首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To investigate to what extent the loss of cholinergic projections to the neocortex results in functional impairment in the target areas, local rates of cerebral glucose utilization were measured following excitotoxin lesions of the nucleus basalis magnocellularis (NBM) in the rat. Both unilateral and bilateral lesions of NBM resulted in reversible depression of cerebral metabolism. The effects of unilateral lesions were limited to the cortical areas which receive most of the cholinergic projections from NBM. The metabolic defect produced by bilateral lesions was spread to the whole brain. Within 4 months, however, normal metabolic values coexisted with marked changes of the presynaptic cholinergic markers and impairment of conditioned behavior.  相似文献   

3.
It has been shown that a marked decline in the cortical activity of the cholinergic synthesizing enzyme choline-acetyltransferase (ChAT), accompanied by a severe neuronal loss in the nucleus basalis magnocellularis of Meynert occurs in the brains of patients with senile dementia of the Alzheimer type. However, the functional role of these neurons is largely unknown. In fact, very few studies have been done in animals. In this paper we report the behavioral effects of the lesion of the nucleus basalis magnocellularis in the rat either by radiofrequency current or by ibotenic acid injection at the level of the cell bodies. The two kinds of lesion lead to a profound disturbance of spontaneous and learned behaviors. There is a complete disorganization of behavior which is evidenced by an enhanced locomotor activity, an alteration in alimentary and hoarding behavior. In addition, we observed a deterioration of spatial memory and an incapacity to reverse a previously learned response. Biochemical assay showed that radiofrequency and ibotenic acid lesions produced a decrease of ChAT activity in the prefrontal and sensorimotor cortices and in amygdala without affecting the hippocampus or striatum. Ibotenic acid lesions seem to specifically destroy the cell bodies of the nucleus basalis magnocellularis since the dopaminergic and noradrenergic fibers of passage remained intact as measured by the unchanged level of endogenous catecholamine concentration in the terminal region in the prefrontal cortex. Presently, it cannot be said that the behavioral syndrome results solely from the lesion of the cholinergic neurons. Also, it is likely that the lesion of the nucleus basalis magnocellularis in the rat does not exactly reproduce the behavioral syndrome observed in Alzheimer's disease in man. However, this experimental approach in leading to a better knowledge of the functioning of these neurones could improve our understanding of this disease.  相似文献   

4.
Prolactin (PRL) secretion by the anterior pituitary gland is dependent upon the tonic inhibitory influence of the tuberoin-fundibular dopaminergic (TIDA) neuronal system. TIDA neurons, in turn, are regulated by various afferent neuronal systems. To support the concept that the recently-discovered neuropeptide, galanin (GAL), is one of the neurotransmitter/neuromodulator substances which might synaptically regulate the function of the TIDA system, immunocytochemical double-labeling studies were carried out in the hypothalamic arcuate nucleus (AN) of the male rat. The analysis of light microscopic preparations revealed the overlapping of GALergic and dopaminergic (detected by tyrosine hydroxylase immunoreactivity) neuronal elements in both the dorsomedial and ventrolateral parts of the AN. TH-containing perikarya and dendrites were contacted by varicose GAL-IR axons in these regions. The electron microscopic studies of ultrathin sections demonstrated axosomatic and axodendritic synapses between GALergic axons and TH-IR neurons. These findings support the view that GAL may modulate PRL release, acting as a neurotransmitter/neuromodulator in synaptic afferents to the TIDA system.  相似文献   

5.
Quisqualic acid NBM lesions had no effect on water maze performance, but slightly impaired passive avoidance acquisition. GammavinylGABA treatment alone had no effect on the passive avoidance and water maze performance, but aggravated acquisition deficit in rats subjected to NBM lesioning. However, gammavinylGABA-treated NBM-lesioned rats reached control level of performance.  相似文献   

6.
We compared the effects on spatial learning of an ibotenic acid lesion of the nucleus basalis magnocellularis (NBM), a 5, 7-dihydroxytryptamine lesion of the raphe dorsalis (RD) and a combined NBM and RD lesion. The RD lesion reduced serotonin levels, and the NBM lesion reduced cholineacetyltransferase (ChAT) activity in the cortex. Although RD lesions alone did not affect spatial learning in the water-maze, the lesion aggravated the spatial navigation deficit produced by NMB lesioning. The current results suggest a functional interaction between the RD and NBM in spatial navigation.  相似文献   

7.
Following cholinergic denervation of the neocortex by nucleus basalis magnocellularis (NBM) lesions, peripheral sympathetic fibers grow into the neocortex. Two experiments were performed to determine the behavioral effects of this neuronal rearrangement. Group I animals underwent training on a standard radial-8-arm maze task, while Group II animals learned a modified version (i.e. 4 arms baited). Following acquisition, NBM lesions were performed. Animals with lesions but without sympathetic ingrowth performed consistently better in both behavioral paradigms, than animals with NBM lesions and sympathetic ingrowth. These studies suggest that cortical sympathetic ingrowth can alter behavior and is detrimental to the learning of a spatial memory paradigm.  相似文献   

8.
Acetylcholine was collected from the somatosensory cortex of anesthetized rats, using the microdialysis technique. Electrical stimulation of the nucleus basalis magnocellularis (NBM) with trains of 10 pulses at 100 Hz delivered every second produced a 3-4-fold increase in acetylcholine release. Stimulation with an intratrain frequency of 10, 50, 100 or 200 Hz demonstrated that 100 Hz trains produced the greatest increase, while the other frequencies were about half as effective. The cortical release of acetylcholine in this paradigm supports the hypothesis that the previously demonstrated enhancement by NBM stimulation of cortical sensory inputs is due to cholinergic activation.  相似文献   

9.
Z. Henderson   《Brain research》1987,412(2):363-369
The immunofluorescence and peroxidase-antiperoxidase methods for immunohistochemistry were used to show that a small number of neurones in the nucleus basalis magnocellularis of ferret stain positively for what appears to be tyrosine hydroxylase, a marker for catecholaminergic neurones. With a double immunocytochemical staining method, it was confirmed that the tyrosine hydroxylase-like immunoreactivity is localized in neurones that also stain strongly for choline acetyltransferase.  相似文献   

10.
11.
In the present study we compared the effects of an ibotenic acid lesion of the nucleus basalis magnocellularis (NBM), a 5,7-dihydroxytryptamine lesion of the raphe dorsalis (RD) and a combined RD and NBM lesion on the regulation of neocortical electrical activity in freely moving rat. NBM lesions (choline acetyltransferase decrease: frontal cortex 29%, occipital cortex 23%) increased both slow wave amplitudes and waking immobility-related high-voltage spindles (HVS). Although RD lesions (serotonin decrease: frontal cortex 67%, occipital cortex 68%) alone did not affect neocortical electrical activity, the lesion aggravated the increase of HVSs induced by an NBM lesion. The present results demonstrate an interaction between the RD and NBM in regulating cortical functions.  相似文献   

12.
Weaver mice undergo apoptosis of the granule cell precursors of the cerebellum and nonapoptotic death of mesencephalic dopaminergic cells during post-natal development. In contrast, the number of retinal dopaminergic cells was transiently increased in weaver compared to control mice [C. Savy, E. Martin-Martinelli, A. Simon, C. Duyckaerts, C. Verney, C. Adelbrecht, R. Raisman-Vozari, J. Nguyen-Legros, Altered development of dopaminergic cells in the retina of weaver mice, J. Comp. Neurol. 1999;412:656-668]. While re-examining the retinas, we observed, in the nerve fiber layer, retinopetal tyrosine hydroxylase-immunoreactive fibers, which were dramatically increased in number throughout development and adulthood in the weaver compared to control mice.  相似文献   

13.
In the course of characterizing the distribution of putative catecholaminergic neurons in the brain of the common marmoset, we encountered a population of such cells in the basal forebrain. Tyrosine hydroxylase-immunoreactive neurons are abundant within the nucleus basalis magnocellularis throughout its entire rostrocaudal extent, but not in other cholinergic basal forebrain nuclei. Most tyrosine hydroxylase-immunoreactive cells are large and multipolar. Double staining with antibodies to choline acetyltransferase or nerve growth factor receptor confirmed that these tyrosine hydroxylase-immunoreactive neurons are cholinergic, and compose at least 40% of the nucleus basalis cholinergic cells. The presence of a catecholamine-synthesizing enzyme in the neurons that provide the major cholinergic input to the neocortex may have important consequences for cortical function, and may be relevant to the vulnerability of the nucleus basalis in certain neurodegenerative disorders.  相似文献   

14.
M Piotte  A Beaudet  J R Brawer 《Brain research》1988,439(1-2):127-137
The topography, fine structure, and patterns of connections of tyrosine hydroxylase (TH)-immunoreactive tubero-infundibular dopaminergic (TIDA) neurons were examined by light and electron microscopic immunocytochemistry in the arcuate nucleus of 2-, 15- and 30-day-old female Wistar rats. In 2-day-old animals, TH-immunoreactive perikarya were mainly located in the ventrolateral portion of the arcuate nucleus. In 15-day-old rats numerous TH-positive cell bodies were still present ventrolaterally, but a cluster of labeled cells was also apparent in the mediodorsal segment of the nucleus. In the 30-day-old rats, most TH-immunoreactive neurons were concentrated mediodorsally, as seen in the adult. At the ultrastructural level, TH-immunoreactive somata exhibited, in all age groups, a large nucleus surrounded by a thin rim of cytoplasm containing mitochondria, Golgi apparatus, endoplasmic reticulum, multivesicular bodies and lysosomes. These labeled somata were synaptically contacted by unlabeled axon terminals and often laid adjacent to either labeled or unlabeled dendrites. Similarly, in all age groups, labeled dendrites were synaptically contacted by unlabeled axon terminals and were often directly apposed to either labeled or unlabeled perikarya and dendrites, or to tanycytic processes. These results indicate that TIDA neurons establish extensive connections early in development, and that their pattern of intercellular relationships remains qualitatively unchanged from 2 days to adulthood. It is suggested that TIDA neurons may be already functional at birth, and could therefore, influence the maturation of other arcuate neuronal populations.  相似文献   

15.
The nucleus basalis magnocellularis (NBM) of the rat, equivalent of Meynert's nucleus in the primate, is the origin of the main cholinergic innervation of the cerebral cortex. Stimulation of this area has been previously shown to induced marked, cholinergically mediated, blood flow increases in the frontal and parietal cortices. However, the complete distribution of the cerebrovascular effects of NBM stimulation within the whole brain has not been determined. In the present study, we used the [14C]iodoantipyrine autoradiographic method to measure local cerebral blood flow (CBF) in the unanesthetized rat, chronically implanted with a stimulation electrode. We performed unilateral electrical stimulation of the NBM in order to compare both the interhemispheric differences in blood flow and the differences with a group of sham-stimulated rats. Considerable blood flow increases were found in most neocortical areas, exceeding 400% in the frontal area, compared to the control group. Marked responses also appeared in discrete subcortical regions such as the zona incerta, some thalamic nuclei and structures of the extrapyramidal system. These responses were mostly ipsilateral to the stimulation. The significance and the distribution of these blood flow increases are related first, to anatomical and functional data on mainly the cholinergic projections from the NBM, but also non-cholinergic pathways connected with the NBM, second, to biochemical data on the basalocortical system, and third, to the limited ultrastructural data on the innervation of microvascular elements. This cerebrovascular study represents a step in the elucidation of the function of the basalocortical system and provides data which may be related to certain deficits of degenerative disorders such as Alzheimer's disease in which this system is consistently affected.  相似文献   

16.
Experimentally-induced lesions of the basal forebrain have been used to test the hypothesis that the cholinergic system plays a critical role in learning and memory. In the present study, a basal forebrain infusion of colchicine, a microtubule assembly inhibitor, was used to characterize the relationship between a cholinergic marker and behavioral function. Bilateral infusions were made in the nucleus basalis magnocellularis (NBM) of male Long-Evans rats. At 4 weeks post-lesion, behavioral assessments were made on half of the rats in each group. These rats were sacrificed 1 week later and regional choline acetyltransferase (ChAT) activity was measured. The remaining rats were behaviorally tested 11 weeks post-lesion and sacrificed 12 weeks post-lesion. The brains of additional rats were studied for Nissl-staining, ChAT-, GAD- and metEnk immunoreactivity (IR) and AChE histochemistry. At 5 weeks after colchicine infusion, there was a significant decrease in parietal and frontal cortical ChAT activity, impaired acquisition of a water maze spatial navigation task and decreased passive avoidance cross-over latency. At 12 weeks after colchicine infusion, ChAT activity was decreased in frontal but not parietal cortex; acquisition of the water maze task was not significantly different from vehicle-infused rats, and a significant deficit was observed in passive avoidance latency. ChAT-IR in the NBM showed a significant decrease at both time points, while changes in AChE-stained cortical fibers paralleled the ChAT activity. GAD- and metEnk-IR were decreased but were not different between the two time points. These data show task-specific behavioral recovery associated in time with recovery of regional cholinergic markers.  相似文献   

17.
Neurochemical recovery was investigated in male, Fischer-344 rats up to 3 months after lesions of the nucleus basalis. Bilateral injections of colchicine (1.0 micrograms/site) into the nucleus basalis magnocellularis (NBM) resulted in a 30% decrease in choline acetyltransferase (ChAT) activity in frontal cortex 4 weeks after surgery, compared to unlesioned controls. ChAT activity in the frontal cortex gradually recovered to control levels by 12 weeks. The loss of ChAT-immunoreactive neurons in the NBM observed 4 weeks after surgery was still evident 12 weeks after surgery. These results suggest that surviving cholinergic neurons in the NBM contribute to recovery of ChAT activity in the neocortex.  相似文献   

18.
Neurons of the nucleus basalis magnocellularis (NBm) of the rat are contained within the ventromedial globus pallidus and adjacent internal capsule. Horseradish peroxidase injection limited to the ventromedial globus pallidus result in sparse neuronal labeling in a variety of brainstem, thalamic and hypothalamic nuclei, and the basal nuclei identified after NBm injections. Thus, these contiguous regions have comparable subcortical inputs. By contrast, only NBm injections yielded a large number of labeled neurons in layer V of NBm cholinergic neurons. in addition to the reciprocity observed between NBm and frontal cortex, the ventral tegmental area and NBm likewise appear to be reciprocally connected.  相似文献   

19.
We examined the expression of three neuropeptides that have been implicated in nociceptive transmission, and the sympathetic nerve fiber marker tyrosine hydroxylase, in 11 painful human Morton's neuromas, using immunohistochemistry. Antibodies against the neural markers RT97 and PGP 9.5 were used to map the general nerve fiber organization of the neuromas. Four specimens of normal human peripheral nerves were used as controls. Substance P, calcitonin gene-related peptide, and neuropeptide Y immunoreactivities were more pronounced in neuroma tissue than in control nerves. Neuropeptide immunofluorescence was seen both in larger nerve fiber trunks and in masses of disorganized axon profiles dispersed in loose connective tissue. Tyrosine hydroxylase immunoreactivity was present at varying levels of expression in neuroma nerve fiber trunks, in connective tissue nerve fiber bundles, and around some blood vessels. Our findings suggest that neuropeptides are involved in the response to injury in Morton's neuromas and that they could play a role in initiation or modulation of pain. In addition, pain from Morton's neuromas could be influenced by sympathetic nerve fibers.  相似文献   

20.
The effect of bilateral colchicine lesions of the nucleus basalis magnocellularis (NBM) on agonist-stimulated phosphoinositide (PI) hydrolysis was examined in cortical slices 1, 3, or 14 months after surgery. Colchicine lesions resulted in a loss of acetylcholinesterase staining in the cortex which recovered to control levels by 14 months. Choline acetyltransferase activity in the cortex was decreased by 43% one month after lesioning, but returned to control levels by 3 months. In vitro stimulation with carbachol produced a concentration-dependent increase in PI hydrolysis, which was enhanced 3 and 14 months after NBM lesions. Norepinephrine and quisqualate-stimulated PI hydrolysis was also enhanced 14 months after NBM lesions. These results suggest a slow up-regulation of postsynaptic receptor function following presynaptic loss of transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号