首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to estimate muscle endurance during knee extension (KME) and plantar flexion (PME) using a simple method, holding times for the half-squatting posture for KME and for the calf-raising posture for PME were measured in 3,792 males and 3,620 females aged between 6 and 79 years. The regression lines of the aging process for KME and PME in both sexes were determined. Peak values were found at 13 years in males and 12 years in females for KME, and at 15 years in males and 16 years in females for PME. The mean values increased sharply with age up to each peak and then decreased abruptly to a low level at around 20 years, thereafter declining gradually. The values of KME as a percentage of the peak value were 71, 75 and 34 at the ages of 6, 20 and 70–79 years respectively in males, while the corresponding values were 80, 77 and 36 for females. The values of PME at these ages were 34, 93 and 69 in males and 54, 91 and 73 in females. The mean values for males were generally higher than those for females. These results suggest that endurance of the leg muscles differs according to age, sex and the region of the leg muscle. These data will be useful as standard values for evaluating endurance and for prescribing suitable exercise for the promotion of physical fitness.  相似文献   

2.
Summary The influence of variations in muscle fibre composition on isometric endurance capacity was measured in 23 young healthy untrained male volunteers. After determination of the maximum voluntary force of contraction (MVC), subjects sustained to fatigue contractions at forces of 80%, 50% and 20% of MVC with a 5-min rest between each. A needle biopsy was obtained from m. vastus lateralis and used for histochemical determination of fibre composition based on myosin ATP-ase activity, and fibre are a based on succinate dehydrogenase (SDH) activity. Endurance times were 21±9 s (mean±SD) at 80% of MVC, 56±17 s at 50% of MVC and 203±89 s at 20% of MVC. A wide range of muscle fibre compositions was observed with Type I fibres accounting for 48.0±10.5% of the total, corresponding to 45.0±11.5% of the total muscle area. Muscle fibre composition, whether expressed as the proportions of the different fibre types present, or as the fraction of total muscle cross-sectional area occupied by each fibre type was not correlated with isometric endurance capacity at any of the three forces studied. Endurance time was also unrelated to MVC. In contrast to the results of previous studies where trained subjects were used, or where different muscle groups were compared, these results suggest that isometric endurance is not influenced by muscle fibre composition.  相似文献   

3.
Summary Seven male subjects exercised for 1, 3, 10 and 20 min on a cycle ergometer at 20, 60 and 80% , and then held to fatigue a sustained contraction of the quadriceps at 40% maximal voluntary contraction in order to determine what influence various levels of dynamic exercise would have on isometric function of the same group of muscles. Muscle temperature was measured before and within 15 s of the completion of the cycling to determine whether changes in muscle temperature might influence the subsequent isometric perormance. Isometric endurance was shorter as the severity of the cycling increased beyond 20% , and as the duration of cycling increased up to 10 min. There were discrete linear relationships between muscle temperature and isometric endurance associated with cycling at 60% and 80% . There was a direct inverse relationship between quadriceps strength after cycling and muscle temperature, yet a significant reduction in strength occurred only after cycling at 80% . These results suggest that the encroachment on endurance and strength are controlled by different mechanisms. The heart rates during the isometric contractions were dependent on the preceding rhythmic exercise and decreased after exercise at 60 or 80% . In contrast, the blood pressure always increased during the isometric contractions, reaching similar values at the point of fatigue, regardless of the severity of the previous rhythmic exercise. These data provide additional evidence that separate mechanisms control changes in heart rate and blood pressure.  相似文献   

4.
In occupational work, continuous repetitive and isometric actions performed with the upper extremity primarily cause local muscle strain and musculoskeletal disorders. They may also have some adverse effects on the cardiorespiratory system, particularly, through the elevation of blood pressure. The aim of the present study was to compare peak cardiorespiratory responses to fatiguing dynamic and isometric hand-grip exercise. The subjects were 21 untrained healthy men aged 24–45 years. The dynamic hand-grip exercise (DHGE) was performed using the left hand-grip muscles at the 57 (SD 4)% level of each individual's maximal voluntary contraction (MVC) with a frequency of 51 (SD 4) grips · min−l. The isometric hand-grip exercise (IHGE) was done using the right hand at 46 (SD 3)% of the MVC. The endurance time, ventilatory gas exchange, heart rate (HR) and blood pressure were mea- sured during both kinds of exercise. The mean endurance times for DHGE and IHGE were different, 170 (SD 62) and 99 (SD 27) s, respectively (P < 0.001). During DHGE the mean peak values of the breathing frequency [20 (SD 6) breaths · min−1] and tidal volume [0.89 (SD 0.34) l] differed significantly (P < 0.01) from peak values obtained during IHGE [15 (SD 5) breaths · min−1, and 1.14 (SD 0.32) l, respectively]. The corresponding peak oxygen consumptions, pulmonary ventilations, HR and systolic blood pressures did not differ, and were 0.51 (SD 0.06) and 0.46 (SD 0.11) l · min−1, 17.1 (SD 3.0) and 16.7 (SD 4.7) l · min−1, 103 (SD 18) and 102 (SD 17) beats · min−1, and 156 (SD 17) and 161 (SD 17) mmHg, respectively. The endurance times of both DHGE and IHGE were short (<240 s). The results indicate that the peak responses for the ventilatory gas exchange, HR and blood pressure were similar during fatiguing DHGE and IHGE, whereas the breathing patterns differed significantly between the two types of exercise. The present findings emphasize the importance of following ergonomic design principles in occupational settings which aim to reduce the output of force, particularly in tasks requiring isometric and/or one-sided repetitive muscle actions. Accepted: 16 February 2000  相似文献   

5.
Summary The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/ time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p<0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

6.
The aim of this study was to evaluate the influence of exposure to altitude on muscle endurance during isometric contractions. Six sedentary subjects were studied. Surface electromyograph (sEMG) activity was recorded from the right biceps brachii (BB) during exhausting isometric exercise at 80% maximal voluntary contraction. Experiments were performed before, during and 6 months after a 12 day stay at the EV-K2 laboratory (Nepal, 5,050 m above sea level). From the sEMG signals from BB, the median frequencies (f med) were computed for consecutive 1 s epochs. The sEMG was also analysed using a non-linear tool, the recurrence quantification analysis, and the percentage of determinism (%DET) was then calculated. The haemoglobin saturation significantly decreased at altitude. The mean (SD) BB endurance time decreased from 22.4 (4) s to 18.3 (4.7) s (P<0.05). After exposure to altitude a significant variation in f med and %DET slopes was observed. We concluded that during the first period of acclimatisation at altitude there was an impairment of isometric muscle endurance performance and there was also evidence of a modified myoelectric activity pattern suggesting a greater fatigability of the neuromuscular system. Electronic Publication  相似文献   

7.
The main purpose of this study was to determine the extent to which blood flow through the profunda artery within the triceps brachii muscle may be compromised during maintained low-force isometric fatiguing contractions. Doppler ultrasound techniques were used to record mean blood velocity and arterial diameter of the profunda brachii artery during sustained isometric contractions of 20% maximal voluntary contraction. The arterial diameter did not change throughout the contraction. Thus, blood velocity was considered to be an indicator of blood flow. The mean blood velocity increased initially and then remained constant during the contraction period. When compared to rest [0.06 (SD 0.03) m s–1] mean blood velocity was significantly larger at the start of the contraction [0.13 (SD 0.07) m s–1] and larger yet during recovery following the contraction [0.30 (SD 0.14) m s–1]. Although blood flow through the conduit artery did not drop during the contraction, the post-contraction hyperaemia suggested that circulatory compromise might have occurred at the level of the capillary beds. Electronic Publication  相似文献   

8.
Summary Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle.Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0±7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0±10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension.In contrast the heart rate rose to a higher level (P<0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups.It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sjöholm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

9.
Summary The perception of muscular effort was studied using estimation and production methods in the adductor pollicis and quadriceps. A psychometric scale (percentage magnitude) was used.Static contractions were studied in the adductor pollicis, and both dynamic (isokinetic) and static contractions were studied in quadriceps.Linear and logarithmic equations were fitted for the perceived effort as a percentage of the maximum in relation to the produced percentage maximal force or torque. The logarithmic exponent was around or above 1.0. No significant difference was found between mean exponent and intercept values for the adductor pollicis and the quadriceps, or when estimated or produced values for the two muscles were compared. There was no difference in the same subjects between the equations for static and dynamic contractions with low angular velocity of the quadriceps.  相似文献   

10.
Summary To elucidate the influence of muscle length on surface EMG wave form, comparisons were made of surface EMGs of the biceps and triceps brachii muscles during isometric contractions at different muscle lengths. Muscle lengths were altered by setting the elbow joint angle at several intervals between the limits of extension and flexion. The intensity of the isometric contractions was 25% of maximum voluntary contraction at the individual joint angles. Slowing was obvious in the EMG wave forms of biceps as muscle length increased. The so-called Piper rhythm appeared when the muscle was more than moderately lengthened. The slowing trend with muscle lengthening, though less marked, was also seen in triceps. Zero-cross analysis revealed quasi-linear relationships between muscle length and slowing. Frequency analysis confirmed the development of Piper rhythm. An attempt was made to interpret the slowing associated with muscle lengthening in terms of the propagation of myoelectric signals in muscle fibers. Given the effect of muscle length on EMG wave forms, a careful control of joint angle may be required in assessing local muscle fatigue when using EMG spectral indices.  相似文献   

11.
Ultrasound scanning was performed at three sites above the fossa supraspinata on nine healthy subjects and five patients with myofascial shoulder pain. This method produced a well-defined depiction of the soft tissue layers above the fossa supraspinata and reproducible muscle thickness measurements. In the healthy subjects the average distance from the skin surface to the trapezius muscle was 7.7 mm and the average thickness of the trapezius muscle was 5.3 mm, and the average thickness of supraspinatus muscle was 20.0 mm. The supraspinatus muscle was thinner at the medial measuring site than at the other two sites. In contrast, a tendency towards a larger distance was seen from the skin to trapezius muscle at the medial measuring site than at the other two sites. No statistical differences were found between the two groups of subjects either at rest or during brief shoulder abductions. All the subjects performed a 30° unilateral isometric shoulder abduction test to exhaustion. The median endurance time was 33 min for the healthy subjects and only 5 min for the patients. The ratings of perceived exertion (RPE) were in line with this, since the increment in RPE with time was larger for the patients than for the healthy group. The reduced shoulder abduction endurance time in the patient group may have been related to impaired muscle function and/or pain development. During the 33-min shoulder abduction in the healthy subjects, the thickness of supraspinatus muscle increased by 14%, indicating muscle swelling, whereas the thickness of trapezius muscle remained constant. The fluid imbalance in the supraspinatus muscle compartment may well play a role in the development of muscle fatigue and the disorders found in industry resulting from prolonged work with arms elevated.  相似文献   

12.
Summary We compared matching of finger forces under isometric conditions with matching of forces produced against a spring load (anisometric conditions) in twenty normal subjects. The instruction was to generate the same force in both hands holding a grip between thumb and index finger in each hand. Visual feedback indicating the target force and the actual force applied were presented for one (reference) hand only. The forces produced in each hand were measured continuously during matching trials. A special device provided the opportunity to change from isometric to anisometric force production. Matching was required under symmetric conditions, in which force was generated in both hands either isometrically or anisometrically, as well as under asymmetric conditions in which isometric force has to be matched to anisometric force or the reverse. Under symmetric conditions matching error was consistently smaller in anisometric than in isometric force production. However, the striking feature was a severe mismatch between hands when forces had to be produced differently. For most subjects, a force generated against the spring load in the reference hand was greatly overestimated by the matching hand working isometrically. For the reverse condition consistent underestimations were observed. This effect cannot be attributed to left/right differences or a simple confusion of subjects in the asymmetric tasks. Some of the factors confounded with the conditions of force production were ruled out as an explanation by additional experimental controls. The mismatch neither depends on signals related to different finger positions associated with target forces nor is it alleviated when differently produced forces are matched sequentially. The finding that perceived muscular force depends on conditions of force production requires a reevaluation of the afferent and centrally generated signals (corollary discharge) assumed to contribute to sensations of force.  相似文献   

13.
Summary Four men isometrically trained their stronger leg for 19 weeks (attempted knee extension against a restraining strap incrementally increasing to 30 brief maximal contractions x 6 wk−1). Five others similarly trained dynamically (repeated knee extension against a 63 N resistance force, incrementally increasing to 300 extensions x 6 wk−1). Before, at regular intervals during training and after de-training (between 7–11 weeks) measurements were made using trained and control legs of: Maximum Voluntary Isometric Contraction (M.V.C.), Endurance at 60% M.V.C., Knee Extension Performance Test (K.E.P.T.) and One-legged Work Test. Isometric training produced a 30% (p<0.01) increase in M.V.C. with a 15% (p<0.05) increase in the control leg. These changes persisted with some deterioration after the de-training period. Endurance at 60% M.V.C. remained unchanged, even though M.V.C. was increasing in both trained and control legs. There was some evidence that isometric training improved the cardio-vascular response to one-legged exercise. Dynamic training did not result in changes in M.V.C, Endurance at 60% M.V.C. or the One-legged work Test, but K.E.P.T. (time taken for 50 knee extensions at a comfortable pace against 63 N resistance) improved by 33% (p<0.01) and 28% (p<0.01) in the trained and control legs respectively. Isometric training resulted in similar improvements in performance of K.E.P.T. (28%, p<0.05, trained leg; 18%, p<0.05 control leg). For similar time spent in training, isometric work appeared more effective than dynamic work in improving the parameters of muscle function, these improvements appeared to be both centrally (C.N.S.) and locally mediated.  相似文献   

14.
The aim of the study was to investigate the relationship between local tissue temperature, peak torque and time to fatigue during isometric knee extensions. Nine males performed maximum voluntary contractions (MVCs) and isometric knee extensions at 70% MVC to exhaustion after 30 min of hot [H, 47.7 (1.3)°C; mean (SD)], warm [W, 34.6 (0.4)°C], temperate [T, 24.5 (1.3)°C], and cold [C, –11.9 (1.8)°C] localized temperature applications. Isometric peak torque was not significantly affected by temperature. Time to fatigue was strongly and negatively correlated (r=–0.98) to temperature, with endurance after H [46.99 (4.98) s] and W [54.36 (9.18) s] significantly shorter than after C [73.27 (13.43) s]. We conclude that local tissue temperature does not impair peak force production but may change muscular endurance through local factors.  相似文献   

15.
Summary This study investigated whether isokinetic strength training might induce changes in static and dynamic power already achieved as a result of isometric strength training. The subjects were twelve males. The isometric strength and dynamic power of elbow flexors were tested by means of an electric dynamometer and fly-wheel every two weeks. During the first 8 weeks all subjects trained the elbow flexors isometrically at four different positions of elbow joints. This training produced 27–36% gains in isometric strength and 34–46% in power. Thereafter the subjects were divided into two groups: the FG group who trained isokinetically at a fast velocity of 157·s–1, and the SG group at slow velocity of 73·s–1. After 6 weeks of training, the FG group produced a significant gain in power with light equivalent masses and the SG group did so with heavy equivalent masses. Neither group showed change in isometric strength.  相似文献   

16.
We hypothesized that after maximal short-term isometric exercise, when O2 demand is still high and O2 supply is not fully activated, higher oxidative capacity muscle may exhibit slower muscle reoxygenation after the exercise than low oxidative capacity muscle. Seven healthy male subjects performed a maximal voluntary isometric handgrip exercise for 10 s. The reoxygenation rate after the exercise (Reoxy-rate) in the finger flexor muscle was determined by near infrared continuous wave spectroscopy (NIRcws) while phosphocreatine (PCr) was measured simultaneously by 31P magnetic resonance spectroscopy. Muscle oxygen consumption (muscle O2) and muscle oxidative capacity were evaluated using the rate of PCr resynthesis post-exercise. The forearm blood flow (FBF) index at the end of exercise was measured using NIRcws. There was a significant positive correlation between the Reoxy-rate, which ranged between 0.53% s−1 and 12.47% s−1, and the time constant for PCr resynthesis, which ranged between 17.8 s and 38.3 s (r 2=0.939, P<0.001). At the end of the exercise, muscle O2 exceeded the resting level by approximately 25-fold, while the FBF index exceeded the resting level by only 3-fold on average. The Reoxy-rate closely correlated with muscle O2 (r 2=0.727, P<0.05), but not with the FBF index. Also, the estimated O2 balance (muscle O2 index/FBF index) was negatively correlated with the Reoxy-rate (r 2=0.820, P<0.001). These results support our hypothesis that higher oxidative capacity muscle shows slower muscle reoxygenation after maximal short-term isometric exercise because the Reoxy-rate after this type of exercise may be influenced more by muscle O2 than by O2 supply. Electronic Publication  相似文献   

17.
The present study examined the hypothesis that creatine (Cr) supplementation can increase the performance of isometric exercise in subjects engaged in a strength training program. Ten male subjects were tested in three experimental trials 7 days apart (days 1, 8 and 15). In each trial the subjects' maximum voluntary force of contraction (MVC) was measured in both legs and isometric endurance capacity at 80, 60, 40 and 20% of MVC of their stronger leg (knee extensor group) was measured with a 4-min rest between contractions. Additionally, the subjects' isometric endurance capacity at 80% of MVC of their weaker leg was measured in 10 repeated bouts interspersed with 2-min rest. A double-blind cross-over design was adopted for administering Cr or placebo. Subjects were randomized into either the Cr–placebo (Group A: days 2–6: 10 g day?1 of Cr; days 9–13: 10 g day?1 of glucose polymers) or the placebo–Cr group (Group B reverse supplementation order). The daily diet was analysed, and urine samples from 24-h collections were subjected to Cr and creatinine analysis. In each subject, ≈18 g (35%) of Cr was eliminated in the urine during the Cr supplementation period. MVC increased by about 10% (P < 0.01 in the weaker leg, P < 0.05 in the stronger leg) and body mass increased by 1.7 ± 0.4 kg (2.3%, P < 0.01) and 1.8 ± 0.3 kg (2.1%, P < 0.01) in groups A and B, respectively, after Cr supplementation, while energy intake and diet composition remained constant throughout the study. The subjects' endurance capacity increased (P < 0.05) in all the bouts after Cr supplementation. Muscle hypertrophy in response to Cr supplementation and weight training may explain the findings of the present study.  相似文献   

18.
The purposes of this study were to (1) derive and test allometric scaling models of biceps isometric strength using body mass (BM) and muscle cross-sectional area (CSA) as the scaling variables, (2) assess the influence of body mass index (BMI) by separating the cohort by BMI (normal <25 kg/m2 vs. overweight/obese ≥25 kg/m2) and repeating step 1, and (3) assess the effect of BMI on isometric strength allometrically adjusted for differences in CSA by comparing scaled strength between normal weight versus overweight/obese women. The participants were 183 women (18–39 years old) who reported no strength training in the prior year. Isometric strength and CSA of the biceps were assessed on the non-dominant arm. The CSA allometric model met all statistical criteria and produced a scaling exponent of 0.44. The BM model did not meet these criteria until the entire cohort was separated by BMI. The scaling exponents for normal weight and overweight/obese women were 1.48 and 0.35, respectively. These data suggest that BMI exerted an influence on the relationship between BM and allometrically scaled isometric strength and may be explained by previous studies demonstrating greater contribution of fat mass (FM) versus fat-free mass (FFM) to BMI in overweight/obese women. As such, allometric scaling models of isometric strength, especially in populations that are heterogeneous with regard to body composition, must be carefully tested and examined across the range of BMI. Isometric strength relative to CSA was not significantly different between groups. However, allometrically scaled strength, using CSA as the criterion variable, was significantly greater in overweight/obese women compared to those of normal weight. These data suggest that isometric strength in women is not completely determined by CSA and other factors such as intramuscular fat and muscle fiber type may be confounding or contributing factors.  相似文献   

19.
Summary The effect of isometric exercise on blood flow, blood pressure, intramuscular pressure as well as lactate and potassium efflux from exercising muscle was examined. The contractions performed were continuous or intermittent (5 s on, 5 s off) and varied between 5% and 50% maximal voluntary contraction (MVC). A knee-extensor and a hand-grip protocol were used. Evidence is presented that blood flow through the muscle is sufficient during low-level sustained contractions (<10% MVC). Despite this muscle fatigue occurs during prolonged contractions. One mechanism for this fatigue may be the disturbance of the potassium homeostasis. Such changes may also play a role in the development of fatigue during intermittent isometric contractions and even more so in the recovery from such exercise. In addition the role of impaired transport of substances within the muscle, due to longlasting daily oedema formation, is discussed in relation to fatigue in highly repetitive, monotonous jobs.  相似文献   

20.
The measurement of endurance time (t lim) is the procedure commonly used to quantify the ability of a muscle to maintain force. The relationship between surface electromyographic (sEMG) manifestations of localised muscle fatigue and t lim during an effort at 50% of maximal voluntary isometric torque of the knee extensors (vastus lateralis and vastus medialis) until exhaustion was studied in 14 healthy volunteers. It was carried out to test whether changes in sEMG computed over shorter periods than expected t lim could be used to predict t lim. Changes in mean muscle fibre conduction velocity, mean power frequency , median frequency , root mean square ), in the relative power in the 6–30 Hz and 30–60 Hz frequency bands were monitored using linear slope and area ratio index as statistical indicators. These indicators were computed over fixed periods shorter than t lim. The subjects were able to maintain the required force level for [mean (SD)] 78.8 (9.5) s. During the fatigue trial, it was the greatest of the increases in the 6–30 Hz frequency band, recorded for either of the two muscles investigated, that was the only variable which correlated with t lim. Significant relationships between t lim and changes in this low frequency band were observed as early as the first 15–30 s of the contraction. These results suggest that sEMG frequency banding may predict mechanical endurance without the need to maintain the contraction until exhaustion. From a clinical perspective, this could be an advantage for patients who might not be able to tolerate contractions to exhaustion. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号