首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.  相似文献   

2.
Qian J  Wang D  Cai F  Zhan Q  Wang Y  He S 《Biomaterials》2012,33(19):4851-4860
Nanoparticle-assisted two-photon imaging and near infrared (NIR) imaging are two important technologies in biophotonics research. In the present paper, organically modified silica (ORMOSIL) nanoparticles encapsulated with either PpIX (protoporphyrin IX) photosensitizers or IR-820 NIR fluorophores were synthesized and optically characterized. Using the former ORMOSIL nanoparticles, we showed: (i) direct excitation of the fluorescence of PpIX through its efficient two-photon absorption in the intracellular environment of tumor cells, and (ii) cytotoxicity towards tumor cells by PpIX under two-photon irradiation. The latter ORMOSIL nanoparticles can be used as efficient NIR fluorescent contrast agents for various types in vivo animal imaging. We applied IR-820 doped ORMOSIL nanoparticles in in vivo brain imaging of mice. We also demonstrated the applications of them to sentinel lymph node (SLN) mapping of mice. Finally, we showed that the nanoprobes could target the subcutaneously xenografted tumor of a mouse for long time observations. ORMOSIL nanoparticles have great potentials for disease diagnosis and clinical therapies.  相似文献   

3.
We have developed methotrexate (MTX)-loaded poly(lactic-co-glycolic acid, PLGA) gold (Au)/iron (Fe)/gold (Au) half-shell nanoparticles conjugated with arginine-glycine-aspartic acid (RGD), which can be applied for magnetic targeted chemo-photothermal treatment, and in vivo multimodal imaging of rheumatoid arthritis (RA). Upon near-infrared (NIR) irradiation, local heat is generated at the inflammation region due to the NIR resonance of Au half-shells and MTX release from PLGA nanoparticles is accelerated. The Fe half-shell layer embedded between the Au half-shell layers enables in vivo T2-magnetic resonance (MR) imaging in addition to NIR absorbance imaging. Furthermore, the delivery of the nanoparticles to the inflammation region in collagen-induced arthritic (CIA) mice, and their retention can be enhanced under external magnetic field. When combined with consecutive NIR irradiation and external magnetic field application, these nanoparticles provide enhanced therapeutic effects with an MTX dosages of only 0.05% dosage compared to free MTX therapy for the treatment of RA.  相似文献   

4.
目的 探讨三氧化二砷纳米粒子在体外、体内对直肠癌的抗癌作用.方法 Annexin V-FITC/PI染色流式细胞术检测三氧化二砷纳米粒子诱导直肠癌细胞HR8348凋亡情况;建立HR8348细胞裸鼠皮下移植瘤模型,监测给药后肿瘤体积的变化,并通过对肿瘤组织标本Ki67染色和TUNEL染色检测肿瘤细胞增殖和凋亡情况.结果 流式细胞术结果显示,4.0 μmol/L三氧化二砷纳米粒子诱导直肠癌细胞凋亡率为7.02%,高于对照组(1.76%),P<0.05,三氧化二砷纳米粒子体外可诱导直肠癌细胞的凋亡.在体内,三氧化二砷纳米粒子可抑制HR8348裸鼠皮下移植瘤的生长,4.0 μmol/L三氧化二砷纳米粒子组增殖指数(31.61%)低于对照组(66.75%),而凋亡指数(19.21%)高于对照组(6.47%),P<0.05.可抑制肿瘤细胞的增殖,诱导细胞凋亡.结论 在直肠癌中,三氧化二砷纳米粒子通过抑制增殖,诱导凋亡而发挥抗癌作用,是直肠癌治疗的良好药物.  相似文献   

5.
Noh YW  Jang YS  Ahn KJ  Lim YT  Chung BH 《Biomaterials》2011,32(26):6254-6263
We report the fabrication of a one-pot antigen system that delivers antigen to dendritic cells (DCs) and tracks their in vivo migration after injection. Multifunctional polymer nanoparticles containing ovalbumin protein, magnetic resonance imaging contrast agents (iron oxide nanoparticles), and near-infrared fluorophores (indocyanine green, ICG), MPN-OVA, were prepared using a double emulsion method. The MPN-OVA was efficiently taken up by the dendritic cells and subsequently localized in the lysosome. Flow cytometry analysis revealed an increase in the uptake of OVA antigen by MPN-OVA at 37 °C, when compared with soluble OVA protein. We found that MPN-OVA had no effect on DC surface expression of MHC class I, costimulatory (CD80, CD86) or adhesion (CD54) molecules or the ability of DCs to mature in response to LPS. Following the uptake of MPN-OVA, exogenous OVA antigen was delivered to the cytoplasm, and OVA peptides were presented on MHC class I molecules, which enhanced OVA antigen-specific cross-presentation to OT-1 T cells and CD8OVA1.3 T cell hybridoma in vitro. The immunization of mice with MPN-OVA-treated DCs induced OVA-specific CTL activity in draining lymph nodes. The presence of MPN allowed us to monitor the migration of DCs via lymphatic drainage using NIR fluorescence imaging, and the homing of DCs into the lymph nodes was imaged using MRI. This system has potential for use as a delivery system to induce T cell priming and to image DC-based immunotherapies.  相似文献   

6.
In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.  相似文献   

7.
Multilayered, core/shell nanoprobes (MQQ-probe) based on magnetic nanoparticles (MNPs) and quantum dots (QDs) have been successfully developed for multimodality tumor imaging. This MQQ-probe contains Fe(3)O(4) MNPs, visible-fluorescent QDs (600?nm emission) and near infrared-fluorescent QDs (780?nm emission) in multiple silica layers. The fabrication of the MQQ-probe involves the synthesis of a primer Fe(3)O(4) MNPs/SiO(2) core by a reverse microemulsion method. The MQQ-probe can be used both as a fluorescent probe and a contrast reagent of magnetic resonance imaging. For breast cancer tumor imaging, anti-HER2 (human epidermal growth factor receptor 2) antibody was conjugated to the surface of the MQQ-probe. The specific binding of the antibody conjugated MQQ-probe to the surface of human breast cancer cells (KPL-4) was confirmed by fluorescence microscopy and fluorescence-activated cell sorting analysis in?vitro. Due to the high tissue permeability of near-infrared (NIR) light, NIR fluorescence imaging of the tumor mice (KPL-4 cells transplanted) was conducted by using the anti-HER2 antibody conjugated MQQ-probe. In?vivo multimodality images of breast tumors were successfully taken by NIR fluorescence and T(2)-weighted magnetic resonance. Antibody conjugated MQQ-probes have great potential to use for multimodality imaging of cancer tumors in?vitro and in?vivo.  相似文献   

8.
Near-infrared (NIR) optically active nanoparticles are promising exogenous chromophores for applications in medical imaging and phototherapy. Since nanoparticles can be rapidly eliminated from the body by cells of the reticuloendothelial system, a thriving strategy to increase their blood circulation time is through surface modification with polyethylene glycol (PEG). We constructed polymeric nanocapsules loaded with indocyanine green (ICG), an FDA-approved NIR dye, and coated with aldehyde-terminated PEG. Using optical absorbance spectroscopy and flow cytometry, we investigated the effect of PEG coating and molecular weight (MW) of PEG [5000 and 30,000 Daltons (Da)] on the phagocytic content of human spleen macrophages incubated with ICG-containing nanocapsules (ICG-NCs) between 15 to 360 min. Our results indicate that surface coating with PEG is an effective method to reduce the phagocytic content of ICG-NCs within macrophages for at least up to 360 min of incubation time. Coating the surface of ICG-NCs with the low MW PEG results in lower phagocytic content of ICG-NCs within macrophages for at least up to 60 min of incubation time as compared to ICG-NCs coated with the high MW PEG. Surface coating of ICG-NCs with PEG is a promising approach to prolong vasculature circulation time of ICG for NIR imaging and phototherapeutic applications.  相似文献   

9.
Y Yang  F An  Z Liu  X Zhang  M Zhou  W Li  X Hao  CS Lee  X Zhang 《Biomaterials》2012,33(31):7803-7809
We report a new strategy of using carrier-free pure near-infrared (NIR) dye nanoparticles (NPs) to achieve highly luminescent NIR fluorescent probes for in?vitro and in?vivo imaging. Bis(4-(N-(2-naphthyl)phenylamino) phenyl)-fumaronitrile (NPAPF) NPs are shown to exhibit favorable biocompatibility, wide-range pH stability (pH 4-10) and much more superior photostability than conventional dyes. Importantly, the combined merits of high dye loading content and aggregation-induced emission enhancement properties, endow the NIR probes with high brightness and a high quantum yield up to 14.9%. The NPAPF NPs can be readily conjugated with folic acid for targeted in?vitro cell imaging. Applications of the NPs probes in high efficiency in?vivo and ex?vivo imaging were successfully demonstrated. Intense fluorescent signals of NPAPF NPs can be distinctly, selectively and spatially resolved in tumor sites with ultrahigh sensitivity, even with 5?ms exposure time, due to the preferentially accumulation of NPs in tumor sites through passive enhanced permeability and retention effect. The totality of results clearly demonstrate the exciting potential of the functionalized NPAPF NPs as a NIR fluorescent probe for in?vitro and in?vivo imaging and diagnostics.  相似文献   

10.
Photothermal reagents sensitive to near-infrared (NIR) light are promising imaging agents and therapeutics for anticancer applications because of the deep tissue penetration of NIR light, allowing for spatiotemporal control over the therapeutic activity, with minimal damage to normal tissues. Herein, a new class of NIR-sensitive biopolymer-based nanoparticles is presented by covalently conjugating indocyanine green (ICG) onto the surface of naturally occurring glycogen nanoparticles. The resulting ICG-glycogen conjugates exhibit a markedly enhanced aqueous stability in comparison to free ICG molecules. Furthermore, an efficient light-to-heat conversion is enabled by ICG-glycogen conjugates, as evidenced by the elevated temperatures of their aqueous solutions upon exposure to NIR light. Critically, ICG-glycogen conjugates are capable of cell internalization, and under NIR irradiation the effective eradication of breast cancer cells, demonstrating their potential in photothermal therapy for cancer.  相似文献   

11.
Breast cancer is the leading cause of cancer-related deaths in women and earlier detection can substantially reduce deaths from breast cancer. Polymers with targeted ligands are widely used in the field of molecular ultrasound imaging and targeted tumor therapy. In our study, the nanotheranostic agent was fabricated through filling perfluoropropane (C3F8) into poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NPs), followed by the formation of gold nanoshell on the surface, then conjugated with anti p53 antibody which has high specificity with the p53 protein overexpressing in breast cancer. The average diameter of the gold nanoshelled PLGA NPs carrying anti p53 antibody (p53-PLGA@Au NPs) was 247 ± 108.2 nm. The p53-PLGA@Au NPs had well-defined spherical morphology and hollow interiors observed by electron microscope, and had a good photothermal effect under the irradiation of an 808 nm laser. The results of laser scanning confocal microscope (LSCM) and flow cytometer (FCM) indicated the specific targeting of p53-PLGA@Au NPs conjugating with breast cancer MCF-7 cells overexpressing p53 protein in vitro. Also the ultrasound imaging experiments in vitro showed that p53-PLGA@Au NPs were suitable for ultrasound contrast imaging. In conclusion, the p53-PLGA@Au NPs are demonstrated to be novel targeted UCAs and may have potential applications in the early diagnosis and targeted near-infrared (NIR) photothermal therapy of breast cancer in the future.  相似文献   

12.
We investigated whether near-infrared (NIR) light could be employed for patterning transgene expression in plasmonic cell constructs. Hollow gold nanoparticles with a plasmon surface band absorption peaking at ∼750 nm, a wavelength within the so called “tissue optical window”, were used as fillers in fibrin-based hydrogels. These composites, which efficiently transduce NIR photon energy into heat, were loaded with genetically-modified cells that harbor a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation in the presence of ligand triggered 3-dimensional patterns of transgene expression faithfully matching the illuminated areas of plasmonic cell constructs. This non-invasive technology was proven useful for remotely controlling in vivo the spatiotemporal bioavailability of transgenic vascular endothelial growth factor. The combination of spatial control by means of NIR irradiation along with safe and timed transgene induction presents a high application potential for engineering tissues in regenerative medicine scenarios.  相似文献   

13.
In this study, a GO@Ag nanocomposite was synthesized by chemical deposition of Ag nanoparticles onto graphene oxide (GO) through a hydro thermal reaction, and doxorubicin (DOX), one of the most effective drugs against a wide range of cancers, was employed as the model drug and linked to GO@Ag via ester bonds with a very high drug loading efficiency (∼82.0%, weight ratio of DOX/GO@Ag), then GO@Ag-DOX was functionalized by DSPE-PEG2000-NGR, giving GO@Ag-DOX with active tumor-targeting capacity and excellent stability in physiological solutions. The release profiles of DOX from GO@Ag-DOX-NGR showed strong dependences on near-infrared (NIR) laser and the SPR effect of Ag nanoparticles. Compared with free DOX in an in vivo murine tumor model, GO@Ag-DOX-NGR afforded much higher antitumor efficacy without obvious toxic effects to normal organs owing to 8.4-fold higher DOX uptake of tumor and 1.7-fold higher DOX released in tumor with NIR laser than the other tissues. Besides, in this work, GO@Ag-DOX-NGR not only served as a powerful tumor diagnostic X-ray contrast agent, but also as a strong agent for photothermal ablation of tumor, the ability of GO@Ag-DOX-NGR nanoparticles to combine the local specific chemotherapy with external photothermal therapy (PTT) significantly improved the therapeutic efficacy. GO@Ag-DOX-NGR showed excellent chem-photothermal therapeutic efficacy, tumor-targeting property, NIR laser-controlled drug releasing function and X-ray imaging ability, demonstrating that there is a great potential of GO@Ag-DOX-NGR for cancer diagnosis and therapy.  相似文献   

14.
Antibody-mediated targeting therapy has been successful in treating patients with breast cancer by improving the specificity and clinical efficacy. In this study, we constructed the human epidermal growth factor receptor-2 (Her2) antibody-conjugated ultrasound contrast agent with lactic-co-glycolic acid (PLGA) as film forming and perfluorocty bromide (PFOB) as internal material, which was coated by gold nanoshell (Her2-PFOB@PLGA@Au), to realize the integration of diagnosis and treatment. The contrast agent was spherical, with the diameter was 256.8 ± 53.4 nm, and had a good dispersion; Ultrasound imaging experiments in vitro showed that the gold nanoshell polylactic acid microcapsule was suitable for ultrasound contrast imaging with the exquisite and uniform dot intensive high echo. The agent had a great photothermal effect under the near-infrared (NIR) with no obvious biological toxicity for both Her2-positive and negative tumor cells; Moreover, both the results of laser scanning confocal microscope (LSCM) and flow cytometer (FCM) demonstrated the great specificity of Her2-PFOB@PLGA@Au conjugating with Her2 positive breast cancer cells (SKBR3). In conclusion, the successful synthesis of the Her2-PFOB@PLGA@Au microcapsule, offered a new therapeutic strategy of combining diagnosis with therapy for fighting against the breast cancer.  相似文献   

15.
Flow cytometry is a powerful technique for quantitative characterization of fluorescence in cells. Quantitation is achieved by ensuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow. Two-photon excitation has the advantages that it enables simultaneous excitation of multiple dyes and achieves a very high SNR through simplified filtering and fluorescence background reduction. We demonstrate that two-photon excitation in conjunction with a targeted multidye labeling strategy enables quantitative flow cytometry even under conditions of nonuniform flow, such as may be encountered in simple capillary flow or in vivo. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling cells with targeted nanoparticles containing multiple fluorophores enables normalization of the fluorescence signal and thus quantitative measurements under nonuniform excitation. Flow cytometry using two-photon excitation is demonstrated for detection and differentiation of particles and cells both in vitro in a glass capillary and in vivo in the blood stream of live mice. The technique also enables us to monitor the fluorescent dye labeling dynamics in vivo. In addition, we present a unique two-beam scanning method to conduct cell size measurement in nonuniform flow.  相似文献   

16.
Gold nanoparticles grown within the intracellular confines of living cells are introduced as potential surface-enhanced Raman scattering (SERS) substrates for confocal Raman spectrometry. Electron microscopy and a silver-enhanced reflectance laser scanning confocal microscopic approach were used to visualize the size, shape, and distribution of intracellularly grown gold nanoparticles (IGAuN) as small as 1 nm. Passive uptake as the conventional approach for delivering nanoparticles inside cells faces the insurmountable challenge of escaping the endosomal/lysosomal pathway. In contrast, IGAuN provides an unprecedented advantage of providing access to cytoplasm and nucleus.  相似文献   

17.
Despite the exciting advances in cancer therapy over past decades, tumor metastasis remains the dominate reason for cancer-related mortality. In present work, DNA-wrapped gold nanorods with doxorubicin (DOX)-loading (GNR@DOX) were developed for treatment of metastatic breast cancer via a combination of chemotherapy and photothermal ablation. The GNR@DOX nanoparticles induced significant temperature elevation and DOX release upon irradiation with near infrared (NIR) light as shown in the test tube studies. It was found that GNR@DOX nanoparticles in combination with laser irradiation caused higher cytotoxicity than free DOX in 4T1 breast cancer cells. Animal experiment with an orthotropic 4T1 mammary tumor model demonstrated that GNR@DOX nanoplatform significantly reduced the growth of primary tumors and suppressed their lung metastasis. The Hematoxylin and Eosin (H&E) and immunohistochemistry (IHC) staining assays confirmed that the tumor growth inhibition and metastasis prevention of GNR@DOX nanoparticles were attributed to their abilities to induce cellular apoptosis/necrosis and ablate intratumoral blood vessels. All these results suggested a considerable potential of GNR@DOX nanoplatform for treatment of metastatic breast cancer.  相似文献   

18.
Although T cell effector subsets, defined by cytokine patterns, have been recognized for more than 20 years, the functional cytokine expression patterns in vivo are still in considerable doubt, particularly for human T cells. At least three new subsets have been recently identified, but the committed cytokine pattern of a T cell (e.g., Th1 cells produce IL-2, interferon-gamma, and lymphotoxin) may differ from the expression pattern of one cell on one occasion, which may be a subset of its full potential. Recent advances in flow cytometry allowed detailed cytokine patterns of antigen-stimulated cells to be identified directly ex vivo. These patterns are clearly more diverse than the major subsets identified as committed phenotypes. Additional contributions to diversity may include new committed subsets, random expression of only part of the committed pattern, and modification of the expression patterns by cytokines and other mediators.  相似文献   

19.
Wang C  Tao H  Cheng L  Liu Z 《Biomaterials》2011,32(26):6145-6154
Upconversion nanoparticles (UCNPs) that emit high-energy photons upon excitation by the low-energy near-infrared (NIR) light are emerging as new optical nano-probes useful in biomedicine. Herein, we load Chlorin e6 (Ce6), a photosensitizer, on polymer-coated UCNPs, forming a UCNP-Ce6 supramolecular complex that produces singlet oxygen to kill cancer cells under NIR light. Excellent photodynamic therapy (PDT) efficacy is achieved in tumor-bearing mice upon intratumoral injection of UCNP-Ce6 and the followed NIR light exposure. It is further uncovered that UCNPs after PDT treatment are gradually cleared out from mouse organs, without rendering appreciable toxicity to the treated animals. Moreover, we demonstrate that the NIR-induced PDT based on UCNP-Ce6 exhibits a remarkably increased tissue penetration depth compared to the traditional PDT using visible excitation light, offering significantly improved treatment efficacy for tumors blocked by thick biological tissues. Our work demonstrates NIR light-induced in vivo PDT treatment of cancer in animals, and highlights the promise of UCNPs for multifunctional in vivo cancer treatment and imaging.  相似文献   

20.
Lee JH  Jung MJ  Hwang YH  Lee YJ  Lee S  Lee DY  Shin H 《Biomaterials》2012,33(19):4861-4871
Human mesenchymal stem cells (hMSCs) offer significant therapeutic potential in the field of regenerative medicine and high-resolution magnetic resonance imaging (MRI) is useful modality to visualize in vivo kinetics of transplanted stem cells. For successful MR imaging, there is a great need for effective contrast agents for stem cell labeling with high uptake yield and low toxicity. Here, we present superparamagnetic iron oxide (SPIO) nanoparticles coated with unfractionated heparin (UFH-SPIO) as a new negative contrast agent for in vivo MR imaging of hMSCs. The uptake of UFH-SPIO by hMSCs was effective without the aid of transfection agents, which was dependent on the concentration and exposure time. The uptake efficiency of UFH-SPIO was greater than that of DEX-SPIO (SPIO coated with dextran) by approximately 3 folds when treated for 1 h. TEM and Prussian blue staining confirmed that UFH-SPIO nanoparticles were internalized into the cytosol of hMSCs which existed during in vitro subculture for 28 days. Low temperature endocytosis inhibition assay demonstrated that the incorporation of UFH-SPIO into hMSCs was likely to be mediated by endocytosis. When the phantom of UFH-SPIO-labeled hMSCs was visualized with 3-T T(2)-weighted MRI, the hypointensity signals of UFH-SPIO-labeled hMSCs were linearly correlated with the concentration of the nanoparticles. The cellular labeling using UFH-SPIO did not reduce the viability, proliferation or differentiation potential to osteogenic and adipogenic lineages of hMSCs. When the UFH-SPIO-labeled hMSCs were transplanted into the left renal subcapsular membranes of nude mice, they were successfully visualized and detected by T(2) and T(2)(?)-weighted MRI for a month. Collectively, these results suggest that UFH-SPIO nanoparticles are promising as a new MRI contrast agent for in vivo long-term tracking of hMSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号