首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a new series of trihalomethyl-substituted pyrimidines and dihydropyrimidines were synthesized and tested as potential NTPDase inhibitors. For this purpose, synaptosomes from rat cerebral cortex were used as the enzyme source and ATP and ADP were used as the substrate. Among the new compounds, 4-methyl-2-methylsulfanyl-6-trichloromethylpyrimidine (2b) was found to be the most effective noncompetitive inhibitor, with an estimated K(i) value of 0.18 and 0.55 mM for ATP and ADP, respectively. Other pyrimidines inhibited NTPDase activity with the following rank order of inhibitory potency: 3,6-dimethyl-2-methylsulfanyl-4-trifluoromethyl-3,4-dihydro-pyrimidin-4-ol (3a) > 5-methyl-2-(4-methyl-6-trifluoromethyl-pyrimidin-2-yl)-3-trifluoromethyl-3,4-dihydro-2H-3-pyrazol-3-ol (6a) > 5-bromo-4,6-dimethoxy-4-trichloromethyl-1,2,3,4-tetrahydro-2-pyrimidin-2-one (9) for ATP and 6a > 9 > 3a for ADP. Our results demonstrate that a novel group of pyrimidines compounds can act as inhibitors of ATP and ADP hydrolysis in synaptosomes from rat cerebral cortex. These results can contribute for the understanding of the NTPDase activity and for further studies involving new compounds that can enlist as it inhibitors.  相似文献   

2.
Carbofuran and malathion are broad spectrum pesticides widely used in agricultural practice throughout the world. Toxicity of these pesticides has been correlated with their inhibitory effects on acetylcholinesterase activity. Nucleotides are extracellular signaling molecules, which trigger multiple biological effects. Studies have demonstrated the co-transmission of acetylcholine and ATP at the nerve endings. The control of neurotransmitter ATP levels is promoted by enzymes named ectonucleotidases, which include nucleoside triphosphate diphosphohydrolase (NTPDase) family and ecto-5'-nucleotidase. Since acetylcholine and ATP are co-released at the synapse and the acetylcholinesterase inhibition is an important target for pesticide action, here we verified the effect of exposure in vitro and in vivo to carbofuran and malathion on ectonucleotidase activities from brain membranes of zebrafish. To verify if carbofuran and malathion have a direct inhibitory effect on NTPDase and 5'-nucleotidase activities in brain membranes of zebrafish, we have tested in vitro concentrations of pesticides varying from 0.25 to 5 mM. Carbofuran, in vitro, inhibited ATP and ADP hydrolysis in an uncompetitive manner, but no effect was observed on AMP hydrolysis. Malathion decreased ATP and ADP hydrolysis in competitive and an uncompetitive manner, respectively, but not altered AMP hydrolysis. After exposure to carbofuran (50 and 500 microg/L) during 7 days, ADP hydrolysis was significantly decreased in both concentrations tested (by 19 and 24.5%, respectively). Malathion, at 500 microg/L, was able to inhibit ADP and AMP hydrolysis (by 28 and 58.5%, respectively). This study has shown that ectonucleotidases from brain membranes of zebrafish can be a potential target for pesticide neurotoxicity.  相似文献   

3.
4.
5.
We have previously observed that adenosine 5'-diphosphate (ADP) hydrolysis was decreased 25% in spinal cord synaptosomes of chronically stressed male rats, while no changes were observed in ATPase activity. In the present study, we investigated the effect of chronic stress on the hydrolysis of adenine nucleotides in two cerebral structures (frontal cortex and hypothalamus) and in the blood serum of male rats. Adult male Wistar rats were submitted to 1-h restraint stress/day for 45 days (chronic) and were sacrificed 24 h after the last session of stress. Adenosine 5'-triphosphate (ATP) or ADP hydrolysis was assayed in the synaptosomal fraction obtained from the frontal cortex and hypothalamus of control and chronically stressed animals. No effects on ADP or ATP hydrolysis were observed in any of the cerebral structures analyzed after chronic stress. On the other hand, reduced ADP hydrolysis was observed in the blood serum of chronic stressed rats. It is possible that the effects observed in the blood serum may represent an adaptation to chronic stress and may reflect different functions of nucleotides and/or enzymes in these tissues. It is possible that altered levels of ADPase activity in the serum may be a biochemical marker for chronic stress situations.  相似文献   

6.
The action of suramin on apyrase activity in hippocampal synaptosomes and its effects on retention of inhibitory avoidance learning were evaluated. Suramin, a P2-purinoceptor antagonist, significantly inhibited in a noncompetitive manner the ATP and ADP hydrolysis promoted by apyrase in hippocampal synaptosomes of adult rats. The Ki values obtained were 72.8 and 109 microM for ATP and ADP hydrolysis, respectively. Intrahippocampal infusion of suramin (0.01, 0.1, 1, and 10 microg) immediately posttraining, in a dose-dependent effect, significantly reduced the response latency during the retention test applied 24 h after the rats received step-down inhibitory avoidance training. The amnesic effects promoted by suramin probably occur by its antagonist action on hippocampal P2-purinoceptors and NMDA receptors. In view of the fact that ATP-metabolizing enzymes and P2-purinoceptors have similar binding domains, these results suggest that suramin can either alter ATP degradation and/or block purinergic neurotransmission.  相似文献   

7.
Zinc and cadmium are environmental contaminants that induce a wide range of effects on CNS. Here we tested the in vitro effect of these metals on acetylcholinesterase (AChE) and ectonucleotidase (NTPDase and ecto-5'-nucleotidase) activities in zebrafish brain. Both zinc and cadmium treatments did not alter significantly the zebrafish brain AChE activity. ATP hydrolysis presented a significant increase at 1 mM zinc (17%) and the AMPase activity had a dose-dependent increase at 0.5 and 1 mM zinc exposure (188% and 199%). After cadmium treatment, ATPase activity was significantly increased (53% and 48%) at 0.5 and 1 mM, respectively. Cadmium, in the range 0.25-1 mM, inhibited ADP hydrolysis in a dose-dependent manner (13.4-69%). Ecto-5'-nucleotidase activity was only inhibited (38%) in the presence of 1 mM cadmium. It is possible to suggest that changes on NTPDase and ecto-5'-nucleotidase activities can be an important mechanism involved in neurotoxic effects promoted by zinc and cadmium.  相似文献   

8.
This study investigated the protective effect of curcumin on memory loss and on the alteration of acetylcholinesterase and ectonucleotidases activities in rats exposed chronically to cadmium (Cd). Rats received Cd (1 mg/kg) and curcumin (30, 60, or 90 mg/kg) by oral gavage 5 days a week for 3 months. The animals were divided into eight groups: vehicle (saline/oil), saline/curcumin 30 mg/kg, saline/curcumin 60 mg/kg, saline/curcumin 90 mg/kg, Cd/oil, Cd/curcumin 30 mg/kg, Cd/ curcumin 60 mg/kg, and Cd/ curcumin 90 mg/kg. Curcumin prevented the decrease in the step‐down latency induced by Cd. In cerebral cortex synaptosomes, Cd‐exposed rats showed an increase in acetylcholinesterase and NTPDase (ATP and ADP as substrates) activities and a decrease in the 5′‐nucleotidase activity. Curcumin was not able to prevent the effect of Cd on acetylcholinesterase activity, but it prevented the effects caused by Cd on NTPDase (ATP and ADP as substrate) and 5′‐nucleotidase activities. Increased acetylcholinesterase activity was observed in different brain structures, whole blood and lymphocytes of the Cd‐treated group. In addition, Cd increased lipid peroxidation in different brain structures. Higher doses of curcumin were more effective in preventing these effects. These findings show that curcumin prevented the Cd‐mediated memory impairment, demonstrating that this compound has a neuroprotective role and is capable of modulating acetylcholinesterase, NTPDase, and 5′‐nucleotidase activities. Finally, it highlights the possibility of using curcumin as an adjuvant against toxicological conditions involving Cd exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 70–83, 2017.  相似文献   

9.
早衰小鼠SAMP8 9 00时和16 00时, 血浆皮质酮水平均明显高于正常对照小鼠SAMR1; 大脑皮层和海马区皮质酮水平在16 00时亦显著高于SAMR1, 而下丘脑皮质酮含量与SAMR1相比无差别同时,SAMP8大脑海马ATP,ADP和AMP水平均低下,而皮层ATP, ADP和AMP水平无改变. 切除AMP8小鼠肾上腺60 h后,海马区低水平的ATP, ADP和AMP被逆转, 而皮层未受影响. 给切除肾上腺的SAMP8补充皮质酮(10 mg·kg-1, ip, 12 h一次, 共5次)后,海马区ATP,ADP和AMP水平再次被显著降低,皮层仍未受影响上述结果说明,SAMP8小鼠大脑海马ATP水平低下是肾上腺依赖的,SAMP8血浆和海马区皮质酮水平升高可能与海马ATP和ADP水平降低有关.  相似文献   

10.
The aim of this study was to investigate the influence of tricyclic antidepressants (imipramine, amitriptyline, clomipramine, desipramine), selective serotonin reuptake inhibitors (SSRIs: fluoxetine, sertraline) and novel antidepressant drugs (mirtazapine, nefazodone) on the activity of CYP2D, measured as a rate of ethylmorphine O-deethylation. The reaction was studied in control liver microsomes in the presence of the antidepressants, as well as in microsomes of rats treated intraperitoneally for one day or two weeks (twice a day) with pharmacological doses of the drugs (imipramine, amitriptyline, clomipramine, nefazodone 10 mg kg(-1) i.p.; desipramine, fluoxetine, sertraline 5 mg kg(-1) i.p.; mirtazapine 3 mg kg(-1) i.p.), in the absence of the antidepressants in-vitro. Antidepressants decreased the activity of the rat CYP2D by competitive inhibition of the enzyme, the potency of their inhibitory effect being as follows: clomipramine (K(i) = 14 microM) > sertraline approximate, equals fluoxetine (K(i) = 17 and 16 microM, respectively) > imipramine approximate, equals amitriptyline (K(i) = 26 and 25 microM, respectively) > desipramine (K(i) = 44 microM) > nefazodone (K(i) = 55 microM) > mirtazapine (K(i) = 107 microM). A one-day treatment with antidepressants caused a significant decrease in the CYP2D activity after imipramine, fluoxetine and sertraline. After prolonged administration of antidepressants, the decreased CYP2D activity produced by imipramine, fluoxetine and sertraline was still maintained. Moreover, amitriptyline and nefazodone significantly decreased, while mirtazapine increased the activity of the enzyme. Desipramine and clomipramine did not produce any effect when administered in-vivo. The obtained results indicate three different mechanisms of the antidepressants-CYP2D interaction: firstly, competitive inhibition of CYP2D shown in-vitro, the inhibitory effects of tricyclic antidepressants and SSRIs being stronger than those of novel drugs; secondly, in-vivo inhibition of CYP2D produced by both one-day and chronic treatment with tricyclic antidepressants (except for desipramine and clomipramine) and SSRIs, which suggests inactivation of the enzyme apoprotein by reactive metabolites; and thirdly, in-vivo inhibition by nefazodone and induction by mirtazapine of CYP2D produced only by chronic treatment with the drugs, which suggests their influence on the enzyme regulation.  相似文献   

11.
The release of radioactive histidine was studied in a superfusion system by using preloaded rat cerebral cortical slices and guinea pig synaptosomes. ATP/ADP ratios in both preparations were used to assess the energy levels and thus the oxygenation of brain slices and synaptosomes. ATP/ADP ratios similar to the intact brain and nerve terminals were found in slices and synaptosomes even after hours of superfusion with oxygenated buffer. Depolarization by 30 or 50 mM K+ induced release of histidine from slices and synaptosomes. The results confirm that under physiological energetic conditions, histidine is released both from slices and synaptosomes after depolarization with potassium.  相似文献   

12.
Haloperidol (HAL), olanzapine (OLZ), and sulpiride (SULP) are antipsychotic drugs widely used in the pharmacotherapy of psychopathological symptoms observed in schizophrenia or mood-related psychotic symptoms in affective disorders. Here, we tested the in vitro effects of different concentrations of a typical (HAL) and two atypical (OLZ and SULP) antipsychotic drugs on ectonucleotidase activities from zebrafish brain membranes. HAL inhibited ATP (28.9%) and ADP (26.5%) hydrolysis only at 250 μM. OLZ decreased ATPase activity at all concentrations tested (23.8–60.7%). SULP did not promote significant changes on ATP hydrolysis but inhibited ADP hydrolysis at 250 μM (25.6%). All drugs tested, HAL, OLZ, and SULP, did not promote any significant changes on 5′-nucleotidase activity in the brain membranes of zebrafish. These findings demonstrated that antipsychotic drugs could inhibit NTPDase activities whereas did not change 5′-nucleotidase. Such modulation can alter the adenosine levels, since the ectonucleotidase pathway is an important source of extracellular adenosine. Thus, it is possible to suggest that changes promoted by antipsychotic drugs in the bilayer membrane could alter the NTPDase activities, modulating extracellular ATP and adenosine levels.  相似文献   

13.
RATIONALE: Depressive disorders are conditions that often require continuous treatment, and it is therefore important to evaluate the consequences of prolonged administration. There are few studies assessing cognitive functions of depressed patients after long-term use of antidepressants. OBJECTIVES: This study evaluated the cognitive performance of depressed patients treated with antidepressants for at least 6 months. METHODS: Patients with major depression (DSM-IV) using imipramine for 2.4+/-0.6 years (mean+/-SE), clomipramine for 2.8+/-1.2 years, fluoxetine for 1.8+/-0.3 years and sertraline for 1.5+/-0.3 years were compared to matched controls (sex, age and educational level) without any psychiatric diagnosis. Memory evaluation consisted of episodic, implicit and working memory tests as well as metamemory assessment. RESULTS: (a) Psychomotor performance of patients taking imipramine was worse than that of controls in inserting pins and a visual reaction time task; on the performance of tapping the difference from controls varied according to dose/weight for patients taking clomipramine and fluoxetine. (b) For memory tests, differences between patients taking sertraline and controls were observed in the number of digits and words recalled; the difference between patients and controls varied according to dose/weight on the number of familiar words correctly completed for patients taking clomipramine and on digit span backward for those taking sertraline. (c) Metamemory was worse in all patient groups irrespective of patients' clinical state. CONCLUSIONS: The impairment in psychomotor and memory performances associated with these antidepressants seems to be of low intensity and of questionable clinical relevance.  相似文献   

14.
We have investigated the effect of treatments with the muscarinic acetylcholine receptor agonist, pilocarpine, on the sensitivity of central alpha2-adrenoceptors that regulate the firing activity of rat locus coeruleus, the tyrosine hydroxylase activity in the rat cortex, hippocampus and hypothalamus, and the K(+)-evoked release of [3H]noradrenaline from rat cortical and hippocampal synaptosomes. Short-term (4 days), but not acute, treatment with pilocarpine caused a small but statistically significant increase in the inhibitory effect of the alpha2-adrenoceptor agonist clonidine on the firing rate of locus coeruleus neurones, with a decrease in the ED50 of 290% (P<0.001). However, no change in the effect of clonidine on the locus coeruleus was observed after longer pilocarpine (11 days) treatment. In the rat cerebral cortex, but not in hippocampus or hypothalamus, chronic (19 days) treatment with pilocarpine caused a decrease in the inhibitory effect of clonidine on tyrosine hydroxylase activity (55%, P<0.05), but did not change the stimulatory effect of the alpha2-adrenoceptor antagonist idazoxan. Moreover, treatments (4, 11 and 19 days) with pilocarpine did not alter the inhibitory effect of clonidine [10(-8)-10(-5) M] on the K(+)-evoked release of [3H]noradrenaline from rat cortical and hippocampal synaptosomes. These results indicate that administration of pilocarpine slightly potentiates some but not all the functional responses mediated by brain presynaptic alpha2-adrenoceptors. In conclusion, these results do not support the hypothesis that chronic treatments with pilocarpine lead to a suitable model of alpha2-adrenoceptor supersensitivity.  相似文献   

15.
The objective of this study was to verify the acute and chronic effects of ethanol on platelet NTPDase and 5′-nucleotidase activities. These enzymes modulate platelet function by regulating adenine nucleotide bioavailability and adenosine production. In the acute treatment, doses of 0.8, 2.0, 4.0, 6.0 and 8.0 g/kg ethanol were administered via orogastric tube, and induced a biphasic or hormetic effect on ATP, ADP and AMP platelet hydrolysis. Ethanol at a dose of 0.8 and 2.0 g/kg increased NTPDase activity (44 and 35%, P < 0.0001) with ATP as substrate, whereas when ADP was used there was only a tendency for NTPDase activity to increase. ATP and ADP hydrolysis decreased by 31–77% (P < 0.0001) in 4.0, 6.0 and 8.0 g/kg of ethanol compared to the control. AMP hydrolysis showed a tendency to increase at ethanol doses of 0.8 and 2.0 g/kg, but was inhibited by 45–100% (P < 0.0001) at the higher doses. Chronic treatment consisted of the oral administration of 20% ethanol solution during 31 weeks as the only source of liquid and inhibited NTPDase activity (15 and 20%, P < 0.05) with ATP and ADP as substrate, respectively. However, AMP hydrolysis by 5′-nucleotidase increased by 40% (P < 0.05). Thus, we speculate that the effects of ethanol on NTPDase and 5′-nucleotidase activities could be related with the platelets alterations commonly observed in alcohol users.  相似文献   

16.
Hyperactivity of the stress response has long been recognized as maladaptive. The hippocampus, a brain structure important in mediating this response, is known to be affected by chronic stress, a situation reported to induce changes in adenine nucleotide hydrolysis in the rat. The enzymes catalyzing the hydrolysis of ATP to adenosine in the synaptic cleft are thought to have a role in modulating and controlling synaptic transmission. This study aimed to investigate the effect of acute and repeated restraint stress on the ATP, ADP and AMP hydrolyses in rat hippocampal synaptosomes. Adult male Wistar rats were submitted to acute or repeated (15 and 40 days) stress, and ATPase-ADPase, and 5'nucleotidase activities were assayed in the hippocampal synaptosomal fraction. Acute stress induced increased hydrolyses of ATP (21%), ADP (21%) and AMP (40%). In contrast, ATP hydrolysis was increased by 20% in repeatedly stressed rats, without changes in the ADP or AMP hydrolysis. The same results were observed after 15 or 40 days of stress. Therefore, acute stress increases ATP diphosphohydrolase activity which, in association with 5'-nucleotidase, contributes to the elimination of ATP and provides extracellular adenosine. Interestingly, increased ecto-ATPase activity in response to chronic stress reveals an adaptation to this treatment.  相似文献   

17.
The aim of the present study was to investigate the influence of tricyclic antidepressants (TADs: imipramine, amitriptyline, clomipramine, and desipramine), selective serotonin reuptake inhibitors (SSRIs: fluoxetine and sertraline) and novel antidepressant drugs (mirtazapine and nefazodone) on the activity of CYP3A measured as a rate of testosterone 2beta- and 6beta-hydroxylation. The reaction was studied in control liver microsomes in the presence of the antidepressants, as well as in microsomes of rats treated intraperitoneally (i.p.) for 1 day or 2 weeks with pharmacological doses of the drugs (imipramine, amitriptyline, clomipramine, nefazodone 10 mg kg(-1) i.p.; desipramine, fluoxetine, sertraline 5 mg kg(-1) i.p.; mirtazapine 3 mg kg(-1) i.p.), in the absence of the antidepressants in vitro. The investigated antidepressants added to control liver microsomes produced some inhibitory effects on CYP3A activity, which were very weak (most of TADs, K(i)=145-212 microM), modest (clomipramine and sertraline, K(i)=67.5 and 62 microM, respectively) or moderate (nefazodone and fluoxetine, K(i)=42 and 43 microM, respectively). Mirtazapine did not display this kind of properties. One-day exposure of rats to TADs substantially decreased the activity of CYP3A in liver microsomes, which was maintained during chronic treatment. The observed decreases in the enzyme activity were in contrast to the increased CYP3A protein level found after chronic treatment with TADs. On the other hand, sertraline increased the activity of the enzyme after its prolonged administration and its effect correlated positively with the observed elevation in CYP3A protein level. Fluoxetine, mirtazapine and nefazodone did not change the activity of CYP3A in liver microsomes after their administration to rats. Three different mechanisms of the antidepressants-CYP3A interaction are postulated: 1) a direct inhibition of CYP3A by nefazodone, SSRIs and clomipramine, shown in vitro, with the inhibitory effect of nefazodone being the strongest, but weaker than the effects of this drug on human CYP3A4; 2) in vivo inhibition of CYP3A produced by 1 day and maintained during chronic treatment with TADs, which suggests inactivation of the enzyme by reactive metabolites; 3) in vivo induction by sertraline of CYP3A produced only by chronic treatment with the antidepressant, which suggests its influence on the enzyme regulation.  相似文献   

18.
Neurotransmission can be affected by exposure to heavy metals, such as mercury and lead. ATP is a signaling molecule that can be metabolized by a group of enzymes called ecto-nucleotidases. Here we investigated the effects of mercury chloride (HgCl(2)) and lead acetate (Pb(CH(3)COO)(2)) on NTPDase (nucleoside triphosphate diphosphohydrolase) and ecto-5'-nucleotidase activities in zebrafish brain membranes. In vitro exposure to HgCl(2) decreased ATP and ADP hydrolysis in an uncompetitive mechanism and AMP hydrolysis in a non-competitive manner. Pb(CH(3)COO)(2) inhibited ATP hydrolysis in an uncompetitive manner, but not ADP and AMP hydrolysis. In vivo exposure of zebrafish to HgCl(2) or Pb(CH(3)COO)(2) (20mug/L, during 24, 96h and 30 days) caused differential effects on nucleotide hydrolysis. HgCl(2), during 96h, inhibited the hydrolysis of ATP, ADP and AMP. After 30 days of exposure to HgCl(2), ATP hydrolysis returned to the control levels, ADP hydrolysis was strongly increased and AMP hydrolysis remained inhibited. Exposure to Pb(CH(3)COO)(2) during 96h caused a significant decrease only on ATP hydrolysis. After 30 days, Pb(CH(3)COO)(2) promoted the inhibition of ATP, ADP and AMP hydrolysis. Semi-quantitative RT-PCR analysis showed no changes in the expression of NTPDase1 and 5'-nucleotidase, following 30 days of exposure to both metals. This study demonstrated that Hg(2+) and Pb(2+) affect the ecto-nucleotidase activities, an important enzymatic pathway for the control of purinergic signaling.  相似文献   

19.
We have cloned and characterized the nucleoside triphosphate diphosphohydrolase-3 (NTPDase3) from mouse spleen. Analysis of cDNA shows an open reading frame of 1587 base pairs encoding a protein of 529 amino acids with a predicted molecular mass of 58953Da and an estimated isoelectric point of 5.78. The translated amino acid sequence shows the presence of two transmembrane domains, eight potential N-glycosylation sites and the five apyrase conserved regions. The genomic sequence is located on chromosome 9F4 and is comprised of 11 exons. Intact COS-7 cells transfected with an expression vector containing the coding sequence for mouse NTPDase3 hydrolyzed P2 receptor agonists (ATP, UTP, ADP and UDP) but not AMP. NTPDase3 required divalent cations (Ca2+ > Mg2+) for enzymatic activity. Interestingly, the enzyme had two optimum pHs for ATPase activity (pH 5.0 and 7.4) and one for ADPase activity (pH 8.0). Consequently, the ATP/ADP and UTP/UDP hydrolysis ratios were two to four folds higher at pH 5.0 than at pH 7.4, for both, intact cells and protein extracts. At pH 7.4 mouse NTPDase3 hydrolyzed ATP, UTP, ADP and UDP according to Michaelis-Menten kinetics with apparent K(m)s of 11, 10, 19 and 27 microM, respectively. In agreement with the K(m) values, the pattern of triphosphonucleoside hydrolysis showed a transient accumulation of the corresponding diphosphonucleoside and similar affinity for uracil and adenine nucleotides. NTPDase3 hydrolyzes nucleotides in a distinct manner than other plasma membrane bound NTPDases that may be relevant for the fine tuning of the concentration of P2 receptor agonists.  相似文献   

20.
There is now some evidence that major depression is accompanied by activation of the inflammatory response system. There is also some evidence that antidepressants may suppress the release of cytokines, such as interleukin-1 beta (IL-1 beta) and IL-6 by activated monocytes and IL-2 and interferon-gamma (IFN gamma) by activated T cells. This study was carried out to examine the effects of clomipramine, sertraline, and trazodone on the stimulated production of IFN gamma, a pro-inflammatory cytokine, and IL-10, a negative immunoregulatory cytokine. Whole blood of nine healthy volunteers was stimulated with PHA, 5 micrograms/mL and LPS, 25 micrograms/mL for 72 hr with and without incubation with clomipramine, 10(-6) and 10(-9) M, sertraline, 10(-6) and 10(-8) M, and trazodone, 10(-6) and 10(-8) M. All three antidepressants significantly reduced IFN gamma secretion, whereas clomipramine and sertraline significantly increased IL-10 secretion in culture supernatant. All three antidepressants significantly reduced the IFN gamma/IL-10 ratio. The results suggest that antidepressants, at concentrations in the therapeutical range, have negative immunoregulatory effects through inhibition of IFN gamma and stimulation of IL-10 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号