共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang GH Kim MY Park S Kim JA Choi S Suh SH 《Pflügers Archiv : European journal of physiology》2008,457(1):67-75
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence
measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials
increased intracellular Na+ concentration ([Na+]i) and vice versa. In addition, extracellular Na+ depletion decreased [Na+]i. In voltage-clamped cells, BKCa currents were markedly increased by extracellular Na+ depletion. In inside-out patches, increasing [Na+]i from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BKCa channels and decreasing intracellular K+ concentration ([K+]i) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na+]i gradually from 0 to 70 mM, by replacing K+, markedly reduced single channel conductance and NPo. The Na+–Ca2+ exchange blocker Ni2+ or KB-R7943 decreased [Na+]i and increased BKCa currents simultaneously, and the Na+ ionophore monensin completely inhibited BKCa currents. BKCa currents were significantly augmented by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM and significantly reduced by decreasing [K+]o from 12 or 6 to 0 mM or applying the Na+–K+ pump inhibitor ouabain. These results suggest that intracellular Na+ inhibit single channel conductance of BKCa channels and that intracellular K+ increases single channel conductance and NPo.
GH Liang and MY Kim contributed equally to this publication and therefore share the first authorship. 相似文献
2.
Wolfgang Ruf Hans Ebel Mila Hristova 《Pflügers Archiv : European journal of physiology》1976,366(2-3):203-210
Summary Distribution and principal characteristics of (Na+K+)-activated ATPase in human cornea were investigated.(Na+K+)-ATPase was present in both epithelium and endothelium, whereas the corneal stroma did not exhibit significant enzyme activity.In homogenates specific activity of the (Na+K+)-ATPase was 2.3-fold higher in endothelium than in epithelium. Calculation of total enzyme activity revealed a 6.1-fold higher content of (Na+K+)-ATPase in the epithelium.In the epithelium a 7-fold enrichment of (Na+K+)-ATPase compared to the homogenate was obtained in the 150–1500×g
av
fraction. Maximum enrichment in the endothelium was 3.5-fold and was achieved in the 1500–2500×g
av
fraction. Both fractions showed, however, the same specific activity.The pH-optimum of (Na+K+)-ATPase in the 150–1500×g
av
fraction ranged from 8.0–8.2 in both epithelium and endothelium.In the epithelial 150–1500×g
av
fraction the apparentK
m-values were 4.0 mM for Na+, 2.8 mM for K+ and 0.12 mM for Mg2+ · ATP in equimolar concentrations.The inhibition constant of epithelial (Na+K+)-ATPase for ouabain was determined asK
i=3.3×10–7 M.The present data support the view that control of corneal hydration in man is a function of both endothelium and epithelium. 相似文献
3.
Antonio R. Artalejo Antonio G. García Erwin Neher 《Pflügers Archiv : European journal of physiology》1993,423(1-2):97-103
Simultaneous whole-cell patch-clamp and fura-2 fluorescence [Ca2+]i measurements were used to characterize Ca2+-activated K+ currents in cultured bovine chromaffin cells. Extracellular application of histamine (10 M) induced a rise of [Ca2+]i concomitantly with an outward current at holding potentials positive to –80 mV. The activation of the current reflected an increase in conductance, which did not depend on membrane potential in the range –80 mV to –40 mV. Increasing the extracellular K+ concentration to 20 mM at the holding potential of –78 mV was associated with inwardly directed currents during the [Ca2+]i elevations induced either by histamine (10 M) or short voltage-clamp depolarizations. The current reversal potential was close to the K+ equilibrium potential, being a function of external K+ concentration. Current fluctuation analysis suggested a unit conductance of 3–5 pS for the channel that underlies this K+ current. The current could be blocked by apamin (1 M). Whole-cell current-clamp recordings snowed that histamine (10 M) application caused a transient hyperpolarization, which evolved in parallel with the [Ca2+]i changes. It is proposed that a small-conductance Ca2+-activated K+ channel is present in the membrane of bovine chromaffin cells and may be involved in regulating catecholamine secretion by the adrenal glands of various species. 相似文献
4.
A. Michael Frace F. Maruoka A. Noma 《Pflügers Archiv : European journal of physiology》1992,421(1):94-96
We have observed a novel class of calcium-activated potassium channel which is activated by physiological levels of intracellular ATP. These KCa,ATP channels are found on smooth muscle cells isolated from the pulmonary artery. Since their activation by ATP is Mg2+ dependent and is poorly evoked by nonor slowly-hydrolyzed ATP analogues, we conclude that it involves phosphorylation. We suggest that in hypoxia a reduction of intracellular ATP may reduce KCa,ATP channel activity and thereby tend to depolarize the cells. This effect would increase Ca2+ entry through voltage-activated Ca2+ channels and contribute to vasoconstriction. 相似文献
5.
M. Granitzer W. Nagel J. Crabbé 《Pflügers Archiv : European journal of physiology》1993,422(6):546-551
Homocellular regulation of K+ at increased transcellular Na+ transport implies an increase in K+ exit to match the intracellular K+ load. Increased K+ conductance, gK, was suggested to account for this gain. We tested whether such a mechanism is operational in A6 monolayers. Na+ transport was increased from 5.1±1.0 A/cm2 to 20.7±1.3 A/cm2 by preincubation with 0.1 mol/l dexamethasone for 24 h. Basolateral K+ conductances were derived from transference numbers of K+, t
K, and basolateral membrane conductances, gb, using conventional microelectrodes and circuit analysis with application of amiloride. Activation of Na+ transport induced an increase in gb from 0.333±0.067 mS/ cm2 to 1.160±0.196 mS/cm2 and t
K was reduced to 0.22±0.01 from a value of 0.70±0.05 in untreated control tissues. As a result, gK remained virtually unchanged at increased Na+ transport rates. The increase in gb after dexamethasone was due to activation of a conductive leak pathway presumably for Cl–. Increased K+ efflux, I
K, was a consequence of the larger driving force for K+ exit due to depolarization at an elevated Na+ transport rate. The relationship between calculated K+ fluxes and Na+ transport rate, measured as the I
sc, is described by the linear function I
K=0.624×I
Na–0.079, which conforms with a stoichiometry 23 for the fluxes of K+ and Na+ in the Na+/K+-ATPase pathway. Our data show that homocellular regulation of K+ in A6 cells is not due to up-regulation of g
K
. 相似文献
6.
Ad A. G. M. Benders Jie Li Robert A. C. Lock René J. M. Bindels Sjoerd E. Wendelaar Bonga Jacques H. Veerkamp 《Pflügers Archiv : European journal of physiology》1994,428(5-6):461-467
Copper (Cu2+) intoxication has been shown to induce pathological changes in various tissues. The mechanism underlying Cu2+ toxicity is still unclear. It has been suggested that the Na+/K+-ATPase and/or a change of the membrane permeability may be involved. In this study we examined the effects of Cu2+ on the Na+ and Ca2+ homeostasis of cultured human skeletal muscle cells using the ion-selective fluorescent probes Na+-binding benzofuran isophtalate (SBFI) and Fura-2, respectively. In addition, we measured the effect of Cu2+ on the Na+/K+-ATPase activity. Cu2+ and ouabain increase the cytoplasmic free Na+ concentration ([Na+]i). Subsequent addition of Cu2+ after ouabain does not affect the rate of [Na+]i increase. Cu2+ inhibits the Na+/K+-ATPase activity with an IC50 of 51 M. The cytoplasmic free Ca2+ concentration ([Ca2+]i) remains unaffected for more than 10 min after the administration of Cu2+. Thereafter, [Ca2+]i increases as a result of the Na+/Ca2+-exchanger operating in the reversed mode. The effects of Cu2+ on the Na+ homeostasis are reversed by the reducing and chelating agent dithiothreitol and the heavy metal chelator N,N,N,N,-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). In conclusion, SBFI is a good tool to examine Na+ homeostasis in cultured human skeletal muscle cells. Under the experimental conditions used, Cu2+ does not modify the general membrane permeability, but inhibits the Na+/K+-pump leading to an increase of [Na+]i. As a consequence the operation mode of the Na+/Ca2+-exchanger reverses and [Ca2+]i rises.The authors thank staff and coworkers of the Department of Neurology of the University Hospital Nijmegen, Nijmegen for their kind cooperation in obtaining muscle biopsies. Mr. Arie Oosterhof is gratefully acknowledged for culturing of the human muscle cells. The Prinses Beatrix Fonds and the Dutch-Chinese scientific exchange program contributed financial support for this study. 相似文献
7.
Toru Ishikawa Masataka Murakami 《Pflügers Archiv : European journal of physiology》1995,429(5):748-750
Using whole-cell patch-clamp techniques, we demonstrate, for the first time, that rat submandibular acinar cells contain a tetraethylammonium (TEA)-insensitive, Ca2+-activated K+ conductance which is not attributable to large conductance, voltage-sensitive, Ca2+-dependent K+ channels (maxi-K+ channels). Taken together with our recent K+ efflux and fluid secretion studies in intact rat submandibular gland, we postulate that the K+ conductance reported here may be involved in the basolateral K+ efflux pathway activated by cytosolic Ca2+ concentration during secretion by this gland. 相似文献
8.
Calcitonin-gene-related peptide activates the muscarinic-gated K+ current in atrial cells 总被引:3,自引:0,他引:3
Donghee Kim 《Pflügers Archiv : European journal of physiology》1991,418(4):338-345
A high density of nerve fibers containing calcitonin-gene-related peptide (CGRP) is present in the atria. Recently CGRP was reported to open ATP-sensitive K channels in arterial smooth muscle cells. This study examines whether CGRP activates a similar K+ channel in cardiac cells. In voltage-clamped whole cells loaded with GTP and ATP, CGRP reversibly evoked an inwardly rectifying K+ current. To identify the K+ channel that gives rise to this current, three types of K+ channel (resting, ATP-sensitive and acetylcholine-activated) were examined. CGRP failed to activate or inhibit the ATP-sensitive or the resting K+ channel. However, CGRP (0.1–1 M) caused activation of single channels with kinetics similar to that of the muscarinic K+ channel (35–40 pS conductance and approx. 1 ms mean open time in symmetrical 140 mM K+). In excised, inside-out (CGRP in pipette) or in outside-out (GTP in pipette) patches, the K+ current was activated by perfusion with GTP or CGRP, respectively, suggesting that CGRP activated the muscarinic K+ channel via GTP-binding protein. Treatment with pertussis toxin inhibited the activation of the K+ channel, suggesting that CGRP receptor may be coupled to a Gi or a Go type of GTP-binding protein. Together with previous findings, these results suggest that CGRP modulates several types of ion channels to produce its cellular effects.This work was supported in part by HL40586 and American Heart Association grant-in-aid. 相似文献
9.
Masahiro Oike Guy Droogmans Rik Casteels Bernd Nilius 《Pflügers Archiv : European journal of physiology》1993,424(3-4):301-307
Na+/K+ pump currents were measured in endothelial cells from human umbilical cord vein using the whole-cell or nystatin-perforated-patch-clamp technique combined with intracellular calcium concentration ([Ca2+]i) measurements with Fura-2/AM. Loading endothelial cells through the patch pipette with 40 mmol/l [Na+] did not induce significant changes of [Ca2+]i. Superfusing the cells with K+-free solutions also did not significantly affect [Ca2+]i. Reapplication of K+ after superfusion of the cells with K+-free solution induced an outward current at a holding potential of 0 mV. This current was nearly completely blocked by 100 mol/l dihydroouabain (DHO) and was therefore identified as a Na+/K+ pump current. During block and reactivation of the Na+/K+ pump no changes in [Ca2+]i could be observed. Pump currents were blocked concentration dependently by DHO. The concentration for half-maximal inhibition was 21 mol/l. This value is larger than that reported for other tissues and the block was practically irreversible. Insulin (10–1000 U/l) did not affect the pump currents. An increase of the intracellular Na+ concentration ([Na+]i) enhanced the amplitude of the pump current. Half-maximal activation of the pump current by [Na+]i occurred at about 60 mmol/l. The concentration for half-maximal activation by extracellular K+ was 2.4±1.2 mmol/l, and 0.4±0.1 and 8.7±0.7 mmol/l for Tl+ and NH4
+ respectively. The voltage dependence of the DHO-sensitive current was obtained by applying linear voltage ramps. Its reversal potential was more negative than –150 mV. Pump currents measured with the conventional whole-cell technique were about four times smaller than pump currents recorded with the nystatin-perforated-patch method. If however 100 mol/l guanosine 5-O-(3-thiotriphosphate) (GTPS) were added to the pipette solution, the currents measured in the ruptured-whole-cell-mode were not significantly different from the currents measured with the perforated-patch technique. We suppose that the use of the perforated-patch technique prevents wash out of a guanine nucleotide-binding protein (G-protein)-connected intracellular regulator that is necessary for pump activation. 相似文献
10.
S. Thierfelder H. Hirche K. Benndorf 《Pflügers Archiv : European journal of physiology》1994,427(5-6):547-549
Transient K+ outward currents (I
to) were measured in enzymatically isolated ventricular mouse heart cells with a patch clamp technique in the whole cell configuration. Exposure of the cells to substrate-free anoxia gradually decreased both the peak and the late I
to. The inactivation time course of I
to was fitted with two exponentials. After 4–10 min of anoxia, the contribution of the fast and slow exponential decreased to 60±7% and 62±4% of the control value and recovered after reoxygenation within 1–3 min to 84±5% and 75±6% (n=10; all mean ±SEM), respectively. The time constants of the exponentials were invariant to anoxia. Voltage dependence of activation and inactivation of I
to were not influenced by anoxia. Application of stimulators of protein kinase A and C, cGMP-dependent protein kinase, or of the oxidant diamide during anoxia did not recover I
to. It is concluded that under conditions of metabolic stress, I
to is reversibly down-regulated leaving inactivation kinetics unchanged. The underlying mechanism is as yet unknown but does neither involve a decreased activity of protein kinase A, protein kinase C, nor c-GMP dependent protein kinase.Heisenberg fellow of the Deutsche Forschungsgemeinschaft. 相似文献
11.
Takashi Kimitsuki Tamotsu Mitsuiye Akinori Noma 《Pflügers Archiv : European journal of physiology》1990,416(5):493-500
Single Na+ channel currents were recorded from guinea-pig ventricular cells in cell-attached patches. The ensemble average current (I) of multi-channel recordings was used to calculate the variance (
2) of current fluctuations around the mean in individual current recordings. The relationship between
2/I and I was linear and allowed estimation of the number of functional channels in the patch of membrane. The unitary amplitude of channel current obtained from the relation
2/I-I was in agreement with that obtained directly by measuring the original records. The number of channels determined at different depolarizing pulses was almost constant in a given patch. The value was nearly equal to that of the maximum current, measured at high depolarizing potentials when most channels are open, divided by the unitary current. The open probability of the channels at the peak time of mean current was calculated based on the estimated number of channels. It increased with increasing depolarization and saturated at about 0.6 at test potentials above –20 mV. The inactivation time-course of the mean current was fitted by a sum of two exponentials. The current amplitude extrapolated to time zero was much larger than the current which could be generated by all channels. This indicates that the inactivation of the Na+ channel develops with delay after the onset of depolarization. The finding is in agreement with a model in which the inactivation rate is accelerated with activation of the Na+ channel. 相似文献
12.
Christine E. Bear Ole H. Petersen 《Pflügers Archiv : European journal of physiology》1987,410(3):342-344
Cellular uptake of neutral amino acids via Na+ cotransporters is known to be associated with an increased membrane K+ conductance mediated by an unknown mechanism that is essential for avoiding excessive cell swelling. We now demonstrate by patch-clamp single-channel current recording that exposure of rat liver cells to L-alanine, but not the poorly transported D-stereoisomer, evokes opening of single K+ channels and that this effect is reversible upon removal of the amino acid. The nature of the conductance pathways opened in the intact cell by L-alanine has been investigated in cell-free excised membrane patches where it can be shown that the K+-selective channels are opened by Ca2+ acting from the inside of the membrane at a concentration as low as 0.1 M. 相似文献
13.
Toshikatsu Shimizu Koji Yoshitomi Junichi Taniguchi Masashi Imai 《Pflügers Archiv : European journal of physiology》1989,414(5):500-508
Morphological studies have demonstrated that a chronic increase in distal Na+ delivery causes hypertrophy of the distal convoluted tubule (DCT). To examine whether high NaCl-intake also causes functional changes in the well defined DCT, we measured transmural voltage (V
T), lumen-to-bath Na+ flux (J
Na(LB)), and net K+ secretion (J
K(net)) in DCTs obtained from control rabbits and those on high NaCl-intake diets. The lumen negativeV
T was significantly greater in the high NaCl group than in the control group. The net K+ secretion (pmol mm–1 min–1) was greater in the high NaCl-intake group (54.1±13.0 vs 14.7±5.6). The K+ permeabïlities in both luminal and basolateral DCT membranes, as assessed by the K+-induced transepithelial voltage deflection inhibitable with Ba2+, were increased in the experimental group. The lumen-to-bath22Na flux (pmol mm–1 min–1) was also greater in the experimental group (726±119 vs 396±65). TheV
T component inhibitable with amiloride was also elevated in the high NaCl-intake group. Furthermore, Na+–K+-ATPase activity of the DCT was higher in the experimental than in the control group. We conclude that high NaCl intake increases both Na+ reabsorption and K+ secretion by the DCT. This phenomenon is associated with an increased Na+–K+-ATPase activity along with increased Na+ and K+ permeabilities of the luminal membrane, and an increase in the K+ permeability of the basolateral membrane. Cellular mechanisms underlying these functional changes remain to be established. 相似文献
14.
Won -Kyung Ho Hilary F. Brown Denis Noble 《Pflügers Archiv : European journal of physiology》1994,426(1-2):68-74
The ionic selectivity of the hyperpolarizationactivated inward current (i
f) channel to monovalent cations was investigated in single isolated sinoatrial node cells of the rabbit using the whole-cell patch-clamp technique. With a 140 mM K+ pipette, replacement of 90% external Na+ by Li+ caused a –24.5 mV shift of the fully activated current/voltage I/V curve without a significant decrease of the slope conductance. With a 140 mM Cs+ pipette, the i
f current decreased almost proportionally to the decrease in external [Na+]o as Li+ was substituted. These responses are practically the same as those observed with N-methyl glucamine (NMG+) substitution, suggesting that the relative permeability of Li+ compared with Na+ for the i
f channel is as low as that of NMG+. When Cs+ or Rb+ was substituted for internal K+, the fully activated I/V relationship for i
f showed strong inward rectification with a positive reversal potential, indicating low permeability of the i
f channel for Cs+ and Rb+. These results show that the i
f channel is highly selective for Na+ and K+ and will not pass the similar ions Li+ and Rb+. Such a high degree of selectivity is unique and may imply that the structure of the i
f channel differs greatly from that of other Na+ and K+ conducting channels. 相似文献
15.
Yoshio Maruyama Hitoshi Shimada Junichi Taniguchi 《Pflügers Archiv : European journal of physiology》1995,430(1):148-150
The patch-clamp techniques are applied to the outer membrane of the nuclear envelope isolated from rat pancreatic acinar cells. The nucleus identified under an inverted microscope was removed by cell surgery from enzymatically dispersed single cells. All the patch-clamp techniques, in situ, excised, and whole-material recordings were applied to the envelope. We have found voltage- and Ca2+-activated K+-channels with an unitary conductance of 200 pS in the outer membrane. The channels are activated by lumen positive potentials and by an increase in luminal Ca2+ concentration. They may play a role for controlling Ca2+-release from the lumen of the nuclear envelope (endoplasmic reticulum) to the nucleoplasm and the perinuclear cytoplasm. 相似文献
16.
17.
E. Jebens H. Steen T. O. Fjeld E. Bye O. M. Sejersted 《European journal of applied physiology》1995,71(5):386-395
The K+ balance and muscle activity seem to interact in a complex way with regard to regulating the muscle density of Na+-K+ pumps. The effect of immobilization was examined in ten sheep that had low muscle K+ content. Three additional sheep served as untreated controls. After being brought from pasture to sheep stalls one hindlimb was immobilized in a plaster splint for 9 weeks, and in five of the animals remobilization was carried out for a further 9 weeks. The weight bearing of the leg in plaster was recorded by a force plate. Open muscle biopsies from the vastus lateralis muscle were obtained before the study, after 9 weeks of immobilization, and after another 9 weeks of remobilization. The Na+-K+ pump density was measured as [3H]-ouabain binding to intact tissue, and citrate synthase activity was measured in tissue homogenate. The tissue content of K+ was measured in fat-free dried tissue. Muscle K+ content increased linearly by almost 70% through the 18-week period independent of intervention. Immobilization reduced thigh circumference by 8% (P < 0.05) . A slight decrease in the area of type I fibres at 9 weeks and a slight increase at 18-weeks was found. The [3H]-ouabain binding was reduced by 39% and 22% in the immobilized and control legs, respectively, whereas citrate synthase activity was reduced by about 30% in both legs after 9 weeks of immobilization. During remobilization both the [3H]-ouabain binding and the citrate synthase activity increased to the same level as in the control animals. The plaster cast significantly reduced mass bearing of the immobilized leg, and a corresponding reduction in muscle activity must be assumed to have occurred in both legs as judged from citrate synthase activity. We concluded from this study that the reduction in the [3H]-ouabain binding during immobilization independent of an increase in muscle K+ content points to muscle activity as a strong stimulus for control of Na+-K+ bump density. 相似文献
18.
Orlov SN Thorin-Trescases N Pchejetski D Taurin S Farhat N Tremblay J Thorin E Hamet P 《Pflügers Archiv : European journal of physiology》2004,448(3):335-345
Recent studies have demonstrated the tissue-specific effect of Na+/K+ pump inhibition by ouabain and other cardiac glycosides on cell viability. The vascular endothelium is an initial target of cardiac glycosides employed for the management of congestive heart failure as well as circulating endogenous ouabain-like substances (EOLS), the production of which is augmented in volume-expanded hypertension. This study examined the role of the Na+/K+ pump in the survival of cultured porcine aortic endothelial cells (PAEC). Complete Na+/K+ pump inhibition with ouabain led to PAEC death, indicated by cell detachment and decreased staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Based on cell swelling and resistance to benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk) a pan-caspase inhibitor, this type of cell death was classified as necrosis. In contrast to ouabain, Na+/K+ pump inhibition in K+-free medium did not affect PAEC viability and sharply attenuated apoptosis triggered by 3H decay-induced DNA damage. Necrosis evoked by ouabain was preserved after dissipation of the transmembrane gradient of K+ and Na+, whereas dissipation of the Na+ gradient abolished the antiapoptotic action of K+-free medium. Comparative analysis of these results and modulation of intracellular Na+ and K+ content by the above-listed stimuli showed that interaction of ouabain with Na+/K+-ATPase triggered necrosis independently of inhibition of Na+/K+ pump-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio, whereas protection against apoptosis under Na+/K+ pump inhibition in K+-depleted medium was mediated by [Na+]i elevation. The role of Na+/K+ pump-mediated regulation of endothelial cell survival and vascular remodelling seen in hypertension should be investigated further in context of EOLS and chronic treatment with digitalis. 相似文献
19.
Yoshihisa Kurachi Toshiaki Nakajima Tsuneaki Sugimoto 《Pflügers Archiv : European journal of physiology》1987,410(3):227-233
The short-term desensitization of the acetylcholine (ACh)-induced K+ channel current was examined in single atrial cells of guinea-pig heart. The tight-seal whole cell voltage clamp technique was used. The solution in the pipettes contained GTP or guanosine-5-O-(3-thiotriphosphate) (GTP-S, a non-hydrolyzable GTP analogue). In GTP-loaded cells, ACh evoked a specific K+ channel current via GTP-binding proteins (G) in a dose-dependent manner. The K+ current showed agonist-dependent desensitization similar to those reported in other cardiac tissues (Nilius 1983; Carmeliet and Mubagwa 1986). The cellular response to ACh was also desensitized by activation of P1-purinergic receptors with adenosine (Ado). In GTP-S-loaded cells, the K+ current was gradually induced even in the absence of agonists, probably due to direct activation of G proteins by GTP-S. In the early phase of the spontaneous current increase, ACh evoked a large current transiently. As the GTP-S-induced activation of the current progressed, the magnitude of the ACh-evoked current transient became smaller and finally negligible. Similar results were obtained when Ado was used as an agonist instead of ACh to induce the K+ current. Therefore, it is indicated that the agonistreceptor interaction may not be essential for the desensitization of ACh-induced K+ current in atrial myocytes. 相似文献
20.
Amy Tse Frederick W. Tse Bertil Hille 《Pflügers Archiv : European journal of physiology》1995,430(5):645-652
In rat pituitary gonadotropes, gonadotropin-releasing hormone (GnRH) stimulates rhythmic release of Ca2+ from stores sensitive to inositol 1,4,5-trisphosphate [Ins(1,4,5)P
3
], which in turn induces an oscillatory activation of apamin-sensitive Ca2+-activated K+ current, I
K(Ca). Since GnRH also activates protein kinase C (PKC), we investigate the action of PKC while simultaneously measuring intracellular Ca2+ concentration ([Ca2+]i) and I
K(Ca). Stimulation of PKC by application of phorbol 12-myristate 13-acetate (PMA) did not affect basal [Ca2+]i. However, PMA or phorbol 12,13-dibutyrate (PdBu), but not the inactive 4-phorbol 12,13-didecanoate (4-PDD), reduced the frequency of GnRH-induced [Ca2+]i oscillation and augmented the I
K(Ca) induced by any given level of [Ca2+]i. The slowing of oscillations and the enhancement of I
K(Ca) were mimicked by synthetic diacylglycerol (1,2-dioctanoyl-sn-glycerol) and could be induced during ongoing oscillations that had been initiated irreversibly in cells loaded with guanosine 5-O-(3-thio-triphosphate) (GTP-[S]). In contrast, when oscillations were initiated by loading cells with Ins(1,4,5)P
3, phorbol esters enhanced I
K(Ca) without affecting the frequency of oscillation. The protein kinase inhibitor, staurosporine, reduced I
K(Ca) without affecting [Ca2+]i and partially reversed the phorbol-ester-induced slowing of oscillation. Therefore, activation of PKC has two rapid effects on gonadotropes. It slows [Ca2+]i oscillations probably by actions on phospholipase C, and it enhances I
K(Ca) probably by a direct action on the channels. 相似文献