首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
HIV-1 group O (HIV-O) is a rare HIV-1 variant characterized by a high number of polymorphisms, especially in the integrase coding region. As HIV-O integrase enzymes have not previously been studied, our aim was to assess the impact of HIV-O integrase polymorphisms on enzyme function and susceptibility to integrase inhibitors. Accordingly, we cloned and purified integrase proteins from each of HIV-1 group O clades A and B, an HIV-O divergent strain, and HIV-1 group M (HIV-M, subtype B), used as a reference. To assess enzymatic function of HIV-O integrase, we carried out strand transfer and 3′ processing assays with various concentrations of substrate (DNA target and long terminal repeats [LTR], respectively) and characterized these enzymes for susceptibility to integrase strand transfer inhibitors (INSTIs) in cell-free assays and in tissue culture, in the absence or presence of various concentrations of several INSTIs. The inhibition constant (Ki) and 50% effective concentration (EC50) values were calculated for HIV-O integrases and HIV-O viruses, respectively, and compared with those of HIV-M. The results showed that HIV-O integrase displayed lower activity in strand transfer assays than did HIV-M enzyme, whereas 3′ processing activities were similar to those of HIV-M. HIV-O integrases were more susceptible to raltegravir (RAL) in competitive inhibition assays and in tissue culture than were HIV-M enzymes and viruses, respectively. Molecular modeling suggests that two key polymorphic residues that are close to the integrase catalytic site, 74I and 153A, may play a role in these differences.  相似文献   

5.
6.
7.
8.
BACKGROUND: Although inactivation of enveloped viruses transmitted by plasma derivatives has been successful, no methods for virus inactivation or removal have been established for platelet concentrates or red cell (RBC) components. Relatively little is known regarding the extent or significance of virus interactions with the cellular constituents in these components. STUDY DESIGN AND METHODS: Units of whole blood were collected from six HIV type 1 (HIV-1)-positive, asymptomatic individuals and separated into peripheral blood mononuclear cells (PBMNCs), cell-free plasma, white cell-reduced platelet concentrate, and white cell-reduced RBCs. DNA and RNA polymerase chain reaction and virus culture methods were used to study the compartmentalization of HIV-1 immediately after component preparation and after storage. RESULTS: As expected, HIV DNA and infectious virus were detected in fresh blood and in PBMNCs, and virion- associated RNA was detected in fresh plasma from all six donors. The levels of viral nucleic acids in these preparations remained relatively stable with 4 degrees C storage, whereas infectivity of PBMNCs was rapidly lost. Washed RBCs tested negative for HIV in all assays at all time points. Platelets retained high levels of HIV RNA (but not infectivity) after extensive washing, as well as after storage at 4 and 22 degrees C. High-level platelet-associated HIV-1 was also demonstrated in samples collected during early seroconversion. Periseroconversion and postseroconversion levels of platelet-associated HIV-1 correlated with the level of plasma viremia and with the rate of progression to AIDS. Cell-free virus from donor plasma and tissue culture fluid rapidly and firmly attached to platelets from noninfected donors. Infectivity of tissue culture virus bound to platelets was demonstrated in vitro. CONCLUSION: Significant levels of HIV-1 are associated with platelets during all stages of infection. Platelet- associated HIV could either mediate virus clearance or facilitate virus dissemination and expanded tropism. Finally, virus inactivation research must address virus associations with platelets.  相似文献   

9.
10.
L-731,988 inhibits human immunodeficiency virus (HIV) replication through integrase. In this study, approximately 600 nM L-731,988 inhibited the replication of 12 HIV type 1 isolates from multiple clades, including primary isolates and cloned viruses. These data suggest that diketo acids or their derivatives may prove useful on a worldwide basis in treating HIV infection.  相似文献   

11.
Antiviral screens have proved useful for the identification of novel human immunodeficiency virus type 1 (HIV-1) inhibitors. In this study, we describe an HIV-1 full replication (HIV-1 Rep) assay that incorporates all of the targets required for replication in T-cell lines, including the HIV-1 Vif gene. The HIV-1 Rep assay was designed to exhibit optimal sensitivity to late-stage as well as early-stage inhibitors to maximize the likelihood of identification of novel target antiviral compounds in a screen. In addition, the flexibility of the HIV-1 Rep assay allows the rapid evaluation of antiviral compounds against different virus strains in different T-cell lines without significant modification of the assay format. We demonstrate that the HIV-1 Rep assay exhibits characteristics (e.g., a favorable Z' value) compatible with high-throughput screening in a 384-well format. The utility of the HIV-1 Rep assay was demonstrated in a high-throughput screen of >10(6) compounds. To our knowledge, this study represents the first example of an HIV-1 antiviral screen that includes Vif as a functional target and was executed on an industrial scale.  相似文献   

12.
13.
To gain further insight into the understanding of the antiviral resistance patterns and mechanisms of the integrase strand transfer inhibitor L-870,810, the prototypical naphthyridine analogue, we passaged the human immunodeficiency virus type 1 strain HIV-1(III(B)) in cell culture in the presence of increasing concentrations of L-870,810 (III(B)/L-870,810). The mutations L74M, E92Q, and S230N were successively selected in the integrase. The L74M and E92Q mutations have both been associated in the past with resistance against the diketo acid (DKA) analogues L-708,906 and S-1360 and the clinical trial drugs MK-0518 and GS-9137. After 20, 40, and 60 passages in the presence of L-870,810, III(B)/L-870,810 displayed 22-, 34-, and 110-fold reduced susceptibility to L-870,810, respectively. Phenotypic cross-resistance against the DKA analogue CHI-1043 and MK-0518 was modest but that against GS-9137 was pronounced. Recombination of the mutant integrase genes into the wild-type background reproduced the resistance profile of the resistant III(B)/L-870,810 strains. In addition, resistance against L-870,810 was accompanied by reduced viral replication kinetics and reduced enzymatic activity of integrase. In conclusion, the accumulation of L74M, E92Q, and S230N mutations in the integrase causes resistance to the naphthyridine L-870,810 and cross-resistance to GS-9137. These data may have implications for cross-resistance of different integrase inhibitors in the clinic.  相似文献   

14.
15.
HIV-1 integrase inhibitors: 2005-2006 update   总被引:2,自引:0,他引:2  
HIV-1 integrase (IN) catalyzes the integration of proviral DNA into the host genome, an essential step for viral replication. Inhibition of IN catalytic activity provides an attractive strategy for antiretroviral drug design. Currently two IN inhibitors, MK-0518 and GS-9137, are in advanced stages of human clinical trials. The IN inhibitors in clinical evaluation demonstrate excellent antiretroviral efficacy alone or in combination regimens as compared to previously used clinical antiretroviral agents in naive and treatment-experienced HIV-1 infected patients. However, the emergence of viral strains resistant to clinically studied IN inhibitors and the dynamic nature of the HIV-1 genome demand a continued effort toward the discovery of novel inhibitors to keep a therapeutic advantage over the virus. Continued efforts in the field have resulted in the discovery of compounds from diverse chemical classes. In this review, we provide a comprehensive report of all IN inhibitors discovered in the years 2005 and 2006.  相似文献   

16.
Genome editing using zinc finger nucleases (ZFNs) has been successfully applied to disrupt CCR5 or CXCR4 host factors and inhibit viral entry and infection. Gene therapy using ZFNs to modify the PSIP1 gene, which encodes the lens epithelium-derived growth factor (LEDGF) protein, might restrain an early step of the viral replication cycle at the integration level. ZFNs targeting the PSIP1 gene (ZFNLEDGF) were designed to specifically recognize the sequence after the integrase binding domain (IBD) of the LEDGF/p75 protein. ZFNLEDGF successfully recognized the target region of the PSIP1 gene in TZM-bl cells by heteroduplex formation and DNA sequence analysis. Gene editing induced a frameshift of the coding region and resulted in the abolishment of LEDGF expression at the mRNA and protein levels. Functional assays revealed that infection with the HIV-1 R5 BaL or X4 NL4-3 viral strains was impaired in LEDGF/p75 knockout cells regardless of entry tropism due to a blockade in HIV-1 proviral integration into the host genome. However, residual infection was detected in the LEDGF knockout cells. Indeed, LEDGF knockout restriction was overcome at a high multiplicity of infection, suggesting alternative mechanisms for HIV-1 genome integration rather than through LEDGF/p75. However, the observed residual integration was sensitive to the integrase inhibitor raltegravir. These results demonstrate that the described ZFNLEDGF effectively targets the PSIP1 gene, which is involved in the early steps of the viral replication cycle; thus, ZFNLEDGF may become a potential antiviral agent for restricting HIV-1 integration. Moreover, LEDGF knockout cells represent a potent tool for elucidating the role of HIV integration cofactors in virus replication.  相似文献   

17.
Two new phorbol esters, NPB-11 (12-O-methoxymethylphorbol-13-decanoate) and NPB-15 (12-O-benzyloxymethylphorbol-13-decanoate) were synthesized. The compounds exhibited potent anti-HIV-1 activity and low cytotoxicity in MT-4 cells by MTT assay even at a high concentration [50% cytotoxic concentrations (CC50) were 8.32 and 4.39 microg/ml, respectively]. Two inhibitors strongly suppressed HIV-1 (IIIB strain) replication in MT-4 cells with a 50% effective concentration (EC50) of 1.3 and 0.27 ng/ml, respectively. NPB-11 efficiently blocked replication of both X4 and R5 HIV-1 in PHA-activated peripheral blood mononuclear cells and MT-4 cells as revealed by p24 assay. The antiviral activity appeared to be mediated, at least partially, by the down-regulation of the expression of CD4 and the HIV-1 co-receptors, CXCR4 and CCR5. The compounds were also capable of selectively up-regulating HIV-1 expression in a variety of latently infected cell lines and inducing cell death in HIV-1 infected cells. The effect of NPBs on the induction of HIV-1 was specifically blocked by nontoxic doses of a protein kinase C blocker, staurosporine. NPB-11 blocked the spread of HIV-1 released from latently infected ACH-2 cells to MT-4 cells in a co-culture system. When combined with AZT, NPB-11 synergistically inhibited HIV-1 replication in MTT assay using MT-4 cells. These data suggest that these agents might be useful in reducing persistent viral reservoirs in patients and as adjuvant therapy in patients treated with HAART.  相似文献   

18.
A-77003, a human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is effective for both acute and chronic infection in vitro and was evaluated clinically by continuous intravenous infusion administration. The minimum effective dose (the concentration required to completely inhibit viral replication) was determined in vitro in a population of uninfected (99%) and HIV-infected (1%) cells exposed to A-77003 by continuous infusion in hollow-fiber bioreactors. The production of infectious HIV and release of p24 antigen from infected cells were completely inhibited in cultures exposed to A-77003 at or above a concentration of 0.5 microM. Measurement of unintegrated HIV-1 DNA synthesis and flow cytometric analysis for cells expressing HIV p24 antigen demonstrated that the spread of HIV to uninfected cells was also blocked at 0.5 microM A-77003. Dose deescalation to 0.25 microM or removal of A-77003 resulted in the limited spread of the virus throughout the culture, the resumption of viral DNA synthesis, and release of p24. HIV produced after exposure to 0.5 microM A-77003 was noninfectious for a period of 72 h after the removal of the drug. Addition of 1 mg of alpha 1-acid glycoprotein per ml to this in vitro system completely ablated the anti-HIV effect of 0.5 microM A-77003. These data suggest that determination of the minimum effective dose under conditions which simulate human pharmacodynamic patterns may be useful in determining the initial dose and schedule for clinical trials. However, other factors, such as serum protein binding, may influence the selection of a therapeutic regimen.  相似文献   

19.
Clinical studies have shown that integrase strand transfer inhibitors (INSTIs) can be used effectively against HIV-1 infection. To date, no resistance substitution has been found in INSTI-naive patients treated with the new integrase inhibitor dolutegravir (DTG). In a recent selection study with DTG, using a virus bearing the H51Y substitution in integrase, the emergence of an R to K substitution at position 262 (R262K) was observed. We characterized this double mutant with respect to integrase strand transfer activity and susceptibility to DTG both biochemically and in tissue culture. We showed that the addition of R262K to H51Y decreased recombinant integrase strand transfer activity but improved integrase DNA-binding affinity, compared to wild-type or H51Y-containing enzymes. The defect in strand transfer activity did not translate into a decrease in HIV-1 infectivity. The combination of H51Y and R262K substitutions slightly decreased susceptibility to DTG (fold change = 1.87) in cell-based resistance assays. Although viral replication was not affected and enzyme efficiency was impaired by the addition of R262K to H51Y, there was an overall increase in the level of biochemical drug resistance against DTG. Our findings suggest that the R at position 262 plays an important role in DNA binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号