首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Previous immunological studies indicated that the Lyme disease spirochete, Borrelia burgdorferi, expresses Erp outer surface proteins during mammalian infection. We conducted analyses of Erp expression throughout the entire tick-mammal infectious cycle, which revealed that the bacteria regulate Erp production in vivo. Bacteria within unfed nymphal ticks expressed little to no Erp proteins. However, as infected ticks fed on mice, B. burgdorferi increased production of Erp proteins, with essentially all transmitted bacteria expressing these proteins. Mice infected with B. burgdorferi mounted rapid IgM responses to all tested Erp proteins, followed by strong immunoglobulin G responses that generally increased in intensity throughout 11 months of infection, suggesting continued exposure of Erp proteins to the host immune system throughout chronic infection. As naive tick larvae acquired B. burgdorferi by feeding on infected mice, essentially all transmitted bacteria produced Erp proteins, also suggestive of continual Erp expression during mammalian infection. Shortly after the larvae acquired bacteria, Erp production was drastically downregulated. The expression of Erp proteins on B. burgdorferi throughout mammalian infection is consistent with their hypothesized function as factor H-binding proteins that protect the bacteria from host innate immune responses.  相似文献   

3.
During the natural mammal-tick infection cycle, the Lyme disease spirochete Borrelia burgdorferi comes into contact with components of the alternative complement pathway. B. burgdorferi, like many other human pathogens, has evolved the immune evasion strategy of binding two host-derived fluid-phase regulators of complement, factor H and factor H-like protein 1 (FHL-1). The borrelial complement regulator-acquiring surface protein 1 (CRASP-1) is a surface-exposed lipoprotein that binds both factor H and FHL-1. Analysis of CRASP-1 expression during the mammal-tick infectious cycle indicated that B. burgdorferi expresses this protein during mammalian infection, supporting the hypothesized role for CRASP-1 in immune evasion. However, CRASP-1 synthesis was repressed in bacteria during colonization of vector ticks. Analysis of cultured bacteria indicated that CRASP-1 is differentially expressed in response to changes in pH. Comparisons of CRASP-1 expression patterns with those of other infection-associated B. burgdorferi proteins, including the OspC, OspA, and Erp proteins, indicated that each protein is regulated through a unique mechanism.  相似文献   

4.
The causative agents of Lyme disease, Borrelia burgdorferi s.s., B. garinii, and B. afzelii, differ in their susceptibility to complement-mediated lysis. This phenomenon apparently depends on the expression of proteins termed complement regulator-acquiring surface proteins (CRASP) and their binding to the inhibitory plasma proteins factor H and FHL-1. To characterize these bacterial proteins in more detail we have now isolated from a B. burgdorferi expression library a novel factor H-binding protein. In accordance with our previous studies this protein was termed BbCRASP-3 and represents a novel member of the polymorphic Erp (OspE/F-related) protein family. On the basis of protease accessibility assays using intact spirochetes, BbCRASP-3 is identified as a surface-exposed protein and binds the C-terminal short consensus repeats of factor H. Applying deletion mutants of BbCRASP-3, the factor H-binding site was mapped to the nine-amino-acid motif LEVLKKNLK localized at the C-terminal end of BbCRASP-3. Factor H bound to BbCRASP-3 maintains its cofactor activity in factor I-mediated C3b inactivation. Binding of BbCRASP-3 to factor H can be inhibited by heparin, a physiological ligand of the complement regulator factor H. Blocking of factor-H-binding by soluble BbCRASP-3 leads to an increase of complement deposition on intermediate serum-resistant strain ZS7. In conclusion, BbCRASP-3 has been identified as a novel factor H-binding protein on B. burgdorferi which by conferring complement resistance to the pathogen may contribute to its persistence in the mammalian host.  相似文献   

5.
The three genospecies Borrelia burgdorferi, Borrelia garinii, and Borrelia afzelii, all causative agents of Lyme disease, differ in their susceptibilities to human complement-mediated lysis. We recently reported that serum resistance of borrelias correlates largely with their ability to bind the human complement regulators FHL-1/reconectin and factor H. To date, two complement regulator-acquiring-proteins (CRASP-1 and CRASP-2) have been identified in serum-resistant B. afzelii isolates (P. Kraiczy, C. Skerka, M. Kirschfink, V. Brade, and P. F. Zipfel, Eur. J. Immunol. 31:1674-1684, 2001). Here, we present a comprehensive study of the CRASPs detectable in both serum-resistant and intermediate serum-sensitive B. afzelii and B. burgdorferi isolates. These CRASPs were designated according to the genospecies either as BaCRASPs, when derived from B. afzelii, or as BbCRASPs, for proteins identified in B. burgdorferi isolates. Each borrelial isolate expresses distinct CRASPs that can be differentiated by their mobility and binding phenotypes. A detailed comparison reveals overlapping and even identical binding profiles for BaCRASP-1 (27.5 kDa), BbCRASP-1 (25.9 kDa), and BbCRASP-2 (23.2 kDa), which bind FHL-1/reconectin strongly and interact weakly with factor H. In contrast, two B. afzelii proteins (BaCRASP-4 [19.2 kDa] and BaCRASP-5 [22.5 kDa]) and three B. burgdorferi proteins (BbCRASP-3 [19.8 kDa], BbCRASP-4 [18.5 kDa], and BbCRASP-5 [17.7 kDa]) bind factor H but not FHL-1/reconectin. Most CRASPs bind both human immune regulators at their C-terminal ends. Temperature-dependent up-regulation of CRASPs (BaCRASP-1, BaCRASP-2, and BaCRASP-5) is detected in low-passage borrelias cultured at 33 or 37 degrees C compared with those cultured at 20 degrees C. The characterization of the individual CRASPs on the molecular level is expected to identify new virulence factors and potential vaccine candidates.  相似文献   

6.
Sera from animals infected with Borrelia burgdorferi isolates yield intense immunoblot signals from the B31 ErpA/I/N and ErpB/J/O proteins, which have apparent molecular masses of 19 and 60 kDa, respectively. Since B. burgdorferi proteins with those molecular masses are of immunodiagnostic importance, Lyme disease patient sera were used in studies of B31 lysates and recombinant B31 ErpA/I/N and ErpB/J/O proteins. Immunoblot analyses indicated that only a minority of the patients produced antibodies that recognized the tested B31 Erp proteins. Southern blot analyses of Lyme disease spirochetes cultured from 16 of the patients indicated that all these bacteria contain genes related to the B31 erpA/I/N and erpB/J/O genes, although signal strengths indicated only weak similarities in many cases, suggestive of genetic variability of erp genes among these bacteria. These data indicate that Erp proteins are generally not the 19- and 60-kDa antigens observed on serodiagnostic immunoblots.  相似文献   

7.
The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.  相似文献   

8.
9.
The establishment of Borrelia burgdorferi infection involves numerous interactions between the bacteria and a variety of vertebrate host and arthropod vector tissues. This complex process requires regulated synthesis of many bacterial proteins. We now demonstrate that these spirochetes utilize a LuxS/autoinducer-2 (AI-2)-based quorum-sensing mechanism to regulate protein expression, the first system of cell-cell communication to be described in a spirochete. The luxS gene of B. burgdorferi was identified and demonstrated to encode a functional enzyme by complementation of an Escherichia coli luxS mutant. Cultured B. burgdorferi responded to AI-2 by altering the expression levels of a large number of proteins, including the complement regulator factor H-binding Erp proteins. Through this mechanism, a population of Lyme disease spirochetes may synchronize production of specific proteins needed for infection processes.  相似文献   

10.
Lyme borreliae naturally maintain numerous distinct DNA elements of the cp32 family, each of which carries a mono- or bicistronic erp locus. The encoded Erp proteins are surface-exposed outer membrane lipoproteins that are produced at high levels during mammalian infection but largely repressed during colonization of vector ticks. Recent studies have revealed that some Erp proteins can serve as bacterial adhesins, binding host proteins such as the complement regulator factor H and the extracellular matrix component laminin. These results suggest that Erp proteins play roles in multiple aspects of mammalian infection.  相似文献   

11.
Borrelia burgdorferi, the Lyme disease spirochete, binds the host complement inhibitors factor H (FH) and FH-like protein 1 (FHL-1). Binding of FH/FHL-1 by the B. burgdorferi proteins CspA and the OspE-related proteins is thought to enhance resistance to serum-mediated killing. While previous reports have shown that CspA confers serum resistance in B. burgdorferi, it is unclear whether the OspE-related proteins are relevant in B. burgdorferi serum resistance when OspE is expressed on the borrelial surface. To assess the role of the OspE-related proteins, we overexpressed them in a serum-sensitive CspA mutant strain. OspE overexpression enhanced serum resistance of the CspA-deficient organisms. Furthermore, FH was more efficiently bound to the B. burgdorferi surface when OspE was overexpressed. Deposition of complement components C3 and C5b-9 (the membrane attack complex), however, was reduced on the surface of the OspE-overexpressing strain compared to that on the CspA mutant strain. These data demonstrate that OspE proteins expressed on the surface of B. burgdorferi bind FH and protect the organism from complement deposition and subsequent serum-mediated destruction.  相似文献   

12.
Some Lyme disease spirochete isolates can bind complement regulatory protein factor H (fH), a process that may allow evasion of complement-mediated killing. Here we demonstrate significant differences in the fH binding capabilities of species of the Borrelia burgdorferi sensu lato complex. The percentages of B. burgdorferi, B. afzelii, and B. garinii bacteria that bound fH in either enzyme-linked immunosorbent assays or affinity ligand binding immunoblot assays were 100, 83, and 29%, respectively. The fH binding protein profiles were examined and found to exhibit variability among isolates and to form two distinct classes. Differences in fH binding ability may contribute to the differences in pathogenesis and clinical course observed upon infection with different species of the B. burgdorferi sensu lato complex.  相似文献   

13.
Host complement is widely distributed throughout mammalian body fluids and can be activated immediately as part of the first line of defense against invading pathogens. The agent of Lyme disease, Borrelia burgdorferi sensu lato (s.l.), is naturally resistant to that innate immune defense system of its hosts. One resistance mechanism appears to involve binding fluid-phase regulators of complement to distinct borrelial outer surface molecules known as CRASPs (complement regulator acquiring surface proteins). Using sensitive molecular biology techniques, expression patterns of all three classes of genes encoding the CRASPs of B. burgdorferi sensu stricto (BbCRASPs) have been analyzed throughout the natural tick-mammal infection cycle. Each class shows a different expression profile in vivo and the results are summarized herein. Studies on the expression of B. burgdorferi genes using animal models of infection have advanced our knowledge on the ability of the causative agent to circumvent innate immune defenses, the contributions of CRASPs to spirochete infectivity, and the pathogenesis of Lyme disease.  相似文献   

14.
The Lyme disease-pathogen Borrelia burgdorferi binds the complement inhibitor factor H (FH) to its outer surface protein E- (OspE) and BbA68-families of lipoproteins. In earlier studies, only serum-resistant strains of the genospecies B. burgdorferi sensu stricto or B. afzelii, but not serum-sensitive B. garinii strains, have been shown to bind FH. Since B. garinii often causes neuroborreliosis in man, we have readdressed the interactions of B. garinii with FH. B. garinii 50/97 strain did not express FH-binding proteins. By transforming the B. garinii 50/97 strain with an OspE-encoding gene from complement-resistant B. burgdorferi (ospE-297), its resistance to serum killing could be increased. OspE genes were detected and cloned from the B. garinii BITS, Pistoia and 40/97 strains by PCR and sequencing. The deduced amino acid sequences differed in an N-terminal lysine-rich FH-binding region from OspE sequences of resistant strains. Recombinant B. garinii BITS OspE protein was found to have a considerably lower FH-binding activity than the B. burgdorferi sensu stricto 297 OspE protein P21 (P21-297). Unlike bacteria that had been kept in culture for a long time, neurovirulent B. garinii strains from neuroborreliosis patients were found to express approximately 27-kDa FH-binding proteins. These were not recognized by polyclonal anti-OspE or anti-BbA68 antibodies. We conclude that B. garinii strains carry ospE genes but have a decreased expression of OspE proteins and a reduced ability to bind FH, especially when grown for prolonged periods in vitro. Recently isolated neuroinvasive B. garinii strains, however, can express FH-binding proteins, which may contribute to the virulence of neuroborreliosis-causing B. garinii strains.  相似文献   

15.
Borrelia burgdorferi complement regulator-acquiring surface protein 1 (CRASP-1), the dominant factor H and FHL-1-binding protein of the Lyme disease spirochete B. burgdorferi, is implicated in pathogen persistence and was recently reported to be nonimmunogenic in humans. Here we show that serum samples from Lyme disease patients contain antibodies with exclusive specificity for nondenatured structural determinants of CRASP-1.  相似文献   

16.
The most characteristic features of the Lyme disease pathogens, the Borrelia burgdorferi sensu lato (s.l.) group, are their ability to invade tissues and to circumvent the immune defenses of the host for extended periods of time, despite elevated levels of borrelia-specific antibodies in serum and other body fluids. Our aim in the present study was to determine whether B. burgdorferi is able to interfere with complement (C) at the level of C3 by accelerating C3b inactivation and thus to inhibit the amplification of the C cascade. Strains belonging to different genospecies (Borrelia garinii, B. burgdorferi sensu stricto, and Borrelia afzelii) were compared for their sensitivities to normal human serum and abilities to promote factor I-mediated C3b degradation. B. burgdorferi sensu stricto and B. afzelii strains were found to be serum resistant. When the spirochetes were incubated with radiolabeled C3b, factor I-mediated degradation of C3b was observed in the presence of C-resistant B. afzelii (n = 3) and B. burgdorferi sensu stricto (n = 1) strains but not in the presence of C-sensitive B. garinii (n = 7) strains or control bacteria (Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis). Immunoblotting and radioligand binding analyses showed that the C-resistant strains had the capacity to acquire the C inhibitors factor H and factor H-like protein 1 (FHL-1) from growth medium and human serum. A novel surface protein with an apparent molecular mass of 35 kDa was found to preferentially bind to the N terminus region of factor H. Thus, the serum-resistant B. burgdorferi s.l. strains can circumvent C attack by binding the C inhibitors factor H and FHL-1 to their surfaces and promoting factor I-mediated C3b degradation.  相似文献   

17.
18.
19.
In the murine model of Lyme disease, C3H/He mice exhibit severe arthritis while C57BL/6N mice exhibit mild lesions when infected with Borrelia burgdorferi. Joint tissues from these two strains of mice harbor similar concentrations of B. burgdorferi, suggesting that the difference in disease severity reflects differences in the magnitude of the inflammatory response to B. burgdorferi lipoproteins. Stimulation of bone marrow macrophages from C3H/HeN mice with the B. burgdorferi lipoprotein OspA resulted in higher-level production of the inflammatory mediators tumor necrosis factor alpha, nitric oxide, and interleukin-6 (IL-6) than that of macrophages from C57BL/6N mice. In contrast, macrophages from C57BL/6N mice consistently produced larger amounts of the anti-inflammatory cytokine IL-10 than did C3H/HeN macrophages. Addition of recombinant IL-10 suppressed the production of inflammatory mediators by macrophages from both strains. IL-10 was found to modulate B. burgdorferi-induced inflammation in vivo, since C57BL/6J mice deficient in IL-10 (IL-10-/-) developed more severe arthritis than wild-type C57BL/6J mice. The increase in arthritis severity was associated with a 10-fold decrease in the number of B. burgdorferi organisms present in ankle tissues from IL-10-/- mice. These findings suggest that in C57BL/6 mice, IL-10-dependent regulation of arthritis severity occurs at the expense of effective control of bacterial numbers.  相似文献   

20.
Borrelia hermsii, an agent of tick-borne relapsing fever, was found to contain multiple circular plasmids approximately 30 kb in size. Sequencing of a DNA library constructed from circular plasmid fragments enabled assembly of a composite DNA sequence that is homologous to the cp32 plasmid family of the Lyme disease spirochete, B. burgdorferi. Analysis of another relapsing fever bacterium, B. parkeri, indicated that it contains linear homologs of the B. hermsii and B. burgdorferi cp32 plasmids. The B. hermsii cp32 plasmids encode homologs of the B. burgdorferi Mlp and Bdr antigenic proteins and BlyA/BlyB putative hemolysins, but homologs of B. burgdorferi erp genes were absent. Immunoblot analyses demonstrated that relapsing fever patients produced antibodies to Mlp proteins, indicating that those proteins are synthesized by the spirochetes during human infection. Conservation of cp32-encoded genes in different Borrelia species suggests that their protein products serve functions essential to both relapsing fever and Lyme disease spirochetes. Relapsing fever borreliae replicate to high levels in the blood of infected animals, permitting direct detection and possible functional studies of Mlp, Bdr, BlyA/BlyB, and other cp32-encoded proteins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号