首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The zona incerta (ZI) of the mouse was studied by the rapid Golgi method. In the ZI, small and medium-sized neurons were recognized. The former were the main constituents; their soma were fusiform or piriform in shape (15.5×22 m) and had 4 to 8 primary dendrites. Dendrites of the small neurons in the regions near the ventral and dorsal margins of the ZI ran medially and laterally along the margins of the ZI. The mediumsized neurons were seen in the central ZI portions at the caudal levels of the ZI; they had polygonal or fusiform cell bodies (25×31 m) which emitted 5 to 9 primary dendrites. Some dendrites of the ZI neurons extended into the ventral lateral geniculate nucleus (LGNv), the nucleus of the field of Forel (FF), the cerebral peduncle and the internal capsule. On the other hand, some dendrites of neurons in the LGNv and FF extended into the ZI. Most axons of the ZI neurons coursed dorsally, and some of them could be traced into the medial lemniscus or the dorsal thalamus. A few neurons in the regions near the ventral margin of the ZI sent axons ventrally into the cerebral peduncle.Afferent fibers to the ZI were traced from the cerebral peduncle, internal capsule, field H1, medial lemniscus and dorsal thalamus. Collaterals of fibers in the Meynert's commissure and field H2 entered the ZI. Fibers passing through the LGNv also entered the ZI. Additionally, terminal collaterals were observed to arise from fibers running mediolaterally in the ZI. Some fibers were found to send terminals commonly to the ZI, FF and LGNv by way of axon collaterals.  相似文献   

2.
The intranuclear organization of the inferior olivary nucleus (ION) was studied in the red sting ray, using the rapid Golgi method. The ION neurons had polygonal, triangular or spindle cell bodies which generated 3-5 primary dendrites. These dendrites were relatively straight, sparsely spinous, and distributed mainly within the ION. The axons of the ION neurons extended medially and joined fiber bundles which ran transversely in the ION. Three groups of olivary afferents were distinguished: fibers derived from the tegmental area travelled ventrally and ended totally in the ION, composing a dense fiber plexus; collaterals of fibers which extended in a longitudinal direction in and around the ION distributed mainly in the lateral portion of the ION; and collaterals of fibers which ran transversely in the ION also ended in the ION. Some fibers from these 3 afferent groups converged to form pericellular baskets. Thus, the fundamental organization of the ION in the red sting ray was similar to that of the ION in mammals.  相似文献   

3.
The morphology of single saccular afferents was studied by the intracellular horseradish peroxidase (HRP) method. Four neurons were sufficiently stained to allow reconstruction of their axonal arborizations. The main axon of these neurons bifurcated into an ascending and a descending branch at the level of the lateral nucleus. The ascending branches of two axons gave off collaterals with boutons in the caudal part of the superior nucleus, while the other two ascending branches lacked such terminations. By contrast, characteristics of the descending axonal arborization patterns of all the four neurons were substantially the same. The descending branches coursed caudally through the lateral part of the descending nucleus, and gave off up to 14 collaterals with boutons that extended throughout this nucleus. These collaterals also reached the ventral part of the lateral nucleus, the lateral border of the medial nucleus, and group f. A few axon collaterals ramified even outside the border of the vestibular nuclei into the spinal trigeminal nucleus and the reticular formation surrounding it. Axon collaterals from the stem axon also terminated in the interstitial nucleus of the vestibular nerve. There was a noticeable absence of any projection to the y group.  相似文献   

4.
W M Falls 《Neuroscience》1984,13(4):1279-1298
This study demonstrates that trigeminal nucleus oralis, the most rostral subdivision of the spinal trigeminal nucleus, contains four morphologically distinct types of small neurons which project to the medullary dorsal horn (trigeminal nucleus caudalis) via descending intratrigeminal pathways. Using the retrograde transport of horseradish peroxidase following injections in the medullary dorsal horn, labeled small neurons with cell bodies ranging from 8-15 microns in diameter are found principally in the ventrolateral portion of the trigeminal nucleus oralis. Most neurons are labeled ipsilaterally throughout the entire rostrocaudal extent of the ventrolateral portion of the trigeminal nucleus oralis, but a few cells are also labeled contralaterally. From this aspect of the present study it can be concluded that a specific portion of the trigeminal nucleus oralis, i.e. the ventrolateral part, contains numerous small neurons which send descending projections to the medullary dorsal horn that could affect synaptic activity there. Utilizing both the methods of Golgi and retrograde horseradish peroxidase labeling four distinct types of small descending medullary dorsal horn projection neurons can be distinguished in the ventrolateral portion of the trigeminal nucleus oralis on the basis of their morphology and the distribution of their axons and dendrites. All four neuronal cell types are present throughout the entire rostrocaudal extent of the trigeminal nucleus oralis. Type I neurons are the most frequently labeled descending medullary dorsal horn projection neurons. They are concentrated in the medial 500-550 microns of the ventrolateral portion of the trigeminal nucleus oralis and display dendritic trees which occupy spherical domains approaching 300 microns in diameter. The unmyelinated axons of many of these cells arise either directly from the cell body or a primary dendrite and give rise to a single collateral within 50 microns of their site of origin. This collateral generates a fine axonal plexus within a portion of the dendritic arbor of the parent cell while the parent axon, without branching further, travels a short distance in the ventrolateral portion of the trigeminal nucleus oralis and enters a deep axon bundle. Type II neurons are the second most frequently labeled descending medullary dorsal horn projection neuron. They generate medial and lateral dendritic arbors which together span nearly the entire medial 500-550 microns of the ventrolateral portion of the trigeminal nucleus oralis. An unmyelinated axon emerges from the cell body and within 10-30 microns of its origin gives rise to two collaterals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Spinal commissural neurons (CNs) activated di- or trisynaptically by stimulation of ipsilateral vestibular afferents were stained with intraaxonal injection of horseradish peroxidase in the cat upper cervical spinal cord. Stem axons of CNs in lamina VIII or VII, after crossing the midline, had ascending and/or descending main branches that gave off multiple axon collaterals to laminae IX and VIII over a few cervical segments. Terminal boutons appeared to make contact with proximal dendrites and somata of retrogradely-labelled neck motoneurons. Therefore, these CNs were regarded as mediating vestibular afferent input to contralateral neck motoneurons trisynaptically at the shortest.  相似文献   

6.
The neuronal organization of the neostriatum in mice was studied, using the rapid Golgi method. Based on the size of the somata, the neostriatal neurons were divided into groups of large, medium-sized and small cells, and the neurons of each group were further divided into 2-5 types, according to the shape of the somata and dendritic morphology. Three types of large neurons were recognized. Large type I neurons were triangular, piriform or fusiform cells with a few thick dendrites, whereas large type II and type III neurons were round or polygonal cells with numerous slender dendrites. The dendrites of the large type II neurons were far longer than those of large type III. Medium-sized neurons were grouped into 5 types. Medium type I neurons were round with spiny dendrites and were found mainly in the caudal portion of the neostriatum. Medium type II neurons had numerous thin dendrites and were predominant in the rostral portion of the neostriatum. Some medium type II neurons were arranged in cell chains extending perpendicular to Wilson's pencils. The cell bodies of medium type III neurons were triangular, and generated long spiny dendrites. Medium type IV neurons were polygonal, and dendrites with numerous short branchlets were evidenced. Medium type V neurons had poorly branched and sparsely spinous dendrites. The small neurons were of two types: small type I had piriform cell bodies, which gave rise to very thin dendrites, while small type II had dendrites with irregular contours and filiform appendages. Of these, the large type I and type II, the medium type I-V, and the small type I neurons seemed to be the projection neurons, whereas the large type III and small type II neurons were merely internuncials. Thus, the neostriatum in the mouse was shown to be composed of a wide variety of projection neurons and only two types of interneurons.  相似文献   

7.
Summary In Golgi material, the neurons of the periaqueductal gray matter (PAG) of the cat have been classified into five types, according to the following criteria: number of dendrites per cell, characteristics of secondary arborization, frequency of spines and axon caliber. Type 1 cells, which are multipolar and rich in spines are the most frequent, and are probably intranuclear neurons. Type 4 cells have a short axon which ends in the PAG, but they differ from Type 1 in that their dendritic ramification is of a different type and there are few spines. Type 2 and 3 neurons have a thick axon which runs outside the PAG, and dendrites rich in spines. Type 2 cells have more primary dendrites, while Type 3 neurons have dendrites which may spread outside the PAG. Type 5 cells have dendrites with few spines and no secondary ramification. Their thick and long axon projects outside the PAG. Type 2, 3 and 5 cells have been considered projective neurons. The various neuron types are present in every area of the PAG, although in the ventral region there is a predominance of Type 2 and 5 neurons, in the dorsal regions of Type 2 and 3 cells, and in lateral regions of Type 3 and 5 cells. Local intrinsic circuits have been observed in which both the interneurons and the projective, with early axonic collaterals, are involved. The prevalence of neurons to which an afferent role has been attributed (Type 2 and 3 cells) compared with efferent cells (Type 5), is in agreement with hodological studies which indicate that the PAG receives multiple and numerous afferents in comparison with the relatively scarce efferent fibers. These projections can be intensely and deeply elaborated and modulated by means of local intrinsic circuits.  相似文献   

8.
9.
Administration of cocaine to pregnant rabbits produces robust and long-lasting anatomical alterations in the dopamine-rich anterior cingulate cortex of offspring. These effects include increased length and decreased bundling of layer III and V pyramidal neuron dendrites, increases in parvalbumin expression in the dendrites of interneurons, and increases in detectable GABAergic neurons. We have now examined multiple cortical regions with varying degrees of catecholaminergic innervation to investigate regional variations in the ability of prenatal cocaine exposure to elicit these permanent changes. All regions containing a high density of tyrosine hydroxylase-immunoreactive fibers, indicative of prominent dopaminergic input, exhibited alterations in GABA and parvalbumin expression by interneurons and microtubule-associated protein-2 labeling of apical dendrites of pyramidal neurons. These regions included the medial prefrontal, entorhinal, and piriform cortices. In contrast, primary somatosensory, auditory and motor cortices exhibited little tyrosine hydroxylase staining and no measurable cocaine-induced changes in cortical structure.From these data we suggest that the presence of dopaminergic afferents contributes to the marked specificity of the altered development of excitatory pyramidal neurons and inhibitory interneurons induced by low dose i.v. administration of cocaine in utero.  相似文献   

10.
The ultrastructural characteristics of non-degenerating GABAergic neurons in rostrolateral medial vestibular nucleus were identified in monkeys following midline transection of vestibular commissural fibers. In the previous papers, we reported that most degenerated cells and terminals in this tissue were located in rostrolateral medial vestibular nucleus, and that many of these neurons were GABA-immunoreactive. In the present study, we examined the ultrastructural features of the remaining neuronal elements in this medial vestibular nucleus region, in order to identify and characterize the GABAergic cells that are not directly involved in the vestibular commissural pathway related to the velocity storage mechanism. Such cells are primarily small, with centrally-placed nuclei. Axosomatic synapses are concentrated on polar regions of the somata. The proximal dendrites of GABAergic cells are surrounded by boutons, although distal dendrites receive only occasional synaptic contacts. Two types of non-degenerated GABAergic boutons are distinguished. Type A terminals are large, with very densely-packed spherical synaptic vesicles and clusters of large, irregularly-shaped mitochondria with wide matrix spaces. Such boutons form symmetric synapses, primarily with small GABAergic and non-GABAergic dendrites. Type B terminals are smaller and contain a moderate density of round/pleomorphic vesicles, numerous small round or tubular mitochondria, cisterns and vacuoles. These boutons serve both pre- and postsynaptic roles in symmetric contacts with non-GABAergic axon terminals. On the basis of ultrastructural observations of immunostained tissue, we conclude that at least two types of GABAergic neurons are present in the rostrolateral portion of the monkey medial vestibular nucleus: neurons related to the velocity storage pathway, and a class of vestibular interneurons. A multiplicity of GABAergic bouton types are also observed, and categorized on the basis of subcellular morphology. We hypothesize that "Type A" boutons correspond to Purkinje cell afferents in rostrolateral medial vestibular nucleus, "Type B" terminals represent the axons of GABAergic medial vestibular nucleus interneurons, and "Type C" boutons take origin from vestibular commissural neurons of the velocity storage pathway.  相似文献   

11.
Crushing the nerve to the medial gastrocnemius (MG) muscle at birth and administering nerve growth factor to rats afterwards results in a reinnervated muscle with supernumerary muscle spindles, some of which must have formed de novo. Structure and innervation of spindles in the reinnervated MG muscles were studied in serial 1 micron transverse sections. Two types of spindle-like encapsulations were observed. The prevalent type consisted of one to three small diameter intrafusal fibers with features of nuclear chain fibers or infrequently a nuclear bag fiber. The second type of encapsulation consisted of the small-diameter fibers located in a compartment which abutted a compartment containing a large diameter extrafusal fiber. All intrafusal fibers in spindles of the experimental muscles were innervated by afferents, but most of them (85%) were devoid of efferent innervation. Thus, immature fusimotor neurons may be more susceptible than spindle afferents to cell death after axotomy at birth.  相似文献   

12.
We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarkes column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarkes column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed.  相似文献   

13.
Summary Branching neurons giving rise to ascending and descending collaterals were studied in the cervical spinal cord of the rat. After unilateral injection of two retrograde fluorescent tracers, i.e. DY.2HCl at T2 or more caudal levels and TB at C1 or more rostral levels, many DY-TB double-labeled neurons were found in C3 to C8. These neurons were located bilaterally throughout the spinal grey matter, as well as in the lateral spinal nucleus (LSN). However, no double-labeled neurons could be detected in the laminae I and II on either side. The double-labeled neurons must represent branching neurons giving rise to a collateral ascending to the rostral injection-site or above, and another collateral descending to the caudal injection-site or below. The descending collaterals were found to extend to various spinal levels, including the lumbosacral cord. However, most of them terminated at shorter distances from their parent cell bodies; thus 20% of the C3–C8 neurons projecting to C1 or above had a descending collateral reaching T2, 8% had a collateral reaching T9, and 3% a collateral reaching L2/L3. The ascending collaterals of the majority of the branching neurons passed into the most caudal part of the medulla oblongata, and about half of these collaterals reached the level of the rostral part of the inferior olive. In regard to the neurons located in the segments C5–C8, about 13% of those projecting to T2 or below distribute an ascending collateral restricted to C2–C4, while 29% of those had an ascending collateral to C1 or above.  相似文献   

14.
Summary Motoneurons and muscle spindle afferents of the rat masseter muscle were physiologically and morphologically characterized. Their soma-dendritic morphology and axonal course were investigated using the intracellular horseradish peroxidase method. Following electrical stimulation of the masseter nerve, individual motoneurons were identified by antidromic all-or-none action potentials and individual sensory neurons by orthodromic action potentials. Using threshold separation an excitatory input from muscle spindles to a masseter motoneuron was demonstrated. The short latency difference of 0.34 ms between the mean orthodromic response in the sensory neurons and the beginning of the synaptic potential in the masseter motoneuron suggests a monosynaptic connection between the spindle afferents and the motoneurons. Following intrasomatic horse-radish peroxidase injection large multipolar cell bodies of masseter motoneurons were found within the motor nucleus. Their positions corresponded to the topographic organization of the motor trigeminal nucleus as described in retrograde tracing studies. Dendrites of masseter motoneurons were complex and could be found far beyond the nuclear borders. Distal dendrites extended to the mesencephalic trigeminal nucleus, the supratrigeminal nucleus, the lateral lemniscus and the reticular formation. Within the reticular formation dendrites were seen in the intertrigeminal nucleus and the peritrigeminal zone. Unipolar cell bodies of muscle spindle afferents were found in the mesencephalic trigeminal nucleus after intra-axonal injection of horseradish peroxidase. For all reconstructed sensory neurons a similar axonal course was found. Axonal terminals were found ipsilateral in the motor trigeminal nucleus, indicating a direct connection between sensory neurons and motoneurons. Further collaterals were found ipsilateral in the supratrigeminal nucleus and caudal to the motor trigeminal nucleus in the parvocellular reticular nucleus alpha. Since the latter termination areas are important for bilateral control of jaw-movements, the muscle spindle afferents are likely to participate not only in a monosynaptic motor reflex, but also in more complex neuronal circuits involved in jaw-movements.Abbreviations EPSP excitatory postsynaptic potential - HRP horseradish peroxidase - Me5 mesencephalic trigeminal nucleus - Mo5 motor trigeminal nucleus - PCRtA parvocellular reticular nucleus alpha - Su5 supratrigeminal nucleus  相似文献   

15.
16.
The localization and distribution of somatostatin (growth hormone release-inhibiting hormone; somatotropin release-inhibiting factor) have been studied with the indirect immunofluorescence technique of Coons and collaborators and the immunoperoxidase method of Sternberger and coworkers using specific and well-characterized antibodies to somatostatin, providing semiquantitative, detailed maps of somatostatin-immunoreactive cell profiles and fibers. Our results demonstrate a widespread occurrence of somatostatin-positive nerve cell bodies and fibers throughout the central nervous system of adult, normal or colchicine-treated, albino rats. The somatostatin cell bodies varied in size from below 10 micron up to 40 micron in diameter and could have only a few or multiple processes. Dense populations of cell somata were present in many major areas including neocortex, piriform cortex, hippocampus, amygdaloid complex, nucleus caudatus, nucleus accumbens, anterior periventricular hypothalamic area, ventromedial hypothalamic nucleus, nucleus arcuatus, medial to and within the lateral lemniscus, pontine reticular nuclei, nucleus cochlearis dorsalis and immediately dorsal to the nucleus tractus solitarii. Extensive networks of nerve fibers of varying densities were also found in most areas and nuclei of the central nervous system. Both varicose fibers as well as dot- or "dust-like" structures were seen. Areas with dense or very dense networks included nucleus accumbens, nucleus caudatus, nucleus amygdaloideus centralis, most parts of the hypothalamus, nucleus parabrachialis, nucleus tractus solitarii, nucleus ambiguus, nucleus tractus spinalis nervi trigemini and the dorsal horn of the spinal cord. One exception is the cerebellum which only contained few somatostatin-positive cell bodies and nerve fibers. It should be noted that somatostatin-positive cell bodies and fibers did not always conform to the boundaries of the classical neuroanatomical nuclei, but could often be found in areas between these well-established nuclei or occupying, in varying concentrations, only parts of such nuclei. It was difficult to identify with certainty somatostatin-immunoreactive axons in the animals studied. Some pathways could, however, be demonstrated, but further experimental studies are necessary to elucidate the exact projections of the somatostatin-immunoreactive neurons in the rat central nervous system.  相似文献   

17.
Summary Immunocytochemistry of fetal and adult monkey thalamus reveals a dense concentration of tachykinin immunoreactive fibers and terminals in the dorsolateral part of the VPM nucleus in which the contralateral side of the head, face and mouth is represented. The immunoreactive fibers enter the VPM nucleus from the thalamic fasciculus and electron microscopy reveals that they form large terminals resembling those of lemniscal axons and terminating in VPM on dendrites of relay neurons and on presynaptic dendrites of interneurons. Double labeling strategies involving immunostaining for tachykinins after retrograde labeling of brainstem neurons projecting to the VPM failed to reveal the origin of the fibers. The brainstem trigeminal nuclei, however, are regarded as the most likely sources of the VPM-projecting, tachykinin positive fibers.Abbreviations AB ambiguus nucleus - AN abducens nucleus - C cuneate nucleus - CD dorsal cochlear nucleus - CL central lateral nucleus - CM centre médian nucleus - D dendrite - DR dorsal raphe - DV dorsal vagal nucleus - EC external cuneate nucleus - FM medial longitudinal fasciculus - FN facial nucleus - G gracile nucleus - Gc gigantocellular reticular formation - HN hypoglossal nucleus - ICP inferior cerebellar peduncle - IO inferior olivary complex - LC locus coeruleus - LL lateral lemniscus - LM medial lemniscus - M5 motor trigeminal nucleus - NS solitary nucleus - OS superior olivary complex - P dendritic protrusion - Pb parabrachial nucleus - Pc parvocellular reticular formation - PLa anterior pulvinar nucleus - Pp prepositus hypoglossi nucleus - Ps presynaptic region - Py pyramidal tract - P5 principal sensory trigeminal nucleus - R reticular nucleus - RF reticular formation - RL lateral reticular nucleus - S5 spinal trigeminal nucleus - T terminal - T5 spinal trigeminal tract - VL lateral vestibular nucleus - VM medial vestibular nucleus - VMb basal ventral medial nucleus - VPI ventral posterior inferior nucleus - VPL ventral posterior lateral nucleus - VPM ventral posterior medial nucleus - VR ventral raphe - VS superior vestibular nucleus - VSp spinal vestibular nucleus - ZI zona incerta - 5 trigeminal nerve - 6 abducens nerve - 7 facial nerve  相似文献   

18.
Cytology and organization of rat cerebellar organ cultures   总被引:1,自引:0,他引:1  
Roller tube cultures of parasagittal cerebellar slices were taken from young rats aged 9-11 days, and maintained in vitro for 1-2 weeks. Morphological aspects of cell types and synaptic relationships in such organ cultures were examined at light and electron microscopic levels. Some neurons were marked by intracellular injections of horseradish peroxidase for subsequent identification of their connection patterns. Cytoarchitecture of the cerebellar cortex was largely preserved in the organ cultures. Dendritic trees of Purkinje cells exhibited isoplanar organizations that often resembled their orientation at the time of explanation. Other cerebellar neurons, namely granule cells, Golgi cells, basket cells, stellate cells, all differentiated within the organ cultures. In addition, some neurons of the deep cerebellar nuclei remained viable during the period of culture. Mossy fibers most probably of cerebellar nuclear origin were found terminating on the dendrites of granule cells and Golgi cells. Quite unexpected were certain types of direct synapses of afferent fibers on short necked spines arising from Purkinje cell smooth dendrites and somata. Such terminals resembled climbing fibers. They were most likely modified mossy fiber afferents, since the organ cultures did not include neurons of the inferior olive which are well spearated from the cerebellar mass at postnatal stages. These "ascending" mossy fibers presumably occupied postsynaptic surfaces that were either vacated by deafferentation or induced by the afferent fibers themselves. Intracellularly labeled Purkinje cells had widely distributed axonal collateral branches. Labeled axons were distributed within the Purkinje cell layer. Several recurrent Purkinje cell axon collaterals stained with reaction products of horseradish peroxidase tracer were followed at the ultrastructural level. In one case, labeled terminals were examined in an area of approximately 2 mm2. Terminals of Purkinje cell collaterals formed symmetric synapses with somata of basket cells and dendrites of Golgi cells, but not Purkinje cell somata. Some large boutons of serially traced Purkinje cell axon collaterals formed asymmetric contacts with profiles interpreted as Golgi cell dendrites. In contrast to the apparent axonal sprouting in cerebellar organ cultures, maturation of dendritic processes remained static. Astroglia cells of diverse shapes were observed following immunocytochemical staining with antisera to glia filament proteins. The distribution patterns of immunoreactive astrocytes changed dramatically in cerebellar slice cultures maintained for 3-6 weeks in vitro.  相似文献   

19.
The aim of the study was to analyze interactions between neuronal networks mediating centrally initiated movements and reflex reactions evoked by peripheral afferents; specifically whether interneurons in pathways from group Ib afferents and from group II muscle afferents mediate actions of reticulospinal neurons on spinal motoneurons by contralaterally located commissural interneurons. To this end reticulospinal tract fibers were stimulated in the contralateral medial longitudinal fascicle (MLF) in chloralose-anesthetized cats in which the ipsilateral half of the spinal cord was transected rostral to the lumbosacral enlargement. In the majority of interneurons mediating reflex actions of group Ib and group II afferents, MLF stimuli evoked either excitatory or inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) or both EPSPs and IPSPs attributable to disynaptic actions by commissural interneurons. In addition, in some interneurons EPSPs were evoked at latencies compatible with monosynaptic actions of crossed axon collaterals of MLF fibers. Intracellular records from motoneurons demonstrated that both excitation and inhibition from group Ib and group II afferents are modulated by contralaterally descending reticulospinal neurons. The results lead to the conclusion that commissural interneurons activated by reticulospinal neurons affect motoneurons not only directly, but also by enhancing or weakening activation of premotor interneurons in pathways from group Ib and group II afferents. The results also show that both excitatory and inhibitory premotor interneurons are affected in this way and that commissural interneurons may assist in the selection of reflex actions of group Ib and group II afferents during centrally initiated movements.  相似文献   

20.
 The central cervical nucleus (CCN) of the cat receives input from upper cervical muscle afferents, particularly primary spindle afferents. Its axons cross in the spinal cord, and while in the contralateral restiform body give off collaterals to the vestibular nuclei. In order to study the connections between CCN axons and vestibular neurons, we stimulated the area of the CCN in decerebrate cats while recording intra- or extracellularly from neurons in the contralateral vestibular nuclei. CCN stimulation evoked excitatory postsynaptic potentials (EPSPs) or extracellularly recorded firing in the lateral, medial and descending vestibular nuclei. The latency of EPSPs (mean 1.6 ms) was on average 0.4 ms longer than the latency of antidromic spikes evoked in the CCN by stimulation of the contralateral vestibular nuclei (mean 1.2 ms), demonstrating that the excitation was typically monosynaptic. The results provide further evidence that the CCN is an important excitatory relay between upper cervical muscle afferents and neurons in the contralateral vestibular nuclei. Received: 1 August 1996 / Accepted: 16 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号