首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII+ spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα)+ microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII+/CD172a+ ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII+ microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain.  相似文献   

2.

Objective

Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury.

Methods

To simulate spinal cord injury, the rats'' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test. Mechanical hyperalgesia was measured throughout the 28-day post-operative course via the von Frey test. Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5).

Results

In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of Iba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of Iba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline.

Conclusion

By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.  相似文献   

3.
Microglia can modulate spinal nociceptive transmission. Yet, their role in spinal cord stimulation (SCS)-induced pain inhibition is unclear. Here, we examined how SCS affects microglial activation in the lumbar cord of rats with chronic constriction injury (CCI) of the sciatic nerve. Male rats received conventional SCS (50 Hz, 80% motor threshold, 180 min, 2 sessions/day) or sham stimulation on days 18–20 post-CCI. SCS transiently attenuated the mechanical hypersensitivity in the ipsilateral hind paw and increased OX-42 immunoreactivity in the bilateral dorsal horns. SCS also upregulated the mRNAs of M1-like markers, but not M2-like markers. Inducible NOS protein expression was increased, but brain-derived neurotrophic factor was decreased after SCS. Intrathecal minocycline (1 μg–100 μg), which inhibits microglial activation, dose-dependently attenuated the mechanical hypersensitivity. Pretreatment with low-dose minocycline (1 μg, 30 min) prolonged the SCS-induced pain inhibition. These findings suggest that conventional SCS may paradoxically increase spinal M1-like microglial activity and thereby compromise its own ability to inhibit pain.  相似文献   

4.
The present study was undertaken to investigate the role of spinal somatostatin SSTR2A receptors in nociceptive processing. SSTR2A receptor-like immunoreactivity was found in a dense network in the spinal cord of normal rats. With Western blot analysis a major band of approximately 80-85 kDa was detected. Both immunohistochemistry and immunoblot analysis indicated a significant increase in SSTR2A receptor content in the spinal cord 6 h after noxious thermal stimulation that lasted for at least 24 h. However, there were no notable changes in SSTR2A receptor content 3, 6, 12, or 24 h after noxious mechanical stimulation. Effects of intrathecally administered polyclonal antiserum to SSTR2A receptor (anti-SSTR2A) on thermal and mechanical pain thresholds were determined with behavioral tests. In normal rats, pretreatment with anti-SSTR2A (1 microl, intrathecal) did not affect paw withdrawal latency or pinch threshold. Hindpaw inflammation induced by complete Freund's adjuvant led to thermal and mechanical hyperalgesia as reflected by a robust decrease in paw withdrawal latency and pinch threshold. Significant attenuation of the thermal hyperalgesia was observed 3, 5, 7, 9, and 24 h after pretreatment with anti-SSTR2A. This effect disappeared in another 24 h. In contrast, pretreatment with anti-SSTR2A failed to exert any notable effect on adjuvant-induced mechanical hyperalgesia. The present findings provide the first evidence that SSTR2A receptors are responsible for thermal, but not mechanical, nociceptive transmission in the spinal cord. The results also suggest that somatostatin has an excitatory role in spinal nociceptive processing and that there are differential receptor responses to different types of noxious stimuli.  相似文献   

5.
Chemokines are small cytokines with selective chemoattractant properties. They contribute to the T-cell-mediated pathogenesis of multiple sclerosis (MS). In order to ascertain whether different types and stage of disease correlate with a varying level of chemokines, the levels of CXCL8, CCL2 and CCL5 were measured in serum and the cerebrospinal fluid (CSF) of the MS patients. ELISA method was used to examine 56 patients with different types of MS alongside the 29 patients of the control group. The levels of CXCL8 and CCL2 in both groups were higher in CFS than in serum whilst the level of CCL5 measured higher in serum than in CSF. A significant rise in the levels of CXCL8 and CCL5 was observed during relapse, as against the level of CCL2 which was lower when compared with the control and other MS groups. No significant differences were observed in the levels of chemokines between the stable relapsing-remitting MS and progressive MS. The different levels of chemokines are linked to relapse of the disease. No separate, specific pattern of chemokine production dependent on the type of MS could be ascertained.  相似文献   

6.
He Y  Appel S  Le W 《Brain research》2001,909(1-2):187-193
To determine the role of immune/inflammatory factors in dopaminergic cell degeneration in parkinsonian substantia nigra, we assayed tyrosine hydroxylase (TH)-positive immunoreactive neuronal numbers with stereologic techniques and CD11b-positive immunoreactive microglial profiles following 6-hydroxydopamine (6-OHDA) injection into ipsilateral striatum of mice. We further investigated the effect of minocycline on the inhibition of microglial activation and subsequent protection of nigral cells. The relative number of microglial profiles in the substantia nigra (SN) ipsilateral to the injection increased from 31 to 32% 1-3 days after injection, and increased further to 55% by 7 days and 59% by 14 days, compared with the contralateral SN. These changes started prior to the decrease of TH immunoreactivity of 34% on day 7 and of 42% by day 14. In animals treated with minocycline, microglial activation was inhibited by 47%, and TH positive cells were protected by 21% at day 14 after 6-OHDA injection, compared with those parkinsonian animals without minocycline treatment. All these results suggest that microglial activation may be involved in the nigral cell degeneration in 6-OHDA induced parkinsonian mice.  相似文献   

7.
Osteopontin (OPN) is a secretory adhesive glycoprotein that is expressed in various tissues and plays a role in inflammation and tissue repair. It has been suggested that OPN plays a role in inflammation and wound healing after spinal cord injury; however, the expression of OPN and its function in the spinal cord under normal conditions and following spinal motoneuron injury have not been well characterized. Here we examined the expression of OPN mRNA before and after spinal root avulsion. OPN mRNA was detected at a low level in the normal spinal cord in a Northern blot analysis, but dramatically increased following avulsion. In situ hybridization and immunohistochemical studies demonstrated that OPN was present only in a subset of spinal motoneurons before avulsion. After avulsion, the number of OPN-expressing motoneurons increased, although the total number of motoneurons was reduced. OPN expression also became apparent in activated microglia/macrophages and astrocytes. These data suggest that the upregulation of OPN after spinal root avulsion is involved in two events, the protection of neurons and the post-traumatic inflammatory response in microglia/macrophages and astrocytes.  相似文献   

8.
9.
Cerebral inflammation and apoptotic cell death are two processes implicated in the progressive tissue damage that occurs following traumatic brain injury (TBI), and strategies to inhibit one or both of these pathways are being investigated as potential therapies for TBI patients. The tetracycline derivative minocycline was therapeutically effective in various models of central nervous system injury and disease, via mechanisms involving suppression of inflammation and apoptosis. We therefore investigated the effect of minocycline in TBI using a closed head injury model. Following TBI, mice were treated with minocycline or vehicle, and the effect on neurological outcome, lesion volume, inflammation and apoptosis was evaluated for up to 7 days. Our results show that while minocycline decreases lesion volume and improves neurological outcome at 1 day post-trauma, this response is not maintained at 4 days. The early beneficial effect is likely not due to anti-apoptotic mechanisms, as the density of apoptotic cells is not affected at either time-point. However, protection by minocycline is associated with a selective anti-inflammatory response, in that microglial activation and interleukin-1beta expression are reduced, while neutrophil infiltration and expression of multiple cytokines are not affected. These findings demonstrate that further studies on minocycline in TBI are necessary in order to consider it as a novel therapy for brain-injured patients.  相似文献   

10.
Recent attempts by other investigators to enhance repair processes in the spinal cord have involved the administration of X rays to spinal cord injury sites. Although some functional improvement has been reported, the underlying cellular changes within the irradiated spinal cords are not clear. Studies initiated recently in this laboratory examined the potential of X rays to modulate nonneuronal cell populations associated with an injury site in adult mammalian spinal cords. These studies revealed a unique and previously unreported radiosensitivity of the microglial cell population. Administration of X radiation to a unilateral dorsal lesion cavity in the cervical spinal cord revealed a significant decrease (approximately half) in numbers of microglia associated with the cavity. Even more unexpected were the significant decreases in microglial cells observed on the nonlesioned side of the spinal cord or in sham-operated spinal cords in irradiated rats. In contrast to reports of others, densitometric quantification of GFAP immunoreactive cells and processes indicated no differences in the astrocytic reactions associated with the lesion cavities between nonirradiated and irradiated groups in our studies. The demonstration that exposure of a spinal cord injury site to radiation modifies the responses of certain components of the glial environment to injury may offer a noninvasive approach for direct treatment of that site. Studies are in progress to determine if this altered glial environment enhances the extension of regrowing axons from a peripheral nerve graft across the interface with the irradiated lesion cavity and into the spinal cord parenchyma.  相似文献   

11.
12.
Yao Y  Tsirka SE 《Glia》2012,60(6):908-918
Intracerebral hemorrhage (ICH) has been associated with inflammation and apoptosis. The CCL2-CCR2 chemotactic system is one of the major signaling pathways that induce inflammation and apoptosis. However, its role on ICH has not been investigated. We subjected wild-type, CCL2(-/-) , and CCR2(-/-) mice to collagenase-induced ICH, and assessed histological and behavioral outcomes. Lack of CCL2 or CCR2 decreased the hematoma volume early after collagenase-induced ICH but delayed its recovery. The hematoma size was accompanied by brain edema, neuronal death, and neurological scores. Although microglia activation/migration was attenuated in CCL2(-/-) or CCR2(-/-) mice 1 day after injury, more microglia were present at later time points, suggesting that alternative signaling pathways had been activated to recruit them. On the contrary, leukocyte and neutrophil infiltration were decreased in these mice, suggesting a tighter/recovered blood-brain barrier. In addition, we also found that FL- and K104Stop-CCL2 were able to restore the changes found in CCL2(-/-) mice, but K104A-CCL2 failed to do so. These results suggest that plasmin-mediated truncation of CCL2 may be an indispensable step to fully activate the chemokine in vivo. The data also indicate that CCL2-CCR2 signaling pathway may be a molecular target for the treatment of ICH.  相似文献   

13.
The reactive spatial and temporal activation pattern of parenchymal spinal cord microglia was analyzed in rat experimental autoimmune neuritis (EAN). We observed a differential activation of spinal cord microglial cells. A significant increase in ED1+ microglia predominantly located in the dorsal horn grey matter of lumbar and thoracic spinal cord levels was observed on Day 12. As revealed by morphological criteria and by staining with further activation markers [allograft inflammatory factor 1 (AIF-1), EMAPII, OX6, P2X4R], reactive microglia did not reach a macrophage-like state of full activation. On Day 12, a significant proliferative response could be observed, affecting all spinal cord areas and including ED1+ microglial cells and a wide range of putative progenitor cells. Thus, in rat EAN, a reactive localized and distinct microglial activation correlating with a generalized proliferative response could be observed.  相似文献   

14.
Recent research indicates that glial cells control complex functions within the nervous system. For example, it has been shown that glial cells contribute to the development of pathological pain, the process of long-term potentiation, and the formation of memories. These data suggest that glial cell activation exerts both adaptive and pathological effects within the CNS. To extend this line of work, the present study investigated the role of glia in spinal learning and spinal learning deficits using the spinal instrumental learning paradigm. In this paradigm rats are transected at the second thoracic vertebra (T2) and given shock to one hind limb whenever the limb is extended (controllable shock). Over time these subjects exhibit an increase in flexion duration that reduces net shock exposure. However, when spinalized rats are exposed to uncontrollable shock or inflammatory stimuli prior to testing with controllable shock, they exhibit a learning deficit. To examine the role of glial in this paradigm, spinal glial cells were pharmacologically inhibited through the use of fluorocitrate. Our results indicate that glia are involved in the acquisition, but not maintenance, of spinal learning. Furthermore, the data indicate that glial cells are involved in the development of both shock and inflammation-induced learning deficits. These findings are consistent with prior research indicating that glial cells are involved in both adaptive and pathological processes within the spinal cord.  相似文献   

15.
The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied the expression of CCR2 on leukocytes in blood and cerebrospinal fluid (CSF) from patients with monosymptomatic optic neuritis and MS, and the concentration of CCL2 in the CSF from these patients. Results were compared with the results in non-inflammatory neurological controls and were correlated with other parameters (magnetic resonance imaging and CSF data). Our findings suggest a limited role for CCL2/CCR2 in early active MS.  相似文献   

16.
Our previous study demonstrated that single intrathecal (i.t.) application of fluorocitrate, a glial metabolic inhibitor, synergized electroacupuncture (EA) antagonizing behavioral hypersensitivity in complete Freund's adjuvant (CFA)-induced monoarthritic rat. To further investigate the relationship between spinal glial activation and EA analgesia, the present study examined the effects of multiple EA on spinal glial activation evoked by monoarthritis (MA). The results showed that (1) unilateral intra-articular injection of CFA produced a robust glial activation on the spinal cord, which was associated with the development and maintenance of behavioral hypersensitivity; (2) multiple EA stimulation of ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints or i.t. injection of fluorocitrate (1 nmol) significantly suppressed spinal glial activation; (3) inhibitory effects of EA on spinal glial activation and behavioral hypersensitivity were significantly enhanced when EA combined with fluorocitrate, indicating that disruption of glial function may potentiate EA analgesia in inflammatory pain states. These data suggested that analgesic effects of EA might be associated with its counter-regulation to spinal glial activation, and thereby provide a potential strategy for the treatment of arthritis.  相似文献   

17.
Methamphetamine (METH) exposure reportedly promotes microglial activation and pro-inflammatory cytokines secretion. Sustained inflammation in abusers of psychostimulant drugs further induces neural damage. Cholecystokinin-8 (CCK-8) is a gut-brain peptide which exerts a wide range of biological activities in the gastrointestinal tract and central nervous system. We previously found that pre-treatment with CCK-8 inhibited behavioural and histologic changes typically induced by repeated exposure to METH. Here, we aimed to estimate the effects of CCK-8 on METH-induced neuro-inflammation, which is markedly characterized by microglia activation and increased pro-inflammatory cytokines production in vivo and in vitro. Moreover, we assessed the subtypes of the CCK receptor mediating the regulatory effects of CCK-8, and the changes in the NF-κB signalling pathway. We found that CCK-8 inhibited METH-induced microglial activation and IL-6 and TNF-α generation in vivo and in vitro in a dose-dependent manner. Furthermore, co-treatment of CCK-8 with METH significantly attenuated the activation of the NF-κB signalling pathway by activating the CCK2 receptor subtype in N9 cells. In conclusion, our findings indicated the inhibitory effect of CCK-8 on METH-induced neuro-inflammation in vivo and in vitro, and suggested the underlying mechanism may involve the activation of the CCK2 receptor, which downregulated the NF-κB signalling pathway induced by METH stimulation.  相似文献   

18.
Summary. Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Both cytokines and chemokines have been implicated in the pathogenesis of MS. The aim of the study was to assess whether cytokine levels are correlated with chemokine levels during a different stage of relapsing-remitting MS (RR-MS). The study included 53 patients with RR-MS (20 subjects in stable stage and 18 patients with relapse). By ELISA method, the levels of the interleukin-4 (IL-4), interleukin-12 (IL-12), CCL2 and CCL-5 chemokines were measured both in serum and cerebrospinal fluid (CSF) of all patients. The serum IL-4 and IL-12 levels and CSF CCL5 level of patients with stable RR-MS were significantly different from the control level and the IL-12 levels were correlated with CCL5 levels in serum. During the relapse, a significant change in chemokine levels both in serum and CSF and IL-12 in CSF were noted, however no correlations were found between cytokines and chemokines.  相似文献   

19.
The chemokine CCL21 is released from injured neurons and acts as a ligand of the chemokine receptor, CXCR3, which likely contributes to pro-inflammatory adaptations and secondary neuronal damage. CCL21-CXCR3 signalling may therefore impact on the development of neuropathic pain. By using the respective knockout mice we show that deficiency of CCL19/21 in plt/plt mice attenuates nerve injury evoked pain but not the hyperalgesia evoked by autoimmune encephalomyelitis (EAE). Oppositely, CXCR3-deficiency had no protective effect after traumatic nerve injury but reduced EAE-evoked hyperalgesia and was associated with reduced clinical EAE scores, a reduction of the pro-inflammatory cell infiltration and reduced upregulation of interferon gamma and interleukin-17 in the spinal cord. In contrast, microglia activation in the spinal cord after traumatic sciatic nerve injury was neither attenuated in CXCR3−/− nor plt/plt mice, nor in double knockouts. However, the severity of EAE, but not the hyperalgesia, was also reduced in plt/plt mice, which was associated with reduced infiltration of the spinal cord with CCR7+ T-cells, an increase of CD25+ T-cells and reduced upregulation of CXCL9 and 10, CCL11 and 12. The data show that CCL21 and CXCR3 have dichotomous functions in traumatic and EAE-evoked neuropathic pain suggesting diverse mechanisms likely requiring diverse treatments although both types of neuropathic pain are mediated in part through the immune activation.  相似文献   

20.
Analgesia and hyperalgesia produced in the rat by intrathecal naloxone   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号