首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to characterize the hepato-biliary transport of bivalent cations in more detail, the subcellular distribution of three steroidal muscle relaxants, that differ physicochemically and kinetically, was studied by differential centrifugation of liver homogenates. Binding of the muscle relaxants to macromolecular compounds was measured in Krebs-albumin solution, in cytosolic fraction of liver homogenate and in bile, to estimate the unbound concentrations in the particular fluids. Cytosol/plasma concentration ratios increased in the order pancuronium less than Org 6368 less than vecuronium, but for all of the compounds did not exceed the value that would be attained by passive equilibration according to the membrane potential. The subcellular distribution patterns of the three substances indicated that the mitochondrial fraction is a major storage compartment in the liver. Yet Org 6368 was bound to the particulate fraction of liver homogenate to a larger extent than pancuronium and vecuronium. The high bile/cytosol concentration ratios indicate that for all of these cations an active transport system is involved in the biliary excretion process. For Org 6368 and vecuronium the bile/cytosol concentration ratios are in the same range (about 30) and substantially higher than for pancuronium (about 6). This suggests that for Org 6368 and vecuronium the transport across the canalicular membrane is more efficient than for pancuronium. The combined data indicate that the extensive binding of Org 6368 to particles within the cell is a major factor in the relative efficient hepatic uptake and the modest biliary excretion of this agent. The limited hepato-biliary transport of pancuronium appears to be due to a relatively small net transport, both at the sinusoidal land at the canalicular membrane.  相似文献   

2.
Clinical pharmacokinetics of neuromuscular blocking drugs.   总被引:5,自引:0,他引:5  
Neuromuscular blocking agents provide muscle relaxation for a great variety of surgical procedures with light planes of general anaesthesia. Besides having a significant impact in the development of anaesthesia and surgery, these agents continue to play an important role as pharmacological tools in the elucidation of the physiological and pharmacological regulation of neuromuscular transmission and the morphofunctional organisation of the neuromuscular junction. In the daily practice of anaesthesia, muscle relaxants are considered to be safe drugs with predictable, straightforward pharmacological actions. However, the use of relaxants constitutes a deliberate encroachment on respiration, one of the most important physiological mechanisms. The pharmacokinetic behaviour of this class of agents is little influenced by age or anaesthetic agents; however, hepatic or renal disease may profoundly alter their excretion pattern, resulting in prolonged duration of neuromuscular blockade. Biotransformation plays an important role in the total elimination of recently introduced compounds. Consequently, knowledge of the disposition pharmacokinetics, excretion and biotransformation of this class of drugs is indispensable for their rational choice for various surgical procedures. In this review, the known pharmacokinetics of standard compounds (introduced before 1980) are briefly summarised and new information generated by the development of vecuronium, rocuronium, pipecuronium (steroidal agents) and atracurium, mivacurium, doxacurium (benzylisoquinolinium esters) is discussed in more detail.  相似文献   

3.
The effect of glycerol-induced acute renal failure (ARF) on the disposition and elimination of the organic cation [3H]N-acetyl procainamide ethobromide (APAEB) was investigated in the rat. In rats with ARF the plasma clearance, rate constant for the terminal portion of the plasma concentration-time curve and apparent volume of distribution were all decreased (P less than 0.01). Furthermore, the renal clearance of APAEB and the percentage dose excreted in urine were reduced by 85 and 74%, respectively. Decreased renal excretion probably accounted for the altered kinetics of APAEB in ARF because ligation of the renal pedicles of control rats produced changes in the kinetics of APAEB that were similar to those seen in animals with ARF. No change in either the hepatic content of APAEB or its biliary excretion were detected in rats with ARF. Similarly, the hepatic handling of ouabain and taurocholic acid was previously found to be unaltered in ARF; but by contrast, the hepatic uptake and initial biliary excretion of bromosulphophthalein and indocyanine green were decreased (Bowmer & Yates 1984, Br. J. Pharmacol. 83: 773-782). Together these studies indicate that there is a selective impairment of hepato-biliary transport in ARF.  相似文献   

4.
Purpose  The suitability of fexofenadine as a probe substrate to assess hepatobiliary transport function in humans was evaluated by pharmacokinetic modeling/simulation and in vitro/in situ studies using chemical modulators. Methods  Simulations based on a pharmacokinetic model developed to describe fexofenadine disposition in humans were conducted to examine the impact of altered hepatobiliary transport on fexofenadine disposition. The effect of GF120918 on fexofenadine disposition was evaluated in human sandwich-cultured hepatocytes (SCH). Additionally, the effect of GF120918, bosentan, and taurocholate on fexofenadine disposition in perfused livers from TR Wistar rats was examined. Results  Based on modeling/simulation, fexofenadine systemic exposure was most sensitive to changes in the hepatic uptake rate constant, and did not reflect changes in hepatic exposure due to altered hepatic efflux. GF120918 did not impair fexofenadine biliary excretion in human SCH. GF120918 coadministration significantly decreased Cl’biliary to 27.5% of control in perfused rat livers. Conclusions  Simulations were in agreement with perfused liver data which predicted changes in fexofenadine systemic exposure primarily due to altered hepatic uptake. Fexofenadine is not a suitable probe to assess hepatic efflux function based on systemic concentrations. GF120918-sensitive protein(s) mediate fexofenadine biliary excretion in rat liver, whereas in human hepatocytes multiple efflux proteins are involved in fexofenadine hepatobiliary disposition.  相似文献   

5.
PURPOSE: Transport of the hepatobiliary scintigraphy agent Tc-99m mebrofenin (MEB) was characterized and simulation studies were conducted to examine the effects of altered hepatic transport on MEB pharmacokinetics in humans. METHODS: MEB transport was investigated in Xenopus laevis oocytes expressing OATP1B1 or OATP1B3, and in membrane vesicles prepared from HEK293 cells transfected with MRP2 or MRP3. A pharmacokinetic model was developed based on blood, urine and bile concentration-time profiles obtained in healthy humans, and the effect of changes in hepatic uptake and/or excretion associated with disease states (hyperbilirubinemia and cholestasis) on MEB disposition was simulated. RESULTS: MEB (80 pM) transport by OATP1B1 and OATP1B3 was inhibited by rifampicin (50 microM) to 10% and 4% of control, respectively. MEB (0.4 nM) transport by MRP2 was inhibited to 12% of control by MK571 (50 microM); MRP3-mediated transport was inhibited to 5% of control by estradiol-17-beta-glucuronide (100 microM). A two-compartment model described MEB (2.5 mCi) systemic disposition in humans (systemic clearance = 16.2 +/- 2.7 ml min(-1) kg(-1)); biliary excretion was the predominant route of hepatic elimination (efflux rate constants ratio canalicular/sinusoidal = 3.4 +/- 0.8). Based on simulations, altered hepatic transport markedly influenced MEB systemic and hepatic exposure. CONCLUSIONS: MEB may be a useful probe to assess how altered hepatic function at the transport level modulates hepatobiliary drug disposition.  相似文献   

6.
1. A new in vivo experimental method is described whereby the neuromuscular blocking effects of muscle relaxants can be investigated on the intrinsic laryngeal muscles of anaesthetized cats. The peripheral tibialis anterior muscle preparation is employed in the same animal to compare the blocking effect on both preparations. 2. The intrinsic laryngeal muscles react with different sensitivities to the neuromuscular blocking agents when compared to the tibialis anterior muscle. 3. The neuromuscular response in both muscle preparations is similar with steroidal agents but appeared to be different after suxamethonium or isoquinoline analogues. 4. It is concluded that this preparation may become a useful tool for studying new muscle relaxants developed to facilitate rapid intubation conditions.  相似文献   

7.
Carrier-mediated transport of drugs occurs in various tissues in the body and may largely affect the rate of distribution and elimination. Saturable translocation mechanisms allowing competitive interactions have been identified in the kidneys (tubular secretion), mucosal cells in the gut (intestinal absorption and secretion), choroid plexus (removal of drug from the cerebrospinal fluid), and liver (hepatobiliary excretion). Drugs with quaternary and tertiary amine groups represent the large category of organic cations that can be transported via such mechanisms. The hepatic and to a lesser extent the intestinal cation carrier systems preferentially recognize relatively large molecular weight amphipathic compounds. In the case of multivalent cationic drugs, efficient transport only occurs if large hydrophobic ring structures provide a sufficient lipophilicity-hydrophilicity balance within the drug molecule. At least two separate carrier systems for hepatic uptake of organic cations have been identified through kinetic and photoaffinity labeling studies. In addition absorptive endocytosis may play a role that along with proton-antiport systems and membrane potential driven transport may lead to intracellular sequestration in lysosomes and mitochondria. Concentration gradients of inorganic ions may represent the driving forces for hepatic uptake and biliary excretion of drugs. Recent studies that aim to the identification of potential membrane carrier proteins indicate multiple carriers for organic anions, cations, and uncharged compounds with molecular weights around 50,000 Da. They may represent a family of closely related proteins exhibiting overlapping substrate specificity or, alternatively, an aspecific transport system that mediates translocation of various forms of drugs coupled with inorganic ions. Consequently, extensive pharmacokinetic interactions can be anticipated at the level of uptake and secretion of drugs regardless of their charge.  相似文献   

8.
Carrier-mediated transport of drugs occurs in various tissues in the body and may largely affect the rate of distribution and elimination. Saturable translocation mechanisms allowing competitive interactions have been identified in the kidneys (tubular secretion), mucosal cells in the gut (intestinal absorption and secretion), choroid plexus (removal of drug from the cerebrospinal fluid), and liver (hepatobiliary excretion). Drugs with quaternary and tertiary amine groups represent the large category of organic cations that can be transported via such mechanisms. The hepatic and to a lesser extent the intestinal cation carrier systems preferentially recognize relatively large molecular weight amphipathic compounds. In the case of multivalent cationic drugs, efficient transport only occurs if large hydrophobic ring structures provide a sufficient lipophilicity-hydrophilicity balance within the drug molecule. At least two separate carrier systems for hepatic uptake of organic cations have been identified through kinetic and photoaffinity labeling studies. In addition absorptive endocytosis may play a role that along with proton-antiport systems and membrane potential driven transport may lead to intracellular sequestration in lysosomes and mitochondria. Concentration gradients of inorganic ions may represent the driving forces for hepatic uptake and biliary excretion of drugs. Recent studies that aim to the identification of potential membrane carrier proteins indicate multiple carriers for organic anions, cations, and uncharged compounds with molecular weights around 50,000 Da. They may represent a family of closely related proteins exhibiting overlapping substrate specificity or, alternatively, an aspecific transport system that mediates translocation of various forms of drugs coupled with inorganic ions. Consequently, extensive pharmacokinetic interactions can be anticipated at the level of uptake and secretion of drugs regardless of their charge.  相似文献   

9.
Troglitazone sulfate (TGZS) is the major metabolite of troglitazone (TGZ), an antidiabetic agent, and thought to be a cause of the cholestasis induced by TGZ. The aim of the present study is to elucidate the involvement of breast cancer resistance protein (BCRP/ABCG2) in the hepatic disposition of TGZS. The basal-to-apical transport of TGZS was enhanced in organic anion transporting polypeptide 1B1-expressing Madin-Darby canine kidney II cells by infection of recombinant adenovirus harboring human BCRP and mouse Bcrp cDNA. TGZS was given to wild-type and Bcrp (-/-) mice by constant infusion. Biliary excretion is the predominant elimination pathway of TGZS in wild-type mice, and the biliary excretion clearance of TGZS with regard to the hepatic concentration was reduced to 30% of the control in Bcrp (-/-) mice. However, plasma and hepatic concentrations were unchanged, suggesting induction of compensatory mechanisms in Bcrp (-/-) mice for the elimination of TGZS. Involvement of BCRP in the intestinal efflux transport of TGZS was examined using everted sacs. The mucosal efflux clearance of TGZS showed only a slight reduction (15% reduction) in Bcrp (-/-) mice. Our results suggest that BCRP plays a major role in the biliary excretion but a minor role in the intestinal transport of TGZS.  相似文献   

10.
Relation between kidney and liver in the excretion of drugs depends on the physicochemical properties of each substance tested. The calculations of this relationship are based on a so-called rank coefficient (0-100) calculated from molecular weight, lipophilicity, degree of dissociation under physiological conditions, and protein binding rate. The results of the correlation between one of these physicochemical values and drug elimination were stochastically. Experiments were performed with 9 test substances which were distinctly different concerning their physicochemical features. Substances with a rank coefficient less than 20 (low molecular weight, low lipophilicity, preferentially ionic at pH 7.4) are eliminated effectively via the kidney. Compounds having an intermediate rank coefficient (40-60) were quantitatively excreted into urine as well. For drugs with high ranks greater than 60 (high values of molecular weight, protein binding, and lipophilicity, almost exclusively nonionic), renal excretion can be neglected. Quite inverse relations between ranks and hepatic excretion have been found: low ranks indicate an ineffective secretion of the respective drug into bile. With increasing ranks (40-60), biliary excretion increases and reaches a maximum (approximately 40% of supply). This maximum is caused by limited hepatic blood flow and by the capacity of hepatic uptake carriers. Blockade of one elimination pathway (bilateral nephrectomy or bile duct ligation) is followed by a sufficient compensation of drug excretion via the alternative elimination route only, if the test substance belongs to the intermediate group (ranks between 40 and 60). For substances with high or low ranks a compensation of drug excretion can be excluded.  相似文献   

11.
The effects of glycerol-induced acute renal failure (ARF) and surgically induced chronic renal failure (CRF) on the pharmacokinetics and biliary excretion of rose bengal have been examined in the rat. Both the pharmacokinetics and biliary excretion of rose bengal were unaltered in either ARF or CRF. The latter results in CRF contrast with those of Tse et al (1976, Int. J. Nucl. Med. Biol. 3: 134-137) who reported decreased removal of the dye from blood and reduced biliary excretion. In addition, rose bengal behaves differently from bromosulphophthalein and indocyanine green whose hepatic uptake and initial biliary excretion are known to be decreased in ARF. The results suggest that rose bengal may have a hepato-biliary transport route which differs from that of bromosulphophthalein and indocyanine green, and the findings also emphasize the selective nature of altered organic anion uptake by the liver in ARF.  相似文献   

12.
转运体在药物经肝脏清除过程中的作用   总被引:3,自引:0,他引:3  
Gao CY  Chen XY  Zhong DF 《药学学报》2012,47(5):565-572
肝脏在药物的体内清除过程中具有重要作用,它不仅是药物代谢的主要场所,还控制着药物及其代谢物的胆汁排泄过程。转运体是控制细胞内外物质传输的一类功能性膜蛋白,其在肝脏有广泛表达,并能对药物进入肝细胞以及排泄至胆汁的过程进行调控,因而,对于肝脏清除过程具有重要作用。本文从肝脏中重要转运体的分布、功能以及底物选择性出发,对其在药物的肝脏清除中的作用、由其引起的药物药物相互作用以及重要转运体的基因多态性研究进行了综述。  相似文献   

13.
Moxifloxacin is a novel antibacterial agent that undergoes extensive metabolism in the liver to the glucuronide M1 and the sulfate M2, which are eliminated via the bile. To investigate the role of the multidrug resistance-associated protein (Mrp2) as the hepatic transport system for moxifloxacin and its conjugates, livers of Wistar and Mrp2-deficient TR- rats were perfused with moxifloxacin (10 microM) in a single-pass system. Values for the hepatic extraction ratio (E) and clearance (Cl) were insignificantly higher in TR- rats than Wistar rats (0.193+/-0.050 vs 0.245+/-0.050 for E; 6.85+/-1.96 vs 8.73+/-1.82 mL min(-1) for Cl), whereas biliary excretion and efflux into perfusate over 60 min were significantly lower in the mutant rat strain. Cumulative biliary excretion of M1, M2 and moxifloxacin was significantly reduced to 0.027%, 19.1%, and 29.6% in the TR- rats compared with Wistar rats, indicating that the biliary elimination of M1 is mediated exclusively by Mrp2, whereas that of M2 and moxifloxacin seems to depend mostly on Mrp2 and, to a smaller extent, a further unidentified canalicular transporter. Moxifloxacin stimulates bile flow by up to 11% in Wistar rats, but not in TR- rats, further supporting an efficient transport of this drug and its glucuronidated and sulfated metabolites by Mrp2. Moxifloxacin (10 microM) also reversibly inhibited the Mrp2-mediated biliary elimination of bromsulphthalein in Wistar rats by 34%, indicating competition with the elimination of Mrp2-specific substrates. In conclusion, we found that Mrp2 mediates the biliary elimination of moxifloxacin and its glucuronidated and sulfated metabolites in rats. MRP2 may therefore play a key role in the transport of moxifloxacin and its conjugates into bile in humans.  相似文献   

14.
Rapid and extensive biliary excretion of [D-penicillamine2,5]enkephalin (DPDPE) in rats as the unchanged peptide suggests that multiple transport proteins may be involved in the hepatobiliary disposition of this zwitterionic peptide. Although DPDPE is a P-glycoprotein substrate, the role of other transport proteins in the hepatic clearance of DPDPE has not been established. Furthermore, the ability of various experimental approaches to quantitate the contribution of a specific hepatic uptake or excretion process when multiple transport systems are involved has not been addressed. 3H-DPDPE uptake in suspended Wistar rat hepatocytes was primarily (>95%) due to temperature-dependent transport mechanisms; similar results were obtained in suspended hepatocytes from Mrp2-deficient (TR-) rats. Pharmacokinetic modeling revealed that saturable and linear processes were involved in 3H-DPDPE uptake in hepatocytes. The use of transport modulators suggested that hepatic uptake of 3H-DPDPE was mediated by Oatp1a1, Oatp1a4, and likely Oatp1b2. Accumulation of 3H-DPDPE in sandwich-cultured (SC) hepatocytes was rapid; uptake of 3H-DPDPE in SC rat hepatocytes from control and TR- rats was similar. However, the biliary excretion index and biliary clearance decreased by 83 and 85%, respectively, in TR- SC rat hepatocytes, indicating that DPDPE is an Mrp2 substrate. Rate constants for uptake and excretion of 3H-DPDPE in SC rat hepatocytes were determined by pharmacokinetic modeling; data were consistent with basolateral excretion of 3H-DPDPE from the hepatocyte. These results demonstrate the complexities of hepatobiliary disposition when multiple transport mechanisms are involved for a given substrate and emphasize the necessity of multi-experimental approaches for the comprehensive resolution of these processes.  相似文献   

15.
In this study, the hepatic metabolism and transport system for resveratrol was examined in isolated perfused livers from Wistar and Mrp2-deficient TR(-) rats. Based on extensive metabolism to six glucuronides and sulfates (M1-M6), the hepatic extraction ratio and clearance of resveratrol was very high in Wistar and TR(-) rats (E: 0.998 vs. 0.999; Cl: 34.9 mL/min vs. 36.0 mL/min). However, biliary excretion and efflux of conjugates differs greatly in TR(-) rats. While cumulative biliary excretion of the glucuronides M1, M2, M3, and M5 dropped dramatically to 0-6%, their efflux into perfusate increased by 3.6-, 1.8-, 2.5-, and 1.5-fold. In contrast, biliary secretion of the sulfates M4 and M6 was partially maintained in the Mrp2-deficient rats (61% and 39%) with a concomitant decline of their efflux into perfusate by 33.2% and 78.1%. This indicates that Mrp2 exclusively mediates the biliary excretion of resveratrol glucuronides but only partly that of sulfates. Cumulative secretion of unconjugated resveratrol into bile of TR(-) rats was only reduced by 40%, and into perfusate by 19%, suggesting only a minor role of Mrp2 in resveratrol elimination. In summary, resveratrol was dose-dependently metabolized to several conjugates whereby the canalicular transporter Mrp2 selectively mediated the biliary excretion of glucuronides.  相似文献   

16.
Three quaternary ammonium compounds (QACs) with different lipophilicity, triethylmethyl ammonium iodide (TEMA), tripropylmethyl ammonium iodide (TPMA) and tri-n-butylmethyl ammonium iodide (TBuMA) were given as a bolus injection of 10 mumole and 1 mumole in an isolated perfused liver. TPMA and TBuMA exhibited saturation kinetics at a dose of 10 mumole, but not when 1 mumole of the agents was given. Biliary clearance of TEMA was equal to the bile flow (0.010 ml/min), whereas for TPMA and TBuMA much higher values of 0.8 ml/min and 2.2 ml/min were found respectively. Partition coefficients of TEMA, TPMA and TBuMA between n-octanol and Krebsbicarbonate solution were 0.0013, 0.013 and 0.14 respectively. Liver-to-plasma concentration ratios were 4, 16 and 30 in the post-distribution phase, whereas bile-to-liver ratios were calculated to be 0.1, 1.3 and 14 respectively. The latter parameter varied roughly proportionally to the lipophilicity of the compounds. The liver/plasma concentration ratios corrected for intracellular binding exceeded a value of 12 indicating that accumulation in the liver of these agents cannot soley be explained by passive equilibration according to the membrane potential. Transport from liver into the bile of TPMA and TBuMA presumably also occurred against an electrochemical gradient. It was inferred that the small molecular weight compounds such as TEMA, can be transported from plasma into bile paracellularly by a passive process. Rapid uptake into the liver of such compounds may not lead to an appreciable biliary output and can even reduce the rate of biliary excretion. QACs with intermediate or high lipophilicity are transported by carrier mediated processes both at the level of hepatocyte uptake and bile canalicular transport. The influence of choleresis on hepato-biliary transport of the three QACs was investigated by giving sodium taurocholate (Tc) by constant infusion of 60 mumole/hr, increasing bile flow from 9 to 16 microliter/min. The biliary output of TEMA appeared to be basically unaffected, whereas the biliary excretion of TPMA and TBuMA was clearly elevated when the bile flow was increased. The stimulatory influence of taurocholate on the biliary output of the latter organic cations is explained by an increased net uptake of these agents into the liver and an increased net canalicular transport. This effect is proposed to be due to a reduced reabsorption from the biliary tree as a consequence of the higher bile flow and/or biliary micelle binding. Taurocholate increased liver-to-plasma ratios.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Fexofenadine (FEX) is mainly eliminated from the liver into bile in unchanged form. We demonstrated previously that organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are involved in the hepatic uptake of FEX. However, little is known about the mechanisms controlling the hepatic efflux of FEX from the liver to bile and blood. In the present study, the involvement of hepatic efflux transporters in the pharmacokinetics of FEX was investigated in both in vitro and in vivo studies. Vectorial transport of FEX was observed in OATP1B3/human bile salt export pump (hBSEP) double transfectants but not in OATP1B3/human breast cancer resistance protein double transfectants, which indicates the possible contribution of hBSEP to the biliary excretion of FEX in humans. In multidrug resistance-associated protein 2 (Mrp2)(-/-) mice, the biliary excretion clearance based on the plasma concentration and the liver-to-plasma concentration ratio significantly decreased, whereas the biliary excretion clearance based on the liver concentration decreased only with 20%, suggesting the minimum contribution of Mrp2 to its biliary excretion. ATP-dependent transport of FEX was observed in hMRP3-enriched membrane vesicles but not hMRP4. In Mrp3(-/-) mice, the biliary excretion clearance based on both the plasma and liver concentration and the liver-to-plasma concentration ratio increased, suggesting the significant contribution of Mrp3 to its sinusoidal efflux and the up-regulation of its biliary excretion in Mrp3(-/-) mice. On the other hand, pharmacokinetics of FEX remained unchanged in Mrp4(-/-) mice. This information provides a novel insight into the transporters important for FEX disposition.  相似文献   

18.
The disposition kinetics of [3H]taurocholate ([3H]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. The serum biochemistry levels, the outflow profiles and biliary recovery of [3H]TC were measured in three experimental groups: (i) control; (ii) 17 alpha-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [3H]TC in the normal and cholestatic livers better than the other pharmacokinetic models. An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [3H]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. There were good correlations between the predicted and observed pharmacokinetic parameters of [3H]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [3H]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.  相似文献   

19.
Valsartan is a highly selective angiotensin II AT1-receptor antagonist for the treatment of hypertension. Valsartan is mainly excreted into the bile in unchanged form. Because valsartan has an anionic carboxyl group, we hypothesized that a series of organic anion transporters could be involved in its hepatic clearance. In this study, to identify transporters that mediate the hepatic uptake and biliary excretion of valsartan and estimate the contribution of each transporter to the overall hepatic uptake and efflux, we characterized its transport using transporter-expressing systems, human cryopreserved hepatocytes, and Mrp2-deficient Eisai hyperbilirubinemic rats (EHBRs). Valsartan was significantly taken up into organic anion-transporting polypeptide (OATP) 1B1 (OATP2/OATP-C)- and OATP1B3 (OATP8)-expressing HEK293 cells. We also observed saturable uptake into human hepatocytes. Based on our estimation, the relative contribution of OATP1B1 to the uptake of valsartan in human hepatocytes depends on the batch, ranging from 20 to 70%. Regarding efflux transporters, the ratio of basal-to-apical transcellular transport of valsartan to that in the opposite direction in OATP1B1/MRP2 (multidrug resistance-associated protein 2) double transfected cells was the highest among the three kinds of double transfectants, OATP1B1/MRP2, OATP1B1/multi-drug resistance 1, and OATP1B1/breast cancer resistance protein-expressing MDCKII cells. We observed saturable ATP-dependent transport into membrane vesicles expressing human MRP2. We also found that the elimination of intravenously administered valsartan from plasma was markedly delayed, and the biliary excretion was severely impaired in EHBR compared with normal Sprague-Dawley rats. These results suggest that OATP1B1 and OATP1B3 as the uptake transporters and MRP2 as the efflux transporter are responsible for the efficient hepatobiliary transport of valsartan.  相似文献   

20.
BACKGROUND: Biliary excretion is a major elimination route of many drugs and their metabolites. Hepatobiliary elimination is a vectorial process involving uptake transporters in the basolateral hepatocyte membrane, possibly Phase I and Phase II metabolizing enzymes, and ATP-dependent efflux pumps in the apical hepatocyte membrane. OBJECTIVES: Because many drugs and their metabolites are anions, this review focuses on transporters involved in their hepatocellular uptake (members of the organic anion transporting polypeptide (OATP) family) and biliary elimination (apical conjugate efflux pump ABCC2/MRP2). METHODS: The molecular and functional characteristics of the human OATP and ABCC/MRP transporters are presented, including a detailed overview of endogenous and drug substrates. Examples illustrate the interplay of transporters with Phase II conjugating enzymes. Model systems to study the vectorial transport of organic anions are also discussed. RESULTS/CONCLUSIONS: OATP uptake transporters, conjugating enzymes, and ABCC2/MRP2 work in concert to enable the hepatobiliary elimination of anionic drugs and their metabolites. It is increasingly important to understand how genetic variants of these transporters and enzymes influence the interindividual variability of drug elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号