首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Only recently have natural antigens for CD1d-dependent, invariant Valpha14+ natural killer T (iNKT) cells been identified. Similar data for CD1d-independent and CD8+ NKT cell populations are still missing. Here, we show that the MHC class I-restricted CD8+ TCR-transgenic mouse lines OT-I, P14 and H-Y contain a significant proportion of transgenic CD8+ NK1.1+ T cells. In liver, most of NK1.1+ T cells express CD8alphaalpha homodimers. Transgenic NKT cells did not bind invariant Valpha14-to-Jalpha18 TCR rearrangement (Valpha14i)-specific CD1d/alpha-galactosylceramide tetramers and the frequency of iNKT cells was severely reduced. The activated cell surface phenotype and the distribution of transgenic NKT cells in vivo were similar to that reported for iNKT cells. The OT-I and P14 CD8+ NKT cells recognized their cognate antigen in the context of H2-Kb and produced cytokines shortly after TCR stimulation. Importantly, transgenic NKT cells exerted immediate antigen-specific cytotoxicity in vitro and in vivo. Our results demonstrate the presence of transgenic CD8+ NKT cells in MHC class I-restricted TCR-transgenic animals, which are endowed with rapid antigen-specific effector functions. These data imply that experiments studying naive T cell function in TCR-transgenic animals should be interpreted with caution, and that such animals could be utilized for studying CD8+ NKT cell function in an antigen-specific manner.  相似文献   

2.
Natural killer T (NKT) cells are mainly present in the liver and thymus, and the majority of these T cells express either a CD4(+) or a double-negative (DN) CD4(-)8(-) phenotype. In the present study, we examined whether such NKT cells were present in the intestine. NKT cells were rare in all sites of the small intestine, including an intraepithelial site. However, a considerable number of NKT cells were found at an intraepithelial site in the large intestine. This result was confirmed by both immunofluorescence and immunohistochemistry. In contrast to conventional NKT cells, NKT cells in the large intestine were CD8(+) or DN CD4(-)8(-). In the case of conventional NKT cells, their existence is known to depend on non-classical MHC class I-like antigens (i. e. CD1d) but not on classical MHC class I antigens. However, the NKT cells in the large intestine were independent of the presence of both CD1d and classical MHC class I antigens. These results were obtained using knockout mice lacking the corresponding genes and molecules. NKT cells in the large intestine were mainly alpha betaTCR(+) (> 75 %) but did not use an invariant chain of Valpha14Jalpha281, which is preferentially used by conventional NKT cells. These NKT cells did not bias the TCR-Vbeta usage toward Vbeta8. These findings suggest that the large intestine is a site in which unconventional NKT cells carrying the CD8(+) phenotype (or DN CD4(-)8(-)) are abundant and that these cells are independent of MHC and MHC-like antigens.  相似文献   

3.
Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.  相似文献   

4.
CD1-autoreactive T cells of two types have been demonstrated among T cells expressing the T-cell receptor (TCR) alphabeta at intermediate levels (TCRint cells). One type constitutes a major fraction of the natural killer (NK)1.1+ TCRint population in C57BL/6 (B6) mice and carries a restricted TCR composed of an alpha-chain with an invariant Valpha14-J281 rearrangement, and a beta-chain using Vbeta8. 2, 7 or 2. The second type utilises a variety of TCR and was derived from CD4+ cells in mice lacking MHC class II. To increase our understanding of the two different CD1-reactive subsets, we have investigated and compared the populations of origin: NK1.1+ and NK1. 1- TCRint subsets from MHC class II-deficient mice and CD4+NK1.1+ T cells from B6 mice. The three TCRint populations shared a phenotype indicating previous activation, and contained low frequencies of cells expressing NK receptors of the Ly49 family. In contrast to control CD4+ cells, the three TCRint subsets produced high amounts of interleukin (IL)-4 and interferon (IFN)-gamma after activation. Importantly, no IL-10 could be detected in either TCRint population, implying a distinct function for these cells, different from those of conventional CD8+ and CD4+ cells, including the typical T-helper 2 (Th2) cell. Analysis of TCR expression indicated that the proportion of cells using the semi-invariant Valpha14/Vbeta8.2-type TCR was lower in NK1.1+ cells from MHC class II-negative mice than in CD4+NK1.1+ B6 cells. Further, usage of the Valpha14-J281 rearrangement was also demonstrated among NK1.1- TCRint cells.  相似文献   

5.
iNKT cells are a unique subset of CD1-restricted T lymphocytes that express T cell receptor (TCR) and some NK receptors. iNKT cells express an invariant TCRalpha chain composed of Valpha14-Jalpha18 segments in mice and Valpha24-Jalpha18 segments in humans associated with TCRbeta chains using a restricted set of Vbeta. iNKT cells recognize glycolipid antigens such as alpha-galactosylceramide (alpha-GC) presented by CD1d, non-pormorphic MHC class I-like molecule, and rapidly secrete large amounts of cytokines including IL-4 and IFN-gamma upon activation. Due to its potent ability to produce a variety of cytokines, iNKT cells are involved in a various kinds of immunoregulation. iNKT cells play a regulatory role in some disease models such as type I diabetes in NOD mice. In contrast, iNKT cells exaggerate the pathogenesis such as arthritis, allergic airway inflammation and atherosclerosis. In addition, iNKT cells are an attractive target for immunotherapy because several different synthetic glycolipid antigens to modify the function of iNKT cells are available. In this review, we examine the potential roles of NKT cells in the pathogenesis of a variety of diseases including autoimmunity , allergy, infection and cancer. Additionally, we discuss on the recent advances in glycolipid therapy for these disease models.  相似文献   

6.
The generation of thymic NK1.1(+)alpha beta T (NKT) cells involves positive selection of cells enriched for V(alpha)14/V(beta)8 TCR by CD1d MHC class I molecules. However, it has not been determined whether positive selection is preceded by pre-TCR-dependent beta selection. Here we studied NKT cell development in CD3 signaling-deficient mice (CD3 zeta/eta(-/-) and/or p56(lck-/-)) and TCR alpha-deficient mice. In contrast to wild-type mice, NK1.1(+) thymocytes in CD3 signaling-deficient mice are approximately 10-fold reduced in number, do not exhibit V(alpha)14-J(alpha)281 rearrangements and fail to express alpha beta TCR at the cell surface. However, they exhibit TCR beta VDJ rearrangements and pre-T alpha mRNA, suggesting that they contain pre-NKT cells. Strikingly, pre-NKT cells of CD3 zeta/Lck double-deficient mice fail to express TCR beta mRNA and protein. Whereas in wild-type NKT cells TCR beta VDJ junctions are selected for productive V(beta)8 and against productive V(beta)5 rearrangements, V(beta)8 and V(beta)5 rearrangements are non-selected in pre-NKT cells of CD3 signaling-deficient mice. Thus, pre-NKT cell development in CD3 signaling-deficient mice is blocked after rearrangement of TCR beta VDJ genes but before expression of TCR beta proteins. Most NKT cells of TCR alpha-deficient mice exhibit cell surface gamma delta TCR. In contrast to pre-NKT cells of CD3 signaling-deficient mice, approximately 25% of NKT cells of TCR alpha-deficient mice exhibit intracellular TCR beta polypeptide chains. Moreover, both V(beta)8 and V(beta)5 families are selected for in-frame VDJ joints in the TCR beta(+) NKT cell subset of TCR alpha-deficient mice. The data suggest that CD3 signals regulate initial TCR beta VDJ gene expression prior to beta selection in developing pre-NKT cells.  相似文献   

7.
Natural killer T (NKT) cells have an extremely restricted T-cell receptor repertoire, in man consisting of a Valpha24 chain preferentially paired with a Vbeta11 chain, and play crucial roles in various immune responses. Characterization of circulating Valpha24(+)Vbeta11(+)-T cells is hampered by their low frequencies. The alpha-galactosylceramide KRN7000 was reported to be presented by CD1d to NKT cells. Since dendritic cells (DC) are potent antigen presenting cells, and have been shown to express CD1d, we analyzed whether these cells could efficiently mediate expansion of Valpha24(+)Vbeta11(+)-T cells. During a 7-day co-culture of peripheral blood mononuclear cells and KRN7000-loaded mature monocyte derived DC (moDC) in the presence of interleukin-7 (IL-7) and IL-15, we observed up to 76-fold expansion of Valpha24(+)Vbeta11(+)-T cells. The expanded Valpha24(+)Vbeta11(+)-T cells expressed the cytotoxic molecule granzyme B, showed negligible expression of Fas ligand and could be induced to express high levels of interferon-gamma, while retaining the capacity to produce IL-4. B cells, expressing CD1d, could also present KRN7000, but Valpha24(+)Vbeta11(+)-T cell expansion was only observed in the presence of IL-7 and/or IL-15. Considering the low frequency of circulating Valpha24(+)Vbeta11(+)-T cells, the present method for expansion of Valpha24(+)Vbeta11(+)-T cells using KRN7000-loaded mature moDC will be of value for the further characterization of this unique T cell subset.  相似文献   

8.
Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ T cells which preferentially use the Vbeta8.2 TCR in response to myelin basic protein (MBP). Two strains of Tg mice (Valpha2.3/Vbeta8.2 and Valpha4/Vbeta8.2) have T cell receptors that recognize the NAc1-11 immunodominant epitope of MBP. We previously reported that oral administration of MBP protects both Valpha2.3/Vbeta8.2 and Valpha4/Vbeta8.2 mice from EAE; however, tolerance induction differs between strains and is dependent on the timing of oral antigen. Here we analyze the peripheral and gut-associated lymphoid tissue (GALT) environments of the two strains of Tg mice. Tg cells in the Peyer's patch (PP) but not the spleen of Valpha2.3/Vbeta8.2 mice demonstrate increased CD69 and decreased CD45RB relative to Valpha4/Vbeta8.2 mice. High levels of Th1 and Th2 cytokines, proliferative activity and CC chemokines (MCP-1) are observed in the periphery and GALT of Valpha2.3/Vbeta8.2 Tg mice. In contrast, more non-Tg CD4+ cells are seen in the PP of Valpha4/Vbeta8.2 mice. These studies suggest that activated Tg T cells and fewer potential regulatory cells in the PP of Valpha2.3/Vbeta8.2 Tg mice may influence oral tolerance.  相似文献   

9.
The natural killer (NK) T-lymphocyte population consists of two subsets utilizing a diverse and restricted T-cell receptor (TCR) repertoire, respectively. Both populations have been shown to include autoreactive cells. NKT cells carrying restricted Valpha14(AV14S1)Jalpha281/Vbeta8.2(BV8S2A1 ) TCR have been shown to recognize alpha-galactosylceramide (alphaGalCer) presented in the context of murine CD1d. In this study we screened a set of murine CD1d-autoreactive T-cell hybridomas with diverse TCR for their reactivity with several glycosylated variants of ceramide, including alphaGalCer. These hybridomas showed a different pattern of reactivity to CD1d-expressing antigen-presenting cells (APC) and were not reactive with any of the tested variants of ceramide. A second set of hybridomas had been selected for expression of Valpha14 and Vbeta8.2 TCR chains. These cells responded to alphaGalCer presented on CD1d, but were only weakly reactive to syngeneic splenocytes or CD1d-transfected cells. Their fine specificity in the response to glycosylation variants of ceramide demonstrated a homogenous reactivity pattern, including reactivity to alpha-galactosylsphingosine, the variant of alphaGalCer with truncated fatty acyl chain. These findings underline the differences in ligand specificity between the two subsets of CD1d-restricted NKT cells, and demonstrate a similarity in reactivity among the hybridomas using the Valpha14-Jalpha281/Vbeta8.2 TCR.  相似文献   

10.
NKT cell development takes place in the thymus, beginning when these cells branch away from CD4+CD8+ mainstream thymocytes upon expression of the Valpha14Jalpha18 T cell receptor (TCR) and recognition of the CD1d molecule. Although NKT cells express an invariant TCR alpha chain, the diverse TCR beta expression leaves open the possibility that the development of these cells is shaped by glycolipid antigen recognition in the context of CD1d. Here, we show that the presence of an agonist glycolipid ligand, alpha-galactosylceramide, while NKT cells are developing in vitro or in vivo, specifically ablates their development. In contrast, the delayed introduction of this compound in vitro or in vivo, after NKT cells have developed, does not deplete these cells. These data indicate that NKT cells pass through a developmental window where they are susceptible to TCR-mediated negative selection, and suggest that NKT cells with a potentially high level of self reactivity can be removed from the NKT cell repertoire before they exit the thymus.  相似文献   

11.
There are two important mechanisms of activation of invariant natural killer T cells (iNKT cells) by microbes: direct activation of the invariant T-cell receptor (TCR) by microbial glycolipids presented by CD1d and indirect activation, mediated by the responses of antigen-presenting cells to microbes. In this study, we provide evidence for a novel CD1d-independent direct activation of iNKT cells involving a microbial protein superantigen presented in the context of major histocompatibility complex class II (MHC-II), which plays a critical role in pathogenesis, thereby redefining the role of iNKT cells. Intranasal exposure to staphylococcal enterotoxin B (SEB) in C57BL/6 wild-type mice caused acute lung injury (ALI) characterized by vascular leak, cytokine storm, and infiltration of mononuclear cells in the lungs. In contrast, the vascular leak and inflammation were decreased by ~50% in NKT cell-deficient Jα18(-/-) and CD1d(-/-) mice following SEB exposure, which was reversed following adoptive transfer of iNKT cells into CD1d(-/-) mice. In vitro, SEB could directly stimulate iNKT cells in a CD1d-independent manner via MHC-II/TCR interaction, specifically involving Vβ8. These studies not only demonstrate that iNKT cells can be activated directly by a bacterial protein superantigen independent of CD1d but also indicate that in addition to the conventional T cells, iNKT cells play a critical role in SEB-mediated ALI.  相似文献   

12.
Human Valpha24 + NKT cells, a subpopulation of natural killer cell receptor (NKR-P1A) expressing T cells with an invariant T-cell receptor (TCR; Valpha24JalphaQ) are stimulated by the glycolipid, alpha-galactosylceramide (KRN7000), in a CD1d-dependent, TCR-mediated fashion. Little is known about Valpha24 + NKT-cell function. The murine counterpart, Valpha14 + NKT cells, appear to have an important role in controlling malignancy. There are no human data examining the role of Valpha24 + NKT cells in controlling human malignancy. We report that Valpha24 + NKT cells have perforin-mediated cytotoxicity against haemopoietic malignancies. Valpha24 TCR, CD1d and alpha-galactosylceramide may all play a role in cytotoxicity but are not absolute requirements. The greatest cytotoxicity was observed against the U937 tumour cell line (95 +/- 5% lysis). THP-1, Molt4, C1R cells and allogeneic mismatched dendritic cells were also sensitive to Valpha24 + NKT cytotoxicity but neither the NK target, K562, nor lymphokine-activated killer-sensitive Daudi cells, were sensitive. These results indicate a killing pattern distinct from conventional major histocompatibility complex-restricted T cells, NK cells and other cytotoxic lymphoid cells previously described. We conclude that human Valpha24 + NKT cells have cytotoxic anti-tumour activity against haemopoietic malignancies through effector mechanisms distinct from conventional T cells and NK cells and that their specific stimulator KRN7000 may have therapeutic potential.  相似文献   

13.
Positive selection is an obligatory step during intrathymic T cell differentiation. It is associated with rescue of short-lived, self major histocompatibility complex (MHC)-restricted thymocytes from programmed cell death, CD4/CD8 T cell lineage commitment, and induction of lineage-specific differentiation programs. T cell receptor (TCR) signaling during positive selection can be closely mimicked by targeting TCR on immature thymocytes to cortical epithelial cells in situ via hybrid antibodies. We show that selection of CD4 T cell lineage cells in mice deficient for MHC class I and MHC class II expression can be reconstituted in vivo by two separable T cell receptor signaling steps, whereas a single TCR signal leads only to induction of short-lived CD4+CD8la intermediates. These intermediates remain susceptible to a second TCR signal for 12-48 h providing an estimate for the duration of positive selection in situ. While both TCR signals induce differentiation steps, only the second one confers long-term survival on immature thymocytes. In further support of the two-step model of positive selection we provide evidence that CD4 T cell lineage cells rescued by a single hybrid antibody pulse in MHC class II-deficient mice are pre-selected by MHC class 1.  相似文献   

14.
Invariant human natural killer T cells (NKT) express a restricted T-cell receptor (TCR) Valpha24Vbeta11 repertoire. These cells share both phenotypic and functional similarities between NK and T cells. Given the emerging role of NKT cells as critical cells in bridging the gap between innate and adaptive immunity, we examined their susceptibility to productive human immunodeficiency virus (HIV) infection by T-tropic, M-tropic, and primary isolates of HIV. We generated three human NKT cell clones (CA5, CA29, and CA31). Phenotypic characterization of these Valpha24+ Vbeta11+ clones indicated that they were predominately positive for CD4, CD161, HLA-DR, CD38, CD45RO, and CD95 expression. The NKT cell clones expressed significantly more surface CCR5 molecules/cell and lower CXCR4 molecules/cell than phytohaemagglutinin-stimulated peripheral blood mononuclear cells (PBMC). Consistent with the surface expression of CCR5 and CXCR4, the NKT clones were also selectively susceptible to HIV M-tropic, T-tropic, and primary isolate infection, as evaluated by both HIV p24 enzyme-linked immunosorbent assay and intracellular staining of HIV proteins. The amount of p24 production was dependent on the NKT clone studied and the HIV strain used. Clones CA29 and CA31 were also susceptible to HIV IIIB infection. The virions produced by these clones were able to productively infect PHA-stimulated PBMCs with the same kinetics as for primary infection of CD4+ blast. Collectively, this data demonstrates that NKT cells can be a target for productive HIV infection but with a lag in the time to peak p24 production.  相似文献   

15.
Natural Killer (NK) T cells are a specialized T cell population that co-expresses receptors of the NK lineage with the alpha / beta TCR receptor and other T cell surface markers. Their functions, regulation and relationship to other cells in the immune system are not fully understood. This report demonstrates that tumor-bearing C57BL / 6 mice have a population of NKT cells that co-express CD8 and CD161 (NK1.1) surface markers. These cells are maintained in long-term culture with T helper 2 (Th2) cytokine interleukin-4 (IL-4), but produce large amounts of Th1 cytokine interferon-gamma (IFN-gamma) following activation. NK1.1(+)CD8(+) T cells show a potent NK-like cytotoxic activity against multiple tumor targets, and lysis is independent of major histocompatibility complex (MHC)-class I or non-classical MHC-class I molecules (Qa, TL). The NK1.1(+)CD8(+) T cells express Vbeta14 chain of the TCR. These NKT cells are not CD1d restricted, and their cytotoxic activity is CD1d independent. Therefore, they represent a unique subset of T cells with an unknown restriction element which produce large quantities of IFN-gamma following expansion with IL-4. Furthermore, their cytotoxic activity is enhanced by B7 co-stimulatory molecules present on tumor cells. CD161(+) T cells that are expanded in tumor-bearing hosts may function as a part of the innate immune system with potential role(s) in tumor surveillance.  相似文献   

16.
Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.  相似文献   

17.
Invariant Valpha14 natural killer T (Valpha14i NKT) cells are a unique immunoregulatory T-cell population that is restricted by CD1d. The glycolipid alpha-galactosylceramide (alpha-GalCer) is presented by CD1d and causes robust Valpha14i NKT-cell activation. Three days after injection of alpha-GalCer, Valpha14i NKT cells vigorously increase in number and then gradually decrease to normal levels. In the present study, we found that the re-administration of alpha-GalCer into mice primed 3 days earlier causes a marked increase in serum interleukin-4 and interferon-gamma. Intracellular staining revealed that the only expanded Valpha14i NKT cells are responsible for the enhanced cytokine production. The enhanced cytokine production was correlated with an increased number of Valpha14i NKT cells after priming. Additionally, primed Valpha14i NKT cells produced larger amounts of cytokine as compared with naive Valpha14i NKT cells when cultured with alpha-GalCer-pulsed dendritic cells. Thus, we considered that a subset of expanded Valpha14i NKT cells acquired a strong ability to produce cytokines. In contrast to mice primed 3 days earlier, cytokine production is markedly diminished in mice primed 7 days earlier. The expanded Valpha14i NKT cells altered the surface phenotype (NK1.1- CD69-) and contained intracellular interferon-gamma. Additionally, we found that primed Valpha14i NKT cells did not disappear or down-regulate surface TCR expression when re-injected with alpha-GalCer as compared with naive Valpha14i NKT cells. These results demonstrate that the function and surface phenotype of Valpha14i NKT cells is dramatically altered after alpha-GalCer priming.  相似文献   

18.
CD1d-restricted natural killer T (NKT) cells are involved in the regulation of various immune responses, and have been shown to inhibit viral replication in animal hepatitis models when activated by the glycolipid alpha-galactosylceramide (alpha-GalCer, KRN7000). Previous studies have indicated that alpha-GalCer-induced activation of the immune system requires both CD1d expression by antigen-presenting cells as well as (normal) numbers of NKT cells. Discrepancies exist over circulating numbers of human invariant Valpha24+Vbeta11+ NKT cells during hepatitis C virus (HCV) infection. Here, by cross-sectional analysis and longitudinal analysis of patients undergoing effective combination antiviral therapy, we demonstrate that circulating Valpha24+Vbeta11+ NKT cell numbers are not decreased during active HCV infection. Importantly, as we also show that CD1d is expressed at comparable levels by peripheral blood monocytes and CD1c+ myeloid dendritic cells (DC) of healthy individuals and HCV-infected patients, these data indicate that all ingredients for evaluating the antiviral effects of the Valpha24+Vbeta11+ NKT cell ligand alpha-GalCer in HCV-infected patients are present.  相似文献   

19.
Previously, we found that more than a half of the NK1.1(+) T cell lines prepared from CD1(-/-) livers expressed invariant Valpha19-Jalpha33 TCR alpha chains. Over-expression of the invariant Valpha19-Jalpha33 TCR alpha transgene (Tg) with a natural TCR alpha promoter and an enhancer in mice induced the development of NK1.1(+) T cells (Valpha19 NKT cells) in the lymphoid organs, especially in the liver. Preferential usage of the Valpha19 Tg by NKT cells in the transgenic mouse livers was indirectly indicated by the observation that few NK1.1(+) TCRalphabeta(+) cells of the Valpha19 Tg livers were stained with a cocktail of anti-TCR Valpha antibodies in the FACS analysis. Upon invariant TCR engagement in vivo following injection of mice with anti-CD3 antibody, NKT cells of the Tg mouse livers as well as spleens promptly produced immunoregulatory cytokines such as IL-4 and IFN-gamma and altered surface receptor expression. Collectively, localization of Valpha19 NKT cells in the liver is suggested that are ready to immediately response against antigen stimulation.  相似文献   

20.
Whether intermediate TCR (TCRint) cells and natural killer T (NKT or NK1.1+TCRint) cells are extrathymically generated remains controversial. This arises from the fact that there are few of these T cells in athymic nude mice and neonatally thymectomized mice. However, when athymic mice were provided with appropriate microenvironments or stimulation, many TCRint cells (mainly NK1.1-) were found to arise in the liver. NKT cells are known to be positively selected by monomorphic major histocompatibility complex (MHC) -like antigens (e.g. CD1d). This is true even if they are CD4+. In other words, a MHC class I-like antigen is restricted to CD4 antigen. This rule is somewhat different from that seen in conventional T cells (i.e. the restriction of class II with CD4 and that of class I and CD8). In the case of NK1.1-TCRint cells, they were selected by polymorphic MHC antigens, but their MHC restriction to CD4 or CD8 antigen was incomplete. This was revealed by experiments of bone marrow transfer with class I (bm 1) or II (bm 12) disparity. Depending on the disparity, a unique cytokine profile in sera was detected. These results suggest that the development of T lineage lymphocytes and MHC restriction to CD4 and CD8 might have occurred in parallell as a phylogenic event, and that NK1.1- extrathymic T cells (i.e. NK1.1-TCRint) are at an intermediate position between NKT cells and conventional T cells in phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号