首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of time-varying signals in event-related fMRI designs   总被引:1,自引:0,他引:1  
In neuroimaging research on attention, cognitive control, decision-making, and other areas where response time (RT) is a critical variable, the temporal variability associated with the decision is often assumed to be inconsequential to the hemodynamic response (HDR) in rapid event-related designs. On this basis, the majority of published studies model brain activity lasting less than 4 s with brief impulses representing the onset of neural or cognitive events, which are then convolved with the hemodynamic impulse response function (HRF). However, electrophysiological studies have shown that decision-related neuronal activity is not instantaneous, but in fact, often lasts until the motor response. It is therefore possible that small differences in neural processing durations, similar to human RTs, will produce noticeable changes in the HDR, and therefore in the results of regression analyses. In this study we compare the effectiveness of traditional models that assume no temporal variance with a model that explicitly accounts for the duration of very brief epochs of neural activity. Using both simulations and fMRI data, we show that brief differences in duration are detectable, making it possible to dissociate the effects of stimulus intensity from stimulus duration, and that optimizing the model for the type of activity being detected improves the statistical power, consistency, and interpretability of results.  相似文献   

2.
TheGuilty Knowledge Test (GKT) has been used extensively to model deception. An association between the brain evoked response potentials and lying on the GKT suggests that deception may be associated with changes in other measures of brain activity such as regional blood flow that could be anatomically localized with event-related functional magnetic resonance imaging (fMRI). Blood oxygenation level-dependent fMRI contrasts between deceptive and truthful responses were measured with a 4 Tesla scanner in 18 participants performing the GKT and analyzed using statistical parametric mapping. Increased activity in the anterior cingulate cortex (ACC), the superior frontal gyrus (SFG), and the left premotor, motor, and anterior parietal cortex was specifically associated with deceptive responses. The results indicate that: (a) cognitive differences between deception and truth have neural correlates detectable by fMRI, (b) inhibition of the truthful response may be a basic component of intentional deception, and (c) ACC and SFG are components of the basic neural circuitry for deception.  相似文献   

3.
The chronology of the component processes subserving working memory (WM) and hemodynamic response lags has hindered the use of fMRI for exploring neural substrates of WM. In the present study, however, participants completed full trials that involved encoding two or six letters, maintaining the memory set over a delay, and then deciding whether a probe was in the memory set or not. Additionally, they completed encode-only, encode-and-maintain, and encode-and-decide partial trials intermixed with the full trials. The inclusion of partial trials allowed for the isolation of BOLD signal changes to the different trial periods. The results showed that only lateral and medial prefrontal cortex regions differentially responded to the 2- and 6-letter memory sets over the trial periods, showing greater activation to 6-letter sets during the encode and maintain trial periods. Thus, the data showed the differential involvement of PFC in the encoding and maintenance of supra- and sub-capacity memory sets and show the efficacy of using fMRI partial trial methods to study WM component processes.  相似文献   

4.
Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding.  相似文献   

5.
Geier CF  Garver KE  Luna B 《NeuroImage》2007,35(2):904-915
Extended maintenance delays decrease the accuracy of information stored in spatial working memory. In order to elucidate the network underlying sustained spatial working memory, 16 subjects were scanned using fast event-related fMRI as they performed an oculomotor delayed response task containing trials with "short" (2.5 s) or "long" (10 s) delay periods. Multiple cortical and subcortical regions were common to both delay trial types indicating core task regions. Three patterns of activity were found in a subset of core regions that reflect underlying processes: maintenance-related (e.g., left FEF, right supramarginal gyrus (SMG)), response planning-related (e.g., right FEF, SEF), and motor response-related (e.g., lateral cerebellum (declive)) activation. Several regions were more active during long than short delay trials, including multiple sites in DLPFC (BA 9, 46), indicating a circuitry dynamically recruited to support sustained working memory. Our results suggest that specialized brain processes support extended periods of working memory.  相似文献   

6.
It has traditionally been held that the hippocampus is not part of the neural substrate of working memory (WM), and that WM is preserved in Temporal Lobe Epilepsy (TLE). Recent imaging and neuropsychological data suggest this view may need revision. The aim of this study was to investigate the neural correlates of WM in TLE using functional MRI (fMRI). We used a visuo-spatial 'n-back' paradigm to compare WM network activity in 38 unilateral hippocampal sclerosis (HS) patients (19 left) and 15 healthy controls. WM performance was impaired in both left and right HS groups compared to controls. The TLE groups showed reduced right superior parietal lobe activity during single- and multiple-item WM. No significant hippocampal activation was found during the active task in any group, but the hippocampi progressively deactivated as the task demand increased. This effect was bilateral for controls, whereas the TLE patients showed progressive unilateral deactivation only contralateral to the side of the hippocampal sclerosis and seizure focus. Progressive deactivation of the posterior medial temporal lobe was associated with better performance in all groups. Our results suggest that WM is impaired in unilateral HS and the underlying neural correlates of WM are disrupted. Our findings suggest that hippocampal activity is progressively suppressed as the WM load increases, with maintenance of good performance. Implications for understanding the role of the hippocampus in WM are discussed.  相似文献   

7.
Previous neuroimaging studies have shown that neural activity changes with task practice. The types of changes reported have been inconsistent, however, and the neural mechanisms involved remain unclear. In this study, we investigated the influence of practice on different component processes of working memory (WM) using a face WM task. Event-related functional magnetic resonance imaging (fMRI) methodology allowed us to examine signal changes from early to late in the scanning session within different task stages (i.e., encoding, delay, retrieval), as well as to determine the influence of different levels of WM load on neural activity. We found practice-related decreases in fMRI signal and effects of memory load occurring primarily during encoding. This suggests that practice improves encoding efficiency, especially at higher memory loads. The decreases in fMRI signal we observed were not accompanied by improved behavioral performance; in fact, error rate increased for high WM load trials, indicating that practice-related changes in activation may occur during a scanning session without behavioral evidence of learning. Our results suggest that practice influences particular component processes of WM differently, and that the efficiency of these processes may not be captured by performance measures alone.  相似文献   

8.
Differential working memory load effects after mild traumatic brain injury.   总被引:12,自引:0,他引:12  
The objective of this study was to explore the effects of increasing working memory (WM) processing load on previously observed abnormalities in activation of WM circuitry shortly after mild traumatic brain injury (MTBI). Brain activation patterns in response to increasing WM processing load (auditory n-back: 0-, 1-, 2-, and 3-back conditions) were assessed with fMRI in 18 MTBI patients within 1 month of their injury and in 12 healthy controls. Performance accuracy on these tasks was also measured. Brain activation patterns differed between MTBI patients and controls in response to increasing WM processing loads. Controls maintained their ability to increase activation in regions of WM circuitry with each increase in WM processing load. MTBI patients showed disproportionately increased activation during the moderate processing load condition, but very little increase in activation associated with the highest processing load condition. Task performance did not differ significantly between groups on any task condition. MTBI patients showed a different pattern of allocation of processing resources associated with a high processing load condition compared to healthy controls, despite similar task performance. This suggests that injury-related changes in ability to activate or modulate WM processing resources might underlie some of the memory complaints after MTBI.  相似文献   

9.
In this study we demonstrate that, even in blocked design fMRI, an event-related analysis may provide a more accurate model of the hemodynamic responses than an epoch-related analysis. This is because the temporal shape of the predicted response differs between the event-related and the epoch model, with the former reaching its peak sooner and returning to baseline later than the latter. We present data from a blocked design fMRI study of single word reading alternated with rest. Conventionally, such a design would be analyzed using an epoch analysis with boxcar regressors. However, here we used a combined model in which trials were modeled as both single events and epochs. This allowed us to estimate the variance in the BOLD signal that was explained by either the event-related or the epoch regressors having discounted the effect of the other. We found that, in a number of language regions, the event-related model explained changes in activity that were not accounted for by the epoch model. In addition, we show that the advantage of the event-related over epoch model was engendered by its early onset rather than its late offset, relative to the epoch model.  相似文献   

10.
The role of frontopolar cortex in subgoal processing during working memory   总被引:11,自引:0,他引:11  
Neuroimaging studies have implicated the anterior-most or frontopolar regions of prefrontal cortex (FP-PFC, e.g., Brodmann's Area 10) as playing a central role in higher cognitive functions such as planning, problem solving, reasoning, and episodic memory retrieval. The current functional magnetic resonance imaging (fMRI) study tested the hypothesis that FP-PFC subserves processes related to the monitoring and management of subgoals, while maintaining information in working memory (WM). Subjects were scanned while performing two variants of a simple delayed response WM task. In the control WM condition, subjects monitored for the presence of a specific concrete probe word (LIME) occurring following a specific abstract cue word (FATE). In the subgoal WM condition, subjects monitored for the presence of any concrete probe word immediately following any abstract cue word. Thus, the task required semantic classification of the probe word (the subgoal task), while the cue was simultaneously maintained in WM, so that both pieces of information could be integrated into a target determination. In a second control condition, subjects performed abstract/concrete semantic classification without WM demands. A region within right FP-PFC was identified which showed significant activation during the subgoal WM condition, but no activity in either of the two control conditions. However, this FP-PFC region was not modulated by direct manipulation of active maintenance demands. In contrast, left dorsolateral PFC was affected by active maintenance demands, but the effect did not interact with the presence of a subgoal task. Finally, left ventral PFC regions showed activation in response to semantic classification, but were not affected by WM demands. These results suggest a triple dissociation of function within PFC regions, and further indicate that FP-PFC is selectively engaged by the requirement to monitor and integrate subgoals during WM tasks.  相似文献   

11.
Correlation and causality metrics can be applied to blood-oxygen level-dependent (BOLD) signal time series in order to infer neural synchrony and directions of information flow from fMRI data. However, the BOLD signal reflects both the underlying neural activity and the vascular response, the latter of which is governed by local vasomotor physiology. The presence of potential vascular latency differences thus poses a confound in the detection of neural synchrony as well as inferences about the causality of neural processes. In the present study, we investigate the use of a breath holding (BH) task for characterizing and correcting for voxel-wise neurovascular latency differences across the whole brain. We demonstrate that BH yields reliable measurements of relative timing differences between voxels, and further show that a BH-derived latency correction can impact both functional connectivity maps of the resting-state default-mode network and activation maps of an event-related working memory (WM) task.  相似文献   

12.
The working memory (WM) system is vital to performing everyday functions that require attentive, non-automatic processing of information. However, its interaction with long term memory (LTM) is highly debated. Here, we used fMRI to examine whether a popular complex WM span task, thought to force the displacement of to-be-remembered items in the focus of attention to LTM, recruited medial temporal regions typically associated with LTM functioning to a greater extent and in a different manner than traditional neuroimaging WM tasks during WM encoding and maintenance. fMRI scans were acquired while participants performed the operation span (OSPAN) task and an arithmetic task. Results indicated that performance of both tasks resulted in significant activation in regions typically associated with WM function. More importantly, significant bilateral activation was observed in the hippocampus, suggesting it is recruited during WM encoding and maintenance. Right posterior hippocampus activation was greater during OSPAN than arithmetic. Persitimulus graphs indicate a possible specialization of function for bilateral posterior hippocampus and greater involvement of the left for WM performance. Recall time-course activity within this region hints at LTM involvement during complex span.  相似文献   

13.
Emery L  Heaven TJ  Paxton JL  Braver TS 《NeuroImage》2008,42(4):1577-1586
A long-standing assumption in the cognitive aging literature is that performance on working memory (WM) tasks involving serial recall is relatively unaffected by aging, whereas tasks that require the rearrangement of items prior to recall are more age-sensitive. Previous neuroimaging studies of WM have found age-related increases in neural activity in frontoparietal brain regions during simple maintenance tasks, but few have examined whether there are age-related differences that are specific to rearranging WM items. In the current study, older and younger adults' brain activity was monitored using functional magnetic resonance imaging (fMRI) as they performed WM tasks involving either maintenance or manipulation (letter–number sequencing). The paradigm was developed so that performance was equivalent across age groups in both tasks, and the manipulation condition was not more difficult than the maintenance condition. In younger adults, manipulation-related increases in activation occurred within a very focal set of regions within the canonical brain WM network, including left posterior prefrontal cortex and bilateral inferior parietal cortex. In contrast, older adults showed a much wider extent of manipulation-related activation within this WM network, with significantly increased activity relative to younger adults found within bilateral PFC. The results suggest that activation and age-differences in lateral PFC engagement during WM manipulation conditions may reflect strategy use and controlled processing demands rather than reflect the act of manipulation per se.  相似文献   

14.
PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG-fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task.  相似文献   

15.
The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1-8 μV in the time window of the P300 (350-700 ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post-central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI.  相似文献   

16.
During middle childhood, children develop an increasing understanding of intentions and other social information conveyed through dynamic facial cues such as changes in eye-gaze direction. Recent work in our laboratory has focused on using functional magnetic resonance imaging (fMRI) in adults to map the neural circuitry subserving the visual analysis of others' actions and the intentions underlying these actions. In these studies, the superior temporal sulcus (STS) region has been continually implicated in processing shifts in eye gaze. Further, these studies have indicated that STS activity is modulated by the context within which eye-gaze shifts occur, suggesting that this region is involved in social perception via its role in the analysis of the intentions of observed actions. Still, no studies have investigated the neural circuitry supporting eye-gaze processing in children. We used event-related fMRI to examine brain activity in 7- to 10-year-old healthy children observing an animated virtual actor who shifted her eyes towards either a target object or empty space. Consistent with prior studies in adults, the STS, middle temporal gyrus, and inferior parietal lobule were sensitive to the intentions underlying the stimulus character's eye movements. These findings suggest that the neural circuitry underlying the processing of eye gaze and the detection of intentions conveyed through shifts in eye gaze in children are similar to that found previously in adults. We discuss these findings and potential implications for mapping the neurodevelopment of the social cognition and social perception abnormalities characteristic of autism.  相似文献   

17.
Both working memory (WM) and controlled (attention-mediated) semantic processing functions have been thought to operate as limited capacity systems, but the possible link between these processes has not been investigated. We found that increased WM load attenuated semantic priming (i.e., reduced the response time advantage for semantically primed relative to unprimed items) and changed fMRI signal intensities in brain regions usually associated with both WM (dorsolateral prefrontal cortex) and controlled semantic retrieval (inferior frontal gyrus [IFG], pars orbitalis). fMRI signal changes in dorsolateral prefrontal cortex were negatively correlated with signal changes in pars orbitalis. The findings suggest that controlled semantic processing and working memory share neural system resources.  相似文献   

18.
Cabeza R  Dolcos F  Graham R  Nyberg L 《NeuroImage》2002,16(2):317-330
Functional neuroimaging studies have shown that different cognitive functions activate overlapping brain regions. An activation overlap may occur because a region is involved in operations tapped by different cognitive functions or because the activated area comprises subregions differentially involved in each of the functions. To investigate these issues, we directly compared brain activity during episodic retrieval (ER) and working memory (WM) using event-related functional MRI (fMRI). ER was investigated with a word recognition test, and WM was investigated with a word delayed-response test. Two-phase trials distinguished between retrieval mode and cue-specific aspects of ER, as well as between encoding/maintenance and retrieval aspects of WM. The results revealed a common fronto-parieto-cerebellar network for ER and WM, as well as subregions differentially involved in each function. Specifically, there were two main findings. First, the results differentiated common and specific subregions within the prefrontal cortex: (i) left dorsolateral areas were recruited by both functions, possibly reflecting monitoring operations; (ii) bilateral anterior and ventrolateral areas were more activated during ER than during WM, possibly reflecting retrieval mode and cue-specific ER operations, respectively; and (iii) left posterior/ventral (Broca's area) and bilateral posterior/dorsal areas were more activated during WM than during ER, possibly reflecting phonological and generic WM operations, respectively. Second, hippocampal and parahippocampal regions were activated not only for ER but also for WM. This result suggests that indexing operations mediated by the medial temporal lobes apply to both long-term and short-term memory traces. Overall, our results show that direct cross-function comparisons are critical to understand the role of different brain regions in various cognitive functions.  相似文献   

19.
Yoon JH  Curtis CE  D'Esposito M 《NeuroImage》2006,29(4):1117-1126
Maintaining relevant information for later use is a critical aspect of working memory (WM). The lateral prefrontal cortex (PFC) and posterior sensory cortical areas appear to be important in supporting maintenance. However, the relative and unique contributions of these areas remain unclear. We have designed a WM paradigm with distraction to probe the contents of maintenance representations in these regions. During delayed recognition trials of faces, selective interference was evident behaviorally with face distraction leading to significantly worse performance than with scene distraction. Event-related fMRI of the human brain showed that maintenance activity in the lateral PFC, but not in visual association cortex (VAC), was selectively disrupted by face distraction. Additionally, the functional connectivity between the lateral PFC and the VAC was perturbed during these trials. We propose a hierarchical and distributed model of active maintenance in which the lateral PFC codes for abstracted mnemonic information, while sensory areas represent specific features of the memoranda. Furthermore, persistent coactivation between the PFC and sensory areas may be a mechanism by which information is actively maintained.  相似文献   

20.
The contingent negative variation (CNV) is a long-latency electroencephalography (EEG) surface negative potential with cognitive and motor components, observed during response anticipation. CNV is an index of cortical arousal during orienting and attention, yet its functional neuroanatomical basis is poorly understood. We used functional magnetic resonance imaging (fMRI) with simultaneous EEG and recording of galvanic skin response (GSR) to investigate CNV-related central neural activity and its relationship to peripheral autonomic arousal. In a group analysis, blood oxygenation level dependent (BOLD) activity during the period of CNV generation was enhanced in thalamus, somatomotor cortex, bilateral midcingulate, supplementary motor, and insular cortices. Enhancement of CNV-related activity in anterior and midcingulate, SMA, and insular cortices was associated with decreases in peripheral sympathetic arousal. In a subset of subjects in whom we acquired simultaneous EEG and fMRI data, we observed activity in bilateral thalamus, anterior cingulate, and supplementary motor cortex that was modulated by trial-by-trial amplitude of CNV. These findings provide a likely functional neuroanatomical substrate for the CNV and demonstrate modulation of components of this neural circuitry by peripheral autonomic arousal. Moreover, these data suggest a mechanistic model whereby thalamocortical interactions regulate CNV amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号