首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new point mutation in exon 12 of the dystrophin gene was identified in a DMD patient using multiple SSCP analysis, which allows the simultaneous study of several exons. The mutation is an A insertion at position 1580 of the cDNA sequence, leading to a stop codon in the translational reading frame. This mutation was not observed in a sample of 70 DMD patients.  相似文献   

2.
Duchenne and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene. Large rearrangements in the gene are found in about two-thirds of DMD patients, with approximately 60% carrying deletions and 5-10% carrying duplications. Most of the remaining 30-35% of patients are expected to have small nucleotide substitutions, insertions, or deletions. To detect these subtle changes within the coding and splice site determining sequences of the dystrophin gene, we established a semiautomated denaturing gradient gel electrophoresis (DGGE) mutation scanning system. The DGGE scan covers the dystrophin gene with 95 amplicons, PCRed either individually or in a multiplex setup. PCR and pooling were performed semiautomatically, using a pipetting robot and 384-well plates, enabling concurrent amplification of DNA of four patients in one run. Amplification of individual fragments was performed using one PCR program. The products were pooled just before gel loading; DGGE requires only a single gel condition. Validation was performed using DNA samples harboring 39 known DMD variants, all of which could be readily detected. DGGE mutation scanning was applied to analyze 135 DMD/BMD patients and potential DMD carriers without large deletions or duplications. In DNA from 25 out of 44 DMD patients (57%) and from 5 out of 39 BMD patients (13%), we identified clear pathogenic changes. All mutations were different, with the exception of one DMD mutation, which occurred twice. In DNA from 10 out of 44 potential DMD carriers, including four obligate carriers, we detected causative changes, including one pathogenic change in every obligate carrier. In addition to these pathogenic changes, we detected 15 unique unclassified variants, i.e., changes for which a pathogenic nature is uncertain.  相似文献   

3.
Erratum: An error was printed in the original version of this article in the Comments section, paragraph 2, relating to the size of exon 22 and the RT‐PCR product size described as resulting from the mutation 3157+1G>T. The paragraph should read: “We report a case of a 5 year old DMD patient with a novel splice site mutation affecting the GT dinucleotide splice donor of exon 22. The RT‐PCR analysis with primer sets spanning dystrophin exons 17‐25 amplified no normal size fragment (1251 bp), but a product shorter by 146 bp (the length of exon 22). Direct sequencing of the faster migrating fragment revealed total skipping of exon 22.”  相似文献   

4.
5.
Ethidium gel-based PCR-RFLP is widely used, and is perhaps the simplest method for detection of known mutations in cancer-related genes and for genotyping a wide range of other human diseases. However, its application is limited by the fact that it can only detect mutant alleles that are present in more than 5-10% of wild-type alleles. Here we present a method that allows a 1-2 order enhancement in the sensitivity of the widely used PCR-RFLP without substantially increasing the effort and cost associated with it. This method is a modification to our previously reported amplification via primer ligation at the mutation (APRIL-ATM) method, which utilizes ligation of a primer at a restriction site formed by a mutation, followed by a ligation-mediated PCR amplification which amplifies only the mutation-containing DNA molecules. By combining this method with the artificial introduction of restriction sites during PCR, we demonstrate that assays can be designed and validated for detecting hot-spot mutations in codons 273, 158, and 248 of the TP53 gene (p53) and potentially for most mutations of interest. This approach is validated by using samples where the mutation was artificially introduced at these p53 positions. The increased sensitivity offered by the method further allows us to rapidly screen for low frequency polymorphisms in pooled DNA samples. The frequency of an MSH2 missense polymorphism (965G>A) was quantified in pooled genomic DNA samples from 205 and 221 U.S. and Polish colorectal cancer patients, respectively, and an equal number of ethnicity-matched controls. The data revealed a 3-5% prevalence of this polymorphism in the patient and the control populations. Individual sequencing of all 852 patient samples demonstrated an excellent agreement among the two independent approaches. The present enhanced PCR-RFLP reduces the effort involved in high throughput polymorphism studies and promises to find applications in genotyping and association studies involving low frequency polymorphisms and mutations.  相似文献   

6.
Development of late-onset Becker muscular dystrophy is reported in a patient whose two healthy brothers showed high serum creatine kinase level. No cases of neuromuscular disorders had been previously reported in this family. The analysis of the dystrophin gene showed that the three brothers had A → C transversion at nucleotide 6092 in exon 41, a missense mutation which converts lysine into glutamine. The symptomatic patient showed an additional mutation in the same exon, a T → C transition at nucleotide 6119, converting a phenylalanine to leucine. The possible pathogenic role of this mutation is discussed. Am. J. Med. Genet. 80:99–102, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Mutation analysis of genomic DNA samples obtained from seven unrelated South African Indians with familial hypercholesterolaemia (FH) revealed two novel and two recurrent missense mutations in the low density lipoprotein receptor (LDLR) gene. The novel mutations are transversions of C to G and A to T at nucleotide positions 1215 (N384K) and 2356 (S765C), respectively. The known mutations were detected in CpG dinucleotides at bases 661 and 682, respectively, in the mutation-rich exon 4 of the LDLR gene. Mutation D200Y was found in a single FH family, while mutation E207K was detected in two apparently unrelated Indian families on a new mutual haplotype. Analysis of published mutations including our new data has shown that more than 50% of the different LDLR gene mutations identified to date in South African Indians occur at CpG hotspots.  相似文献   

8.
Shi J  Liu Q  Sommer SS 《Human mutation》2007,28(2):131-136
The detection of ultra-rare mutation in the presence of excess amounts of normal genomic DNA is highly advantageous in a number of circumstances, including: 1) identification of minimal residual disease for improved cancer chemotherapy; 2) measurement of mutation load to assess environmental mutagen exposure or endogenous DNA repair; and 3) prenatal diagnosis of paternally-derived mutations within fetal cells in the maternal circulation. Bidirectional pyrophosphorolysis activated polymerization allele-specific amplification (Bi-PAP-A) utilizes two opposing 3'-terminal blocked oligonucleotides (P(*)s) with 1 nucleotide overlap at their 3' termini. The selectivity of Bi-PAP-A derives from the serial coupling of pyrophosphorolysis and DNA polymerization. A total of 13 Bi-PAP-A assays were developed and validated for the human p53 gene (TP53). The sensitivity and specificity of each assay were determined with mutated and wild-type DNA templates, respectively. Bi-PAP-A has a sensitivity of one molecule for most assays and a selectivity (sensitivity:specificity) greater than 1:10(7)-1:10(9) for four of all six mutation types. Four assays with high selectivity were used to detect rare somatic mutations in blood white cells. The silent g.13147C>G (p.R156) mutation was present at an estimated frequency of 1.1 x 10(-7). The g.14523A>T (p.E285V), g.14487G>C (p.R273P), and g.14060G>C (p.G245R) mutations were undetectable with frequencies less than 2.0 x 10(-8). We conclude that Bi-PAP-A is a general and rapid method for detecting ultra-rare mutations.  相似文献   

9.
Pollutants and dietary mutagens have been associated with somatic mutation and cancer, but the extent of their influence on germline mutation is not clear. Since deleterious germline mutations can be transmitted for thousands of years, any influence on germline mutation from the vast increase in man‐made chemicals of the past 150 years would be an important public health issue. Observed disease causing mutations in the X‐linked factor IX gene (F9) of hemophilia B patients originated predominantly in the past 150 years, since the half‐life of these mutations in human populations had been about two generations before effective treatment became available about a generation ago. Recent changes in germline mutational processes may be detected by comparison of the observed hemophilia B causing mutation pattern in F9 with the pattern of neutral polymorphisms which occurred over a much longer period of time. By scanning a total of 1.5 megabases of deep intronic regions of F9 in the genomic DNA from 84 individuals, 42 neutral polymorphisms were found in 23 haplotypes that differed by at least 11 mutations from the ancestral primate haplotype. By sequencing F9 in seven non‐human primates, 39 of these polymorphisms were characterized as ancient mutations relative to a unanimous ancestral primate allele. This ancient mutation pattern was compared to the recent pattern of hemophilia B causing mutations. Remarkably, no significant difference was found (P=0.5), suggesting that the vast increase in man‐made chemicals during the past 150 years has not had a major impact on the pattern of human germline mutation. This result is consistent with the hypothesis that endogenous processes dominate germline mutation. Hum Mutat 19:49–57, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
Two male cousins with Duchenne musoular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions—one in the 5′, proximal deletional hotspot region, and the other in the 3′, more distal deletional hotspot region. The second propositus showed only the 5′ deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, we show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier's dystrophin genes, giving rise to a son with a partially “repaired” gene retaining only the 5′ deletion. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Precise estimates of mutation rates at Y-chromosomal microsatellite STR (short tandem repeat) loci make an important basis for paternity diagnostics and dating of Y chromosome lineage origins. There are indications of considerable locus mutation rate variability between (inter-) and within (intra-) loci. We have studied nine Y-STR loci-DYS19, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS385, and DYS388-in 1,766 father-son pairs of confirmed paternity (a total of 15,894 meioses). Five biallelic markers were also analyzed in the fathers-Tat, YAP, 12f2, SRY1532, and 92R7-defining haplogroups 1, 2, 3, 4, 9, and 16, respectively. A total of 36 fragment length mutations were observed: 24 gains (22 single-step, two double-step) and 12 single-step losses. Thus, there was a significant surplus of gains (p=0.045). Overall, the mutation rate was positively correlated to STR repeat length and there was a significant relative excess of losses in long alleles and gains in short alleles (p=0.043). In contrast to the situation in autosomal STR loci and in MSY-1, no noteworthy correlation between mutation rate and the father's age at the child's birth was observed. We observed significant interlocus differences in Y-STR mutation rates (p<0.01). The number of observed mutations ranged from zero in DYS392 to eight in DYS391 and DYS390. We have also demonstrated obvious differences in mutation rates between the haplogroups studied (p=0.024), a phenomenon that is a reflection of the dependence of mutation rate on allele size. Our study has thus demonstrated the necessity of not only locus-specific, but even allele-specific, mutation rate estimates for forensic and population genetic purposes, and provides a considerable basis for such estimates.  相似文献   

12.
The TP53 tumor suppressor gene is the most frequent target for genetic alterations in human cancer. TP53 gene alterations may result in the gain of oncogenic functions such as neoangiogenesis and resistance to therapy. The TP53 germ line mutation c.659A>C (p.Y220S) was identified in stored DNA from related patients with Li-Fraumeni syndrome (LFS) who died after developing clinically aggressive tumors. All of the patients were treated with protocols that included doxorubicin hydrochloride (DX) as a pivotal drug. To define the in vitro mutational phenotype of this germ line mutation, we used murine fibroblasts explanted from wild-type (wt) and p53 knockout (KO) mice from the same littermate. p53Y220S and p53R175H fibroblasts, obtained from p53KO fibroblasts transfected with expression vectors encoding the human Y220S and R175H p53 mutants, respectively, exhibited resistance to DX treatment. Moreover, p53Y220S fibroblasts exhibited angiogenetic properties, and after DX treatment, p53Y220S failed to translocate into the nucleus and showed an increase in its cytosolic levels. DX treatment does not influence p53 distribution within the nuclear and cytosolic compartments in p53R175H fibroblasts. Peroxiredoxin II (Prx II), a protein that is involved in eliminating reactive oxygen species (ROS), showed increased expression intensity in p53Y220S fibroblasts after DX treatment, as observed by two-dimensional electrophoresis analysis. Moreover, Thioredoxin (Trx), a protein that cooperates with Prx II, is overexpressed in p53Y220S mutants under basal conditions. These data suggest a relationship between the presence of the p53Y220S mutation and enhanced levels of Prx II and Trx in mutant fibroblasts. Since one of the mechanisms of the DX antitumor effect has been ascribed to production of ROS, future studies will evaluate the involvement of PrxII and Trx in the chemoresistance of p53Y220S fibroblasts to DX.  相似文献   

13.
Due to patterns of migration, selection, and population expansion, founder effects are common among humans. In Southern Brazil, a recurrent TP53 mutation, p.R337H, is detected in families with cancer predisposition. We have used whole locus resequencing and high‐density single nucleotide polymorphism (SNP) genotyping to refine TP53 locus haplotype definitions. Haplotyping of 12 unrelated p.R337H carriers using a set of 29 tag SNPs, revealed that all subjects carried the same haplotype, and presence of the mutation on this haplotype was confirmed by allele‐specific PCR. The probability that this haplotype occurs independently in all index cases was of 3.1×10?9, demonstrating a founder effect. Analysis of the patterns of 103 tumors diagnosed in 12 families showed that the presence of p.R337H is associated with multiple cancers of the Li‐Fraumeni Syndrome (LFS) spectrum, with relatively low penetrance before the age of 30 but a lifetime risk comparable to classical LFS. The p.R337H families are mostly distributed along a road axis historically known as the main route used by merchants of Portuguese origin in the XVIII and XIX century. This historical circumstance and the relatively low penetrance before the age of 30 may have contributed to the maintenance of this pathogenic mutation in a large, open population. Hum Mutat 30:1–8, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
17.
Out of three mutations in the dystrophin gene that cause Duchenne muscular dystrophy (DMD), the most common, serious childhood muscle wasting disease, two are genomic deletions of one or more exons that disrupt the reading frame. Specific removal of an exon flanking a genomic deletion using antisense oligonucleotide intervention during pre-RNA processing can restore the reading frame and could potentially reduce disease severity. We describe a rare dystrophin gene rearrangement; inversion of approximately 28 kb, flanked by a 10-bp duplication and an 11-kb deletion, which led to the omission of exons 49 and 50 from the mature mRNA and the variable inclusion of several pseudoexons. In vitro transfection of cultured patient cells with antisense oligonucleotides directed at exon 51 induced efficient removal of that exon, as well as one of the more commonly included pseudoexons, suggesting closely coordinated splicing of these exons. Surprisingly, several antisense oligonucleotides (AOs) directed at this pseudoexon had no detectable effect on the splicing pattern, while all AOs directed at the other predominant pseudoexon efficiently excised that target. Antisense oligomers targeting dystrophin exon 51 for removal are currently undergoing clinical trials. Despite the unique nature of the dystrophin gene rearrangement described here, a personalized multiexon skipping treatment is applicable and includes one compound entering clinical trials for DMD.  相似文献   

18.
The tumor suppressor gene TP53 is frequently mutated in human cancers. More than 75% of all mutations are missense substitutions that have been extensively analyzed in various yeast and human cell assays. The International Agency for Research on Cancer (IARC) TP53 database (www-p53.iarc.fr) compiles all genetic variations that have been reported in TP53. Here, we present recent database developments that include new annotations on the functional properties of mutant proteins, and we perform a systematic analysis of the database to determine the functional properties that contribute to the occurrence of mutational "hotspots" in different cancer types and to the phenotype of tumors. This analysis showed that loss of transactivation capacity is a key factor for the selection of missense mutations, and that difference in mutation frequencies is closely related to nucleotide substitution rates along TP53 coding sequence. An interesting new finding is that in patients with an inherited missense mutation, the age at onset of tumors was related to the functional severity of the mutation, mutations with total loss of transactivation activity being associated with earlier cancer onset compared to mutations that retain partial transactivation capacity. Furthermore, 80% of the most common mutants show a capacity to exert dominant-negative effect (DNE) over wild-type p53, compared to only 45% of the less frequent mutants studied, suggesting that DNE may play a role in shaping mutation patterns. These results provide new insights into the factors that shape mutation patterns and influence mutation phenotype, which may have clinical interest.  相似文献   

19.
To estimate the species-specific mutation rates at the DRB1 locus in humans and chimpanzee, we analyzed the nucleotide sequence of a 37.6-kb chimpanzee chromosomal segment containing the entire Patr-DRB1*0701 allele and the flanking nongenic region and we compared it with two corresponding human sequences containing the HLA-DRB1*070101 allele using the sequence of HLA-DRB1*04011 as an outgroup. Because the allelic pair of HLA-DRB1*070101 and Patr-DRB1*0701 shows the lowest number of substitutions between the two species, it appears that these sequences diverged close to the time of the humans-chimpanzee divergence (6 million years ago). Alignment of the nucleotide sequences for HLA-DRB1*070101 and Patr-DRB1*0701 alleles showed that they share a high degree of similarity, suggesting that the studied chromosomal segments with these sequences have not been subjected to recombination since the humans-chimpanzee divergence. Comparison of the flanking 10.6 kb of nongenic sequences revealed an average of 41.5 and 83 single nucleotide substitutions in humans and chimpanzee, respectively. Thus, the species-specific nucleotide substitution rates in the flanking nongenic region were estimated to be 6.53 x 10(-10) and 1.31 x 10(-9) per site per year in humans and chimpanzee, respectively. Unexpectedly, the estimated rate in humans was twofold lower than in chimpanzee (P < 10(-3), Tajima's relative rate test) and lower than the average substitution rate in the human genome. Because the nucleotide substitution rate in nongenic regions free from selection is expected to be equal to the mutation rate, the estimated substitution rate should correspond to the species-specific mutation rate at the DRB1 locus. Our results strongly suggest that the mutation rate at DRB1 locus differs among species.  相似文献   

20.
Many mutation databases, comprising thousands of reported mutations, are available. Often the clinical significance of the reported mutations is unknown. In this study we developed an algorithm that allows prediction of the clinical significance of missense mutations reported in a mutation database. Nonsense mutations are used as a referent group for this assessment. We used the International Association for Research on Cancer (IARC) mutation database on TP53 to implement the algorithm. First, on the basis of published data [Nachman MW, Crowell SL. 2000. Genetics 156:297-304], we ascribed mutation rates to every single nucleotide substitution (SNS) in the core domain of the TP53 gene. Second, for every possible SNS we computed the expected number of missense mutations, under the assumption that missense mutations are as oncogenic as nonsense ones. The natural logarithm of the ratio of the observed to the expected number of missense mutations (LR) was used as a quantitative measure of oncogenicity (i.e., the ability of a mutation to produce cancer). We estimated the relative oncogenicity of all missense mutations reported in the IARC p53 mutation database, and constructed a profile of oncogenicity of the missense mutations along the DNA-binding region of p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号