首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.  相似文献   

2.
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.  相似文献   

3.
BACKGROUND: It has been demonstrated that transforming growth factor-β (TGF-β) and brain- derived neurotrophic factor (BDNF) can induce stem cell differentiation into neuron-like cells. OBJECTIVE: To investigate the efficacy of TGF-β and BDNF at inducing the differentiation of adult rat bone marrow stromal cells (BMSCs) into neuron-like cells, both in combination or alone. DESIGN, TIME AND SETTING: A comparative observation experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University between October 2007 and January 2008. MATERIALS: TGF-~ and BDNF were purchased from Sigma, USA; mouse anti-rat neuron specific enolase, neurofilament and glial fibrillary acidic protein were purchased from Beijing HMHL Biochem Ltd., China. METHODS: BMSCs were isolated from rats aged 4 weeks and incubated with TGF-β(1μ g/L) and/or BDNF (50 μ g/mL). MAIN OUTCOME MEASURES: Expression of neuron-specific enolase, neurofilament and glial fibrillary acidic protein were determined by immunocytochemistry. RESULTS: BMSCs differentiated into neuron-like cells following induction of TGF-β and BDNF, and expressed both neuron-specific enolase and neurofilament. The percent of positive cells was significantly greater in the combination group than those induced with TGF-β or BDNF alone (P 〈 0.01). CONCLUSION: Treatment of BMSCs with a combination of TGF-β and BDNF induced differentiation into neuron-like cells, with the induction being significantly greater than with TGF-β or BDNF alone.  相似文献   

4.
In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.  相似文献   

5.
The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.  相似文献   

6.
Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the "pour-off" method.Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts,and could be expanded by supplementation with epidermal growth factor.Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers,neurofilament-200 and NeuN,in vitro.Non-adherent bone marrow cell-derived mesenchymal stem cells from β-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice.At 8 weeks,cells positive for LacZ and β-galactosidase staining were observed in the ischemic tissues,and cells co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining.These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo.  相似文献   

7.
Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.  相似文献   

8.
To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.  相似文献   

9.
In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer’s disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer’s disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.  相似文献   

10.
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100(Schwann cell marker) and glial fibrillary acidic protein(glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.  相似文献   

11.
12.
景:细胞种植密度是影响干细胞分化的因素之一,对于细胞种植密度在骨髓间充质干细胞向神经元样细胞分化过程中的作用尚缺乏深入研究。 目的:观察细胞种植密度对骨髓间充质干细胞诱导向神经元样细胞分化的影响。 方法:采用贴壁培养法分离大鼠骨髓间充质干细胞,传至第4代后将其按2×102,2×103,4×103,8×103,2×104,4×104/cm2种植于六孔板,每组均加入碱性成纤维细胞生长因子+表皮生长因子+维甲酸诱导向神经元样细胞分化,并通过免疫组织化学染色鉴定,计算每组细胞出现神经元样细胞的比例,比较各组的分化率。 结果与结论:各组骨髓间充质干细胞加入诱导剂后均出现神经元样细胞,Nestin、NSE、GFAP细胞化学染色呈阳性。不同种植密度组出现神经元样细胞比例不同,以8×103/cm2组神经元样细胞比例最高,且神经元样存活时间最长,达7 d。结果说明骨髓间充质干细胞向神经元样细胞分化与细胞接种密度有关,过高或过低细胞密度均不利分化。  相似文献   

13.
背景:依达拉奉作为新型氧自由基清除剂,一般用于抑制脂质过氧化反应,减轻脑水肿,保护神经细胞。 目的:观察依达拉奉体外定向诱导人骨髓间充质干细胞向神经元样细胞分化的可行性。 设计、时间及地点:细胞学体外观察,于2007-12/2008-09广东医学院附属医院中心实验室完成。 材料:骨髓来源于创伤所致闭合性股骨骨折的成年患者,由广东医学院附属医院骨科提供。依达拉奉由南京先声药业生产,批号P2007123144254453。 方法:无菌抽取的骨髓经肝素化后,采用密度梯度离心法及贴壁筛选法分离获得人骨髓间充质干细胞,传至第5代按1× 108 L-1接种于6孔板内,设立2组,依达拉奉组细胞达50%融合时用含碱性成纤维生长因子、胎牛血清的L-DMEM预诱导24 h,PBS洗涤后再用20 mg/L依达拉奉无血清L-DMEM诱导24 h;空白对照组始终用含体积分数为10%胎牛血清的L-DMEM培养,不加任何预诱导剂和诱导剂。 主要观察指标:诱导分化后细胞形态变化,SP法免疫细胞化学鉴定神经元烯醇化酶、巢蛋白、胶质纤维酸性蛋白及微管相关蛋白2的表达。 结果:体外诱导1 h后,依达拉奉组胞体收缩,2 h后形成较长突起,5 h后呈典型神经元样细胞;空白对照组细胞仍呈对称的梭形,无突起形成。免疫组化结果显示,诱导6 h后依达拉奉组神经元样细胞的胞体及部分突起呈棕黄色,强表达神经元烯醇化酶,弱表达胶质纤维酸性蛋白和巢蛋白,不表达微管相关蛋白2;空白对照组上述4种特异性抗原均呈阴性表达。 结论:人骨髓间充质干细胞经依达拉奉体外诱导后,所分化的细胞具有神经元表型,但还不够成熟,处于向成熟神经元分化的中间阶段。  相似文献   

14.
背景:骨髓间充质干细胞移植对脊髓损伤有治疗作用,但其机制尚不完全清楚。 目的:应用免疫组织化学方法观察骨髓间充质干细胞静脉移植损伤脊髓局部脑源性神经营养因子及神经生长因子的表达,分析骨髓间充质干细胞移植治疗大鼠脊髓损伤的作用途径。 方法:运用改良Allen法制备T10脊髓外伤性截瘫大鼠模型,假手术组6只,脊髓损伤组24只随机分为对照组和骨髓间充质干细胞移植组。骨髓间充质干细胞移植组、假手术组接受骨髓间充质干细胞单细胞悬液1 mL(1×106 cells)自大鼠尾静脉缓慢注射移植,对照组静脉注射PBS 1 mL。 结果与结论:脊髓损伤后损伤局部的脑源性神经营养因子、神经生长因子表达增加,骨髓间充质干细胞静脉注射移植后能促进脊髓损伤局部脑源性神经营养因子、神经生长因子更进一步的表达,这可能是促进神经结构及神经功能恢复的因素之一。  相似文献   

15.
Mesenchymal stem cells derived from bone marrow and adipose tissue are being considered for use in neural repair because they can differentiate after appropriate induction in culture into neurons and glia. The question we asked was if neurospheres could be harvested from adipose-derived stem cells and if they then could differentiate in culture to peripheral glial-like cells. Here, we demonstrate that adipose-derived mesenchymal stem cells can form nestin-positive non-adherent neurosphere cellular aggregates when cultured with basic fibroblast growth factor and epidermal growth factor. Dissociation of these neurospheres and removal of mitogens results in expression of the characteristic Schwann cell markers S100 and p75 nerve growth factor receptor and GFAP. The simultaneous expression of these glia markers are characteristic features of Schwann cells and olfactory ensheathing cells which have unique properties regarding remyelination and enhancement of axonal regeneration. When co-cultured with dorsal root ganglion neurons, the peripheral glial-like cells derived from adipose mesenchymal stem cells aligned with neuritis and stimulated neuritic outgrowth. These results indicate that neurospheres can be generated from adipose-derived mesenchymal stem cells, and upon mitogen withdrawal can differentiate into peripheral glial cells with neurotrophic effects.  相似文献   

16.
Kang JH  Lee CK  Kim JR  Yu SJ  Jo JH  Do BR  Kim HK  Kang SG 《Neuroreport》2007,18(1):35-38
This study evaluated the effects of estrogen on the neuronal differentiation of human umbilical cord blood mesenchymal stem cells. Human umbilical cord blood mesenchymal stem cells cultured in a neuronal differentiation medium containing dimethylsulfoxide and butylated hydroxyanisole showed the expression of the neuronal cell-specific protein marker, beta-tubulin III. The estrogen treatment increased the proportion of neurons and neurite branching but reduced the mean neurite length. The relative expression of neurotropic factors such as brain-derived neurotropic factor, glial cell derived neurotropic factor, nerve growth factor, neurotrophin-3, and growth-associated protein 43 were higher in the estrogen-treated group than in the nontreated and estrogen receptor antagonist (ICI-182,780)-treated groups. These results suggest that estrogen stimulates the differentiation of neurons derived from human umbilical cord blood mesenchymal stem cells through the gene expression of neurotrophic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号