h after PGF2 alpha and were uniformly undetectable (less than 300 pg/ml) by 34 h. Concentrations of estradiol in serum increased after the injection of estradiol and returned to basal values 10 h later. Surges of LH, which were usually coincident with surges of FSH, occurred between 43 and 53 h. Concentrations of both LH and FSH in the pituitary declined after the LH surge. There were no significant changes in the amount of GnRH contained in the preoptic area, the median eminence, or the hypothalamus. The number of receptors for GnRH increased at 24 and 32 h compared to the 0 h value and remained elevated at 44 and 50 h. After the LH surge (56 h), the number of GnRH receptors declined and at 96 h was not different from the number measured at 0 h. Since an increase in the number of receptors will result in the formation of more receptor-hormone complex and may lead to an augmented response, these data suggest that an increase in the number of hypophyseal receptors for GnRH may contribute to the preovulatory LH surge in ewes.  相似文献   

20.
Pituitary GnRH receptor (GnRH-R) levels and LH secretion are suppressed in the lactating rat. To determine if LH synthesis is also inhibited, we have measured LH subunit mRNA levels in the pituitary of lactating rats. We have also examined the temporal relationship among restoration of GnRH-R, LH secretion, and LH synthesis after withdrawing the sensory stimulus of suckling. Pituitary alpha-subunit and LH beta mRNA levels were sharply reduced on day 10 of lactation in both intact and ovariectomized (OVX) animals compared with those in cycling diestrous rats or OVX controls. Removal of the suckling stimulus from OVX animals led to significant increases in alpha-subunit and LH beta mRNA levels by 24 h. Upon removal of the suckling stimulus from intact rats, alpha-subunit mRNA levels were restored by 48 h, but LH beta mRNA levels did not return to diestrous levels until 72 h. Pituitary GnRH-R levels were clearly up-regulated within 1 day after pup removal. Some LH pulses were observed by 48 h, but consistent plasma LH pulses were not detected until 72 h. When pulsatile GnRH was administered during the 24 h after pup removal from intact rats, the regimen of pulsatile GnRH was successful in inducing LH secretion; however, the restoration of pulsatile LH was not accompanied by increases in alpha-subunit and LH beta mRNA levels. The present studies provide further evidence to support the hypothesis that during lactation, the suppression of pituitary gonadotroph function is mainly due to the loss of hypothalamic GnRH secretion. Our data also show that 1) the restoration of GnRH-R alone is not sufficient to activate LH subunit mRNA and LH secretion; 2) the normal restoration of pulsatile LH secretion and increases in LH subunit mRNA are temporally correlated, as increases in LH secretion appear to precede increases in LH subunit mRNA; and 3) the restoration of pituitary LH subunit mRNA levels and pulsatile LH secretion took longer in the intact rat than in the OVX rat, suggesting that ovarian steroids may play a role in the inhibitory effect of lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号