首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that the activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) increases during acidosis in cardiac muscle. Thus we have investigated the role of CaMKII during acidosis by monitoring intracellular Ca2+ (using fura-2) and ICa (using the perforated patch clamp technique) during acidosis, in the absence and presence of the CaMKII inhibitor KN-93, in rat isolated ventricular myocytes. In the absence of KN-93, acidosis (pH 6.5) increased the amplitude of the fura-2 transient and prolonged its decay, but in the presence of KN-93 acidosis did not alter the amplitude and prolonged the decay more. In the absence of KN-93, acidosis increased the amplitude of the caffeine-induced fura-2 transient but did not alter its amplitude in the presence of KN-93. ICa did not change significantly during acidosis in the absence of KN-93 but decreased during acidosis in the presence of KN-93. These results suggest that activation of CaMKII during acidosis helps to compensate for the direct inhibitory effects of acidosis on sarcoplasmic reticular Ca2+ uptake and ICa.  相似文献   

2.
Long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn may be relevant to hyperalgesia, an increased response to noxious stimulation. The mechanism underlying this form of synaptic plasticity is, however, still unclear. Considerable evidence has shown that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), and protein kinase C (PKC) are important for LTP in hippocampus. In this study, the roles of these three protein kinases in the induction and maintenance of LTP of C-fiber-evoked field potentials were evaluated by application of specific inhibitors of CaMKII (KN-93 and AIP), PKA (Rp-CPT-cAMPS), and PKC (chelerythrine and G? 6983) at the recording segments before and after LTP induction in urethane-anesthetized Sprague-Dawley rats. We found both KN-93 and AIP, when applied at 30 min prior to tetanic stimulation, completely blocked LTP induction. At 30 min after LTP induction, KN-93 and AIP reversed LTP completely, and at 60 min after LTP induction, they depressed spinal LTP in most rats tested. Three hours after LTP induction, however, KN-93 or AIP did not affect the spinal LTP. Rp-CPT-cAMPS, chelerythrine, and G? 6983 blocked the spinal LTP when applied at 30 min before tetanic stimulation and reversed LTP completely at 15 min after LTP induction. In contrast, at 30 min after LTP induction, the drugs never affected the spinal LTP. These results suggest that activation of CaMKII, PKA, and PKC may be crucial for the induction and the early-phase but not for the late-phase maintenance of the spinal LTP.  相似文献   

3.
Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role modulating cardiac function in both health and disease. Here, we determined the effect of chronic CaMKII inhibition during an exercise training program in healthy mice. CaMKII was inhibited by KN-93 injections. Mice were randomized to the following groups: sham sedentary, sham exercise, KN-93 sedentary, and KN-93 exercise. Cardiorespiratory function was evaluated by ergospirometry during treadmill running, echocardiography, and cardiomyocyte fractional shortening and calcium handling. The results revealed that KN-93 alone had no effect on exercise capacity or fractional shortening. In sham animals, exercise training increased maximal oxygen uptake by 8% (p < 0.05) compared to a 22% (p < 0.05) increase after exercise in KN-93 treated mice (group difference p < 0.01). In contrast, in vivo fractional shortening evaluated by echocardiography improved after exercise in sham animals only: from 25 to 32% (p < 0.02). In inactive mice, KN-93 reduced rates of diastolic cardiomyocyte re-lengthening (by 25%, p < 0.05) as well as Ca2+ transient decay (by 16%, p < 0.05), whereas no such effect was observed after exercise training. KN-93 blunted exercise training response on cardiomyocyte fractional shortening (63% sham vs. 18% KN-93; p < 0.01 and p < 0.05, respectively). These effects could not be solely explained by the Ca2+ transient amplitude, as KN-93 reduced it by 20% (p < 0.05) and response to exercise training was equal (64% sham and 47% KN-93; both p < 0.01). We concluded that chronic CaMKII inhibition increased time to 50% re-lengthening which were recovered by exercise training, but paradoxically led to a greater increase in maximal oxygen uptake compared to sham mice. Thus, the effect of chronic CaMKII inhibition is multifaceted and of a complex nature.  相似文献   

4.
Microinjection of the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 into the nucleus accumbens (NAcc) shell impairs expression of the sensitized locomotion and NAcc dopamine (DA) overflow normally observed in psychostimulant-exposed rats. Based on these results, we investigated the effect of NAcc shell KN-93 on the enhanced amphetamine (AMPH) intake normally observed in AMPH- relative to saline-exposed rats. Rats were administered five injections of either AMPH (1.5mg/kg, i.p.) or saline, one injection every 2-3 days. Fourteen days following the last injection, they were trained to self-administer AMPH (200mug/kg/infusion, i.v.) first on fixed ratio schedules (FR) and then on a progressive ratio schedule of reinforcement (PR). As expected, AMPH-exposed rats worked harder and obtained significantly more drug infusions than saline-exposed rats on the PR schedule. After 4 days of stable responding, all rats were bilaterally microinjected with KN-93 (1 or 10nmol/0.5mul/side) into the NAcc shell, 2min prior to the beginning of the self-administration session. Inhibiting CaMKII in this site reduced the enhanced drug intake observed in AMPH-exposed rats to levels no longer significantly different from those of saline-exposed rats. Responding in these latter controls was not affected by KN-93 nor did KN-93 affect responding in AMPH-exposed rats when it was infused into the NAcc core. Thus, in a manner similar to what has been reported for sensitized locomotion and NAcc DA overflow, these results suggest that inhibiting CaMKII in the NAcc shell attenuates the enhanced motivation to obtain a drug reinforcer that is normally displayed in AMPH-exposed rats.  相似文献   

5.
Lu L  Zeng S  Liu D  Ceng X 《Neuroscience letters》2000,291(3):191-195
Learning and memory have been suggested to play an important role in the development of opiate addiction. Based on the recent finding that calcium/calmodulin protein kinase II (CaMKII) is essential in learning and memory processes, the present study was performed to examine whether inhibition of hippocampal and amygdala CaMKII prevents the dependence and relapse to morphine. The results showed that inhibition of CaMKII by microinjection of specific inhibitors KN-62 into hippocampus decreased the morphine withdrawal syndromes induced by opiate antagonist naloxone. In contrast, inhibition of CaMKII in amygdala failed to do so. Microinjection of KN-62 into both hippocampus and amygdala suppressed the development of formation and reactivation of morphine conditioned place preference (CPP). However, inhibition of CaMKII in amygdala, but not in hippocampus, could attenuate the maintenance of morphine CPP. These results suggest that hippocampal CaMKII is critically involved in the development of morphine physical and psychological dependence, and amygdala CaMKII is some different from hippocampal CaMKII in regulating the dependence and relapse to opiates. Inhibition of this kinase may have some therapeutic benefit in the treatment of opiate dependence and relapse.  相似文献   

6.
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a family of multifunctional protein kinases that activates signaling pathways. The present study was designed to ascertain whether CaMKII could play a substantial role in the expression of morphine-induced antinociception, hyperlocomotion and rewarding effect in the mouse. An i.c.v. pretreatment with a CaMKII inhibitor KN-93 failed to affect the antinociception and hyperlocomotion induced by s.c. administration of a prototype micro-opioid receptor agonist morphine. In contrast, the morphine-induced place preference was significantly attenuated by i.c.v. pretreatment with KN-93. The levels of phosphorylated-CaMKII (p-CaMKII) in the limbic forebrain, but not in the frontal cortex and the lower midbrain, were significantly increased in morphine-conditioned mice, whereas the levels of CaMKII in three brain regions obtained from morphine-conditioned mice were not changed. This up-regulation of p-CaMKII in the limbic forebrain obtained from morphine-conditioned mice was significantly inhibited by i.c.v. pretreatment with KN-93. These results provide evidence that the increase in CaMKII activity in the mouse limbic forebrain may contribute to the rewarding effect, but not the antinociception and the hyperlocomotion, induced by morphine.  相似文献   

7.
8.
LIM-kinase 1 (LIMK1) regulates actin cytoskeletal reorganization by phosphorylating and inactivating actin-depolymerizing factor and cofilin. We examined the role of LIMK1 in brain-derived neurotrophic factor (BDNF)-induced neuritogenesis in primary-cultured rat cortical neurons. Knockdown of LIMK1 or expression of a kinase-dead LIMK1 mutant suppressed BDNF-induced enhancement of primary neurite formation. By contrast, expression of an active form of LIMK1 promoted primary neuritogenesis in the absence of BDNF. BDNF-induced neuritogenesis was inhibited by KN-93, an inhibitor of Ca2+/calmodulin-dependent protein kinases (CaMKs), but not by STO-609, an inhibitor of CaMK-kinase (CaMKK). CaMKK activity is required for the activation of CaMKI and CaMKIV, but not CaMKII, which suggests that CaMKII is principally involved in BDNF-induced enhancement of neuritogenesis. Knockdown of CaMKIIβ, but not CaMKIIα, suppressed BDNF-induced neuritogenesis. Active CaMKIIβ promoted neuritogenesis, and this promotion was inhibited by knockdown of LIMK1, indicating that CaMKIIβ is involved in BDNF-induced neuritogenesis via activation of LIMK1. Furthermore, in vitro kinase assays revealed that CaMKIIβ phosphorylates LIMK1 at Thr-508 in the kinase domain and activates the cofilin-phosphorylating activity of LIMK1. In summary, these results suggest that CaMKIIβ-mediated activation of LIMK1 plays a crucial role in BDNF-induced enhancement of primary neurite formation.  相似文献   

9.
10.
11.
The N-methyl-D-aspartic acid (NMDA) receptor-dependent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) is necessary for induction of the long-term potentiation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated responses in the CA1 region of the hippocampus, a putative model for learning and memory. We analyzed the interplay among NMDA receptor, CaMKII and AMPA receptor during consolidation of the memory for an inhibitory avoidance learning task in the rat. Bilateral intra-CA1 infusion of the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (AP5) or of the CaMKII inhibitor 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) (KN-93) immediately after step-down inhibitory avoidance training hindered memory consolidation. Learning of the avoidance response induced the NMDA receptor-dependent translocation of alphaCaMKII to a postsynaptic density-enriched fraction isolated from dorsal CA1 and the autophosphorylation of this kinase at Thr-286. Step-down inhibitory avoidance training increased the quantity of GluR1 and GluR2/3 AMPA receptor subunits and the phosphorylation of GluR1 at Ser-831 but not at Ser-845 in CA1 postsynaptic densities. The intra-CA1 infusion of KN-93 and AP5 blocked the increases in GluR1 and GluR2/3 levels and the phosphorylation of GluR1 brought on by step-down inhibitory avoidance training. Our data suggest that step-down inhibitory avoidance learning promotes the learning-specific and NMDA receptor-dependent activation of CaMKII in the CA1 region of the dorsal hippocampus and that this activation is necessary for phosphorylation and translocation of AMPA receptor to the postsynaptic densities, similarly to what happens during long-term potentiation.  相似文献   

12.
13.
Seo YJ  Kwon MS  Choi HW  Choi SM  Kim YW  Lee JK  Park SH  Jung JS  Suh HW 《Neuroscience》2008,156(3):436-449
In the present study, we characterized differential expressions of phosphorylated Ca(2+)/calmodulin-dependent protein kinase IIalpha (pCaMKIIalpha) and phosphorylated extracellular signal-regulated protein (pERK) in the mouse hippocampus induced by various nociceptive stimuli. In an immunoblot study, s.c. injection of formalin and intrathecal (i.t.) injections of glutamate, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1 beta) significantly increased pCaMKIIalpha expression in the hippocampus, but i.p. injections of acetic acid did not. pERK1/2 expression was also increased by i.t. injection of glutamate, TNF-alpha, and IL-1beta but not by s.c. injections of formalin or i.p. injections of acetic acid. In an immunohistochemical study, we found that increased pCaMKIIalpha and pERK expressions were mainly located at CA3 or the dentate gyrus of the hippocampus. In a behavioral study, we assessed the effects of PD98059 (a MEK 1/2 inhibitor) and KN-93 (a CaMKII inhibitor) following i.c.v. administration on the nociceptive behaviors induced by i.t. injections of glutamate, pro-inflammatory cytokines (TNF-alpha or IL-1beta), and i.p. injections of acetic acid. PD98059 as well as KN-93 significantly attenuated the nociceptive behavior induced by glutamate, pro-inflammatory cytokines, and acetic acid. Our results suggest that (1) pERKalpha and pCaMK-II located in the hippocampus are important regulators during the nociceptive processes induced by s.c. formalin, i.t. glutamate, i.t. pro-inflammatory cytokines, and i.p. acetic acid injection, respectively, and (2) the alteration of pERK and pCaMKIIalpha in nociceptive processing induced by formalin, glutamate, pro-inflammatory cytokines and acetic acid was modulated in a different manner.  相似文献   

14.
两种不同类型ING1表达对人癌细胞生长影响的比较   总被引:5,自引:1,他引:5  
目的 比较两种不同类型ING1剪接体表达对人癌细胞系生长影响的异同及其作用。方法 构建人p3 3 /ING1A和p47/ING1B表达重组子 ,用瞬时转染和稳定转染法分别导入表达野生型p5 3的人乳腺癌细胞系MCF 7和肺癌细胞系PAa ,用噻唑蓝比色法和软琼脂集落形成观察其生长变化及用Westernblot法检测相关基因表达状况。结果 瞬时和稳定转染后两种癌细胞系都有p47/ING1A和p3 3 /ING1B表达 ,但p3 3 /ING1表达量明显高于p47/ING1。外源性p3 3 /ING1B高表达对细胞生长具有抑制作用 ,细胞出现G0 ~G1期阻滞 (P <0 .0 1) ;外源性p47/ING1A过表达对细胞生长无明显影响。转染p3 3 /ING1B并出现生长抑制的肿瘤细胞p2 1WAF1表达水平明显升高 ,但p5 3表达并没有变化。结论 两种不同类型ING1剪接体过量表达对肿瘤细胞生长具有不同影响。外源性p3 3 /ING1B过量表达可以促进p2 1WAF1表达 ,协同p5 3引起细胞周期阻滞从而抑制肿瘤细胞生长 ,是p5 3基因治疗的潜在伴侣  相似文献   

15.
Resveratrol (Res), from the skin of red grapes, induces apoptosis in some malignant cells, but there are no reports on the apoptotic effect of Res on human malignant pleural mesothelioma. We found that Res interacts with specificity protein 1 (Sp1). The IC50 for Res was 17 μM in MSTO-211H cells. Cell viability was decreased and apoptotic cell death was increased by Res (0-60 μM). Res increased the Sub-G1 population in MSTO-211H cells and significantly suppressed Sp1 protein levels, but not Sp1 mRNA levels. Res modulated the expression of Sp1 regulatory proteins including p21, p27, cyclin D1, Mcl-1 and survivin in mesothelioma cells. After treatment with Res, apoptosis signaling cascades were activated by the activation of Bid, Bim, caspase-3 and PARP, upregulation of Bax and downregulation of Bcl-xL. Res (20 mg/kg daily for 4 weeks) effectively suppressed tumor growth in vivo in BALB/c athymic (nu+/nu+) mice injected with MSTO-211H cells, an effect that was mediated by inhibition of Sp1 expression and induction of apoptotic cell death. Our results strongly suggest that Sp1 is a novel molecular target of Res in human malignant pleural mesothelioma.  相似文献   

16.
Tumour growth is regulated by a balance between proliferation, growth arrest and programmed cell death (apoptosis). Until recently, the majority of the studies dealing with oncogenesis has been focused on the regulation of cell proliferation. There is now growing understanding that control of growth arrest and apoptosis play key roles in the development of human cancer and in cancer treatment. Some of the more heavily studied proteins of importance for the control of growth arrest and apoptosis are p53, p21, bcl-2 and bax. Alterations in the p53 protein may lead to malignant transformation and defect therapy response, most likely as a result of defective p53-dependent apoptosis. In addition, p21 (WAF1/CIP1) is involved in cell-cycle arrest and probably in induction of p53-dependent apoptosis. Proteins belonging to the bcl-2 family are also important for normal apoptosis. Overexpression of bcl-2 protein is thought to reduce the apoptotic capacity, while bax protein seems to be necessary for induction of apoptosis. In this study, we have immunostained tissues from 93 primary colon carcinomas and have examined the expression of p53, p21 (WAF1/CIP1), bcl-2 bax, pRb and cyclin D1 for evaluation of their roles in colon-cancer progression. A highly significant association between p53 accumulation and downregulation of p21 (WAF1/CIP1) was seen. We also found a strong association between reduced/absent p21 and the development of metastases and death due to cancer disease. Cyclin D1, bcl-2 and bax protein failed to have independent prognostic impacts. Bcl-2 and bax protein levels showed an inverse relationship. The results of the present study indicate that reduced p21 protein levels play an important role in progression of colon cancer. We concluded that evaluation of p21 expression in primary colon carcinomas at the time of surgery might be a valuable tool in defining patients with a high risk of developing metastases. Received: 22 June 1999 / Accepted: 24 September 1999  相似文献   

17.
Osteosarcoma is the most common primary malignant tumor of bone. Analysis of familial cancer syndromes and sporadic cases has strongly implicated both p53 and pRb in its pathogenesis; however, the relative contribution of these mutations to the initiation of osteosarcoma is unclear. We describe here the generation and characterization of a genetically engineered mouse model in which all animals develop short latency malignant osteosarcoma. The genetically engineered mouse model is based on osteoblast-restricted deletion of p53 and pRb. Osteosarcoma development is dependent on loss of p53 and potentiated by loss of pRb, revealing a dominance of p53 mutation in the development of osteosarcoma. The model reproduces many of the defining features of human osteosarcoma including cytogenetic complexity and comparable gene expression signatures, histology, and metastatic behavior. Using a novel in silico methodology termed cytogenetic region enrichment analysis, we demonstrate high conservation of gene expression changes between murine osteosarcoma and known cytogentically rearranged loci from human osteosarcoma. Due to the strong similarity between murine osteosarcoma and human osteosarcoma in this model, this should provide a valuable platform for addressing the molecular genetics of osteosarcoma and for developing novel therapeutic strategies.  相似文献   

18.
We previously demonstrated that stimulation of human T-lymphocytes with calcium ionophores induced the phosphorylation and enzymatic activation of ERK2. We now report on the mechanism by which calcium-ionophore-induced activation of ERK1 and 2 occurs in these cells. The activation of ERK1 and 2 by increases in intracellular calcium was inhibited by calmidazolium suggesting the involvement of calmodulin in this response. To further elucidate the mechanism by which calcium-induced ERK activation occurs, we used the CaM-kinase inhibitor KN-93 and an inactive analog of KN-93 (KN-92). KN-93, but not KN-92, blocked ionomycin-induced activation of ERK1 and 2 in human T lymphocytes. We previously demonstrated that stimulation of T lymphocytes with ionomycin or A23187 resulted in a CaM-kinase-dependent shift in the mobility of p56(Lck). To determine if p56(Lck) was involved in calcium-induced ERK activation, we stimulated the p56(Lck) negative Jurkat cell derivatives, J.CaM1.6 and J.CaM1/Rep3, with ionomycin. In these p56(Lck) negative cell lines, activation of ERK1 and 2 in response to ionomycin was only minimally detected. When J.CaM1 cells were reconstituted with p56(Lck), ionomycin induced ERK1 and 2 activation. Treatment of Jurkat cells with PP2, an inhibitor of p56(Lck), inhibited calcium-induced, but not PMA-induced, ERK1 and 2 activation. Treatment of Jurkat cells with the MEK inhibitor PD98059 blocked ionomycin-induced ERK activation, but not the shift in the mobility of p56(Lck). Our data suggests that increases in intracellular calcium induce the activation of ERK1 and 2 in human T lymphocytes via sequential activation of CaM-kinase and phosphorylation of p56(Lck).  相似文献   

19.
p21WAF1基因表达对人骨肉瘤预后的价值   总被引:2,自引:0,他引:2  
目的 探讨骨肉瘤组织中p21^WAF1基因的表达与骨肉瘤生物学特性及预后的关系。方法 采用原位杂交及免疫组织化学(LSAB法)检测p21^WAF1mRNA及p21蛋白在45例骨肉瘤、10例骨纤维结构不良实体瘤组织标本的表达。结果 (1)p21蛋白阳性表达率在骨肉瘤中为17.7%(8/45);(2)骨肉瘤组织高分化组与低分化组的p21蛋白阳性表达率之间的差异有统计学意义(40.0%,11.4%,X^2=4.34,P〈0.05);(3)p21^WAF1mRNA表达阳性率在骨肉瘤中为42.2%(19/45),骨肉瘤组织高分化组与低分化组的p21^WAF1mRNA阳性表达率之间的差异有统计学意义(60.0%,37.1%,X^2=20.6,P〈0.01);(4)p21^WAF1mRNA表达阳性者术后生存时间高于表达阴性者术后生存时间(P〈0.05)。结论 (1)随着骨肉瘤恶性度的升高,p21^WAF1基因mRNA及p21蛋白的表达下降。(2)p21WAF1基因mRNA在骨肉瘤中的表达对评价患者的预后有一定价值。  相似文献   

20.
We recently obtained 3 cloned cell lines demonstrating the p53 mutation from a lung metastatic nodule of a rat transplantable osteosarcoma. In this study, we applied wild-type p53 gene transfer to the rat osteosarcoma cells by lipofection to investigate the effects on cell growth, expression of genes such as waf1/p21, bcl-2, and bax, and nucleosomal DNA fragmentation due to apoptosis. Reconstitution of the p53 gene inhibits cellular growth, and this growth-suppressive effect is partly due to apoptosis involving bcl-2 gene suppression in this tumor type. This rat osteosarcoma model is similar in biologic behavior to human cases and thus is very suitable for further investigation of tumorigenesis and gene therapy for osteosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号