首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The ability of A7 Semliki Forest Virus (SFV) to infect primary brain cell cultures has been examined using cultures prepared from 1-2-day neonatal rat cerebral hemispheres. These cultures, characterised immunocytochemically using cell-specified markers, contain mainly GFAP+ protoplasmic astrocytes and smaller multiprocessed A2B5+ cells, probably fibrous astrocytes. 10% of the cells are GC+ oligodendrocytes and some neurones are also present. These cultures support virus growth and a cytopathic effect was observed. Using double labelling techniques with the cell-specific markers and anti-SFV antibody A7 has been shown to readily infect cells which carry either the A2B5+ antigen or galactocerebroside marker. Protoplasmic astrocytes (GFAP+/A2B5-) are not readily infected under the conditions used. The protein labelling studies using [35S]methionine show that host cell protein synthesis is not completely shut off and continues in the astrocyte protein region. These results suggest that cells derived from a common A2B5+, GFAP-, GC- progenitor glial cell, i.e. GC+ oligodendrocytes and A2B5+/GFAP+ fibrous astrocytes, are more readily infected than other brain cell types including the protoplasmic astrocytes.  相似文献   

2.
Pure astrocyte cultures derived from cells isolated from mature brain   总被引:1,自引:0,他引:1  
Enriched preparations of oligodendrocytes, isolated either from adult bovine brain or from 30-day-old rat brain, eventually yield cultures in MEM-15% calf serum that contain, in addition to oligodendrocytes, proliferating astrocytes and variable numbers of fibroblast-like cells. If these cultures are switched to a serum-free defined medium during the 1st week, mixed cultures containing only oligodendrocytes and astrocytes are obtained. Bovine cultures can be replated and purified by selective adhesion to yield cultures that are greater than 99% astrocytes; similar procedures were not successful with rat cultures. Cytoskeletal preparations of the purified astrocyte cultures from mature bovine brain contain both vimentin and glial fibrillary acidic protein (GFAP), but vimentin is by far the major intermediate filament protein. Thus, the intermediate filament composition of these astrocytes is similar to that of astrocytes in primary cultures obtained from neonatal rat brain. Immunofluorescent studies of these cultures at 24 hr in vitro show that there are no GFAP+ cells in cultures of either species; the bovine cultures contain greater than 95% GC+ cells; and the rat cultures contain 90% GC+ cells. After a few days in vitro flat cells appear that are vimentin+/GFAP-/GC-. In serum-free medium these cells eventually become vimentin+/GFAP+. We propose that the astrocytes that grow in these cultures arise from a population of glial precursor cells, which are present even in adult brain and are isolated together with oligodendroglia, and that they do not derive from contaminating mature astrocytes. Thus, the astrocytes in our cultures may have the same origin as astrocytes grown in culture from dissociated neonatal brain.  相似文献   

3.
We have studied the expression of the NG2 chondroitin sulfate proteoglycan on bipotential glial precursor cells in cultures of postnatal rat optic nerve. Purified populations of these precursor cells were prepared by panning dissociated optic nerve cells on dishes coated with monoclonal A2B5 antibody. Using immunofluorescence double staining, we found that NG2 was present on almost 95% of the purified A2B5+ precursor cells. The NG2 core protein from optic nerve cells was identified by immune precipitation and PAGE and was found to be identical to the 300,000 Da NG2 core protein from a clonal rat cell line B49. Over a culture period of 5 d in medium containing 10% fetal calf serum, more than 80% of the NG2+ precursor cells acquired the glial fibrillary acidic protein (GFAP), an astrocyte-specific marker. Under these conditions, fewer than 10% of the NG2+ cells expressed galactocerebroside (GC), an oligodendrocyte-specific marker. These GFAP+GC- type II astrocytes continued to express the NG2 antigen for up to 10 d in culture. During a 5 d culture period in hormonally supplemented, serum-free medium, fewer than 15% of the NG2+ cells expressed GFAP, while up to 40% expressed GC. The NG2 antigen continued to be expressed for only a short period of time by these GFAP-GC+ oligodendrocytes, so that mature oligodendrocytes in the cultures became NG2-. These results support our previous suggestion that the NG2 antigen is found on a class of neural cells that can differentiate along more than one pathway.  相似文献   

4.
We have identified what is apparently a distinct type of astrocyte in primary cultures from several regions of the neonatal rat CNS. These cells express GD3 ganglioside for long periods in vitro, and are GFAP+, but do not express the oligodendrocyte antigens O4 or galactocerebroside (GC). The majority, but not all, are A2B5+. The cells grow in a flat, highly spread morphology with many thin cytoplasmic processes. Gene transfer with a replication-deficient retrovirus combined with immunostaining for astro- and oligodendroglial markers (antibodies to GFAP, GD3 ganglioside, GC, and the A2B5 and O4 antibodies) demonstrated that in the neonatal rat CNS cultures these cells are clonally separate from oligodendrocytes and from the majority of (GD3-) astrocytes. The clonal analysis suggests a distinct progenitor cell and a distinct developmental sequence for these astrocytes.  相似文献   

5.
An immortalized clonal cell line (AP-16) has been established from glial cultures obtained from neonatal mouse cerebra by multipassages under serum-free conditions. Immunofluorescent experiments showed that AP-16 cells expressed a marker for glial progenitors (A2B5) and did not express markers for oligodendrocytes (galactocerebroside) or mature astrocytes (glial fibrillary acidic protein: GFAP). Treatment with transforming growth factor-β1 (TGF-β1) or fetal calf serum (FCS) for 2 days induced AP-16 cells to differentiate into A2B5-negative, GFAP-positive, phenotypically mature astrocytes. AP-16 cells depended on epidermal growth factor for survival, and their growth was inhibited by FCS. These results indicate that AP-16 cells retained the properties of astrocyte progenitors. An enzyme-linked immunosorbent assay showed that AP-16 cells synthesized fibronectin and laminin, and that the expression of fibronectin was increased by TGF-β1. AP-16 cells should be useful for studying the roles of TGF-β1 in the differentiation of astrocyte progenitors. © 1993 Wiley-Liss, Inc.  相似文献   

6.
G A Elder  B J Potts  M Sawyer 《Glia》1988,1(5):317-327
The cellular composition and in vitro development of glial cultures derived from the rat CNS has been well studied. However, less information is available on similar cultures from other species, particularly higher mammals. To study ovine glial development in vitro, cultures from 50-day fetal to adult animals were characterized with various immunocytochemical markers, which are frequently used to define neural cell subsets in rat cultures. As in rats, both A2B5+ and A2B5- astrocytes can be identified in ovine cultures. However, ovine A2B5+ and A2B5- could not be reliably differentiated by their morphology, which was more influenced by whether the cells were in serum-free or serum-containing media than by their A2B5-positive or -negative status. In addition, ovine A2B5+ astrocytes were present in cultures from early fetal brain before the development of identifiable oligodendrocytes, unlike rat type II astrocytes, which develop only after the appearance of oligodendrocytes. An A2B5+ cell, morphologically similar to the rat 02-A cell, can be found in cultures from fetal ovine cerebrum or cerebellum. A2B5+/glial fibrillary acidic protein (GFAP)- cells in cultures from 100- to 115-day ovine cerebellum appeared to differentiate into A2B5+ astrocytes in serum-containing media. However, in serum-free media, although the A2B5+ cells assumed a more "oligodendroglial-like" morphology, they did not express galactocerebroside or myelin basic protein, suggesting that these cells may not be bipotential as is the rat 02-A cell. Oligodendroglial differentiation was not induced by treatment with dibutyryl cyclic AMP or insulin-like growth factor I. Many cells in cultures from a variety of fetal ages did not label with any of the immunocytochemical markers used, suggesting the need for more cell-type-specific markers to identify neural cell subsets in higher mammals.  相似文献   

7.
Cells expressing the surface antigen O4 were isolated as pure populations from cultures of murine brain or cerebellum using fluorescence activated cell sorting. When these O4-positive cells were further cultured in the presence of fetal calf serum (FCS) many cells expressed both O4 and the astrocyte marker glial fibrillary acidic protein (GFAP) after 4 days of culture. Cells not exposed to FCS expressed O4, but never GFAP. GFAP-positive cells in the presence of fetal calf serum very rarely expressed the myelin associated glycoprotein (MAG) or O1, both of which are expressed on more differentiated oligodendrocytes, and never expressed O10 that is characteristic of even more mature oligodendrocytes. These results show that glial cells expressing O4, but not MAG, O1, O10 or GFAP are bipotential precursor cells able to differentiate into astrocytes or oligodendrocytes depending on the culture conditions and suggest that bipotentiality of glial precursor cells is retained up to a later developmental stage than that of the O2A progenitor cell.  相似文献   

8.
Most in vitro studies in the CNS require pure cultures of astrocytes. Astrocytes from the human optic nerve head (ONH, type 1B) represent a specialized population of astrocytes. Primary cells grown from human optic nerve head explants were cultured for 3-4 weeks. To select astrocytes by immunopanning, cell suspensions were placed on a P100 panning dish coated with C5 anti-neuroepithelial antibody and allowed to attach for 30 min. Nonadherent cells were plated on a second dish coated with anti-Thy1.1 antibody to deplete microglia and meningeal cells. Finally, remnant nonadherent cells were plated on a noncoated dish. Purified cells were immunostained with astrocyte markers: GFAP, vimentin, Pax2, A2B5, nestin and NCAM. Other cell types were characterized by HLA-DR for microglia and smooth muscle actin for vascular smooth muscle. The proportion of GFAP+ astrocytes in the cultures was determined by flow cytometry. About 95% of the cells that adhered to the C5 dish were GFAP+ astrocytes. GFAP+ astrocytes expressed vimentin, Pax2, nestin and NCAM, but not A2B5. From the Thy1.1 dish, 60-75% cells were GFAP+ astrocytes and the remainder cells were GFAP- cells. Using cloning rings, we eliminated fibroblast-like cells, smooth muscle and meningeal cells from astrocyte cultures. Smooth muscle cells and fibroblasts grew on the noncoated dish. In conclusion, immunopanning is an efficient method to get high yields of viable type 1B astrocytes from adult human ONH. The current described culture system may provide a valuable tool in studying human optic nerve head biology and disease.  相似文献   

9.
Astrocytes cultured from mature brain derive from glial precursor cells   总被引:5,自引:0,他引:5  
We have previously shown that enriched preparations of oligodendrocytes from either mature bovine brain or 30-d-old rat brain, when cultured in serum-free medium, yield mixed cultures of oligodendrocytes and astrocytes even though no GFAP+ cells were present after 24 hr in culture (Norton et al., 1986, 1988). To test the possibility that the astrocytes in these cultures arose from glial precursor cells, we followed the expression of ganglioside GD3, galactosylceramide (GC), glial fibrillary acidic protein (GFAP), and vimentin in the cultures. GD3 has already been shown to be a marker of immature neuroectodermal cells, which in the postnatal brain are glial progenitor cells (Goldman et al., 1984, 1986). The cultures from both species contained at 1 DIV only two populations of cells; 90-95% GC+/GD3- oligodendrocytes and 4-10% GD3+/GC- small, round cells. With time, the oligodendrocytes remained GD3-/GFAP-/vimentin-. The kinetics of antigen expression of the GD3+ cells could best be interpreted by the following sequence: (sequence; see text) We interpret these results to show that the astrocytes arose from a small population of GD3+ glial precursor cells present in the brain that were co-isolated with oligodendroglia. No evidence was obtained that these GD3+ cells could also differentiate into oligodendrocytes.  相似文献   

10.
A permanent glial cell line (L3) has been established from mixed glial cultures obtained from neonatal rat forebrain by repetitive passaging and selection of the process-bearing cells growing on top of a flat cell monolayer. Continuous propagation of the process-bearing cells was supported by the flat cells, of presumed astroglial origin, which were present in negligible amounts following each passage but then grew and formed a basal, feeder layer. Throughout a culture period of over 2 years, the L3 cells have maintained a stable morphological and antigenic phenotype. In serum-containing culture medium, most of the process-bearing cells expressed at the same time features of immature oligodendrocytes (O4 positivity) and of astrocytes [glial fibrillary acidic protein (GFAP) positivity]. A smaller proportion of them was labeled by the monoclonal antibody LB1. LB1+ or O4+ cells were rarely GFAP-, and GFAP+ cells were rarely LB1- or O4-. GalC+ oligodendrocytes were seen only occasionally, but the proportion of these cells increased up to 30% upon culturing in chemically defined medium containing 0.5% fetal calf serum. The L3 process-bearing cells accumulated the neurotransmitter gamma-aminobutyric acid (GABA), expressed the proteoglycan chondroitin sulfate, and responded to the mitogenic action of platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF). All these properties are characteristic of cells belonging to the O-2A (oligodendrocyte-type 2 astrocyte) cell lineage. The L3 flat cells were largely negative for the glial markers tested, but resembled type 1 astrocytes in their ability to support the growth of O-2A lineage cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A range of antibodies to cell-specific markers was employed to characterize and quantify the cell types present in neonatal mouse brain cell cultures. Astrocytes were the major cell type to develop in culture and formed a bed layer by 5-7 days in vitro (DIV). A population of cells appeared on this layer which consisted of oligodendrocytes, progenitor cells and microglia. Some neurons were detected in the cultures up to at least 27 DIV. With time, the number of progenitor cells decreased in the cultures and there was a concomitant increase in the number of oligodendrocytes. Maximal numbers of cells expressing galactocerebroside (GC), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin-associated glycoprotein were observed at 18 DIV. The highest number of cells expressing myelin basic protein and proteolipid protein were observed at 25-30 and 35-40 DIV, respectively. Double-label studies with antibodies to A2B5/CNP and A2B5/GC showed that several A2B5+,CNP+ cells were present at 6 DIV. In contrast, no A2B5+,GC+ cells could be seen at this age. Confirming these findings, some CNP+,GC- cells were observed when cells were double-labeled with antibodies to CNP and GC. These findings suggested that the expression of CNP precedes that of GC in oligodendrocytes in these cultures.  相似文献   

12.
Oligodendrocyte and astrocyte lineages were traced in rat forebrain sections using single- and double-label immunoperoxidase and indirect immunofluorescent techniques. Antibodies were directed against antigenic markers, the expressions of which overlapped in time: GD3 ganglioside in immature neuroectodermal cells; vimentin in radial glia; glial fibrillary acidic protein (GFAP) in astrocytes; and carbonic anhydrase (CA) and galactocerebroside (GC) in oligodendrocytes. A histochemical stain for iron was also used as a marker of oligodendrocytes. Small cells of the subventricular zone (SVZ) were stained with anti-GD3 but not with the other antibodies. By 16 d of gestation (E16), the SVZ generated large, round cells and thick, process-bearing cells that were GD3+/CA+/iron+. These cells then appeared in the cingulum and, with time, increased in numbers and extended thick processes as they filled the subcortical white matter. These cells eventually lost their reactivity to anti-GD3 but became GC+/CA+ with processes extending to myelin sheaths. At E15 radial glia were stained with the anti-vimentin antibody but were negative for GFAP. At birth, only the vimentin+ radial glia midline between the 2 ventricles were GFAP+, but with time more vimentin+ cells became GFAP+. By 7 d of postnatal age all the vimentin+ cells were GFAP+ and had converged predominately on the cingulum. With time these cells condensed and took on characteristic shapes of astrocytes. The embryonic separation of the oligodendrocyte and the astrocyte lineage is supported by four pieces of evidence: (1) GD3+ cells were double labeled with anti-CA, and then went on to become GC+; (2) vimentin+ and GFAP+ cells were not also GD3+; (3) ultrastructural localization of anti-GD3 was confined to cells with characteristics consistent with developing oligodendrocytes; and (4) the shapes of GD3+, CA+, GC+, or iron+ cells did not resemble those of the vimentin+ or GFAP+ cells.  相似文献   

13.
Astrocyte precursors in neonatal rat spinal cord cultures.   总被引:1,自引:0,他引:1  
Cultures of newborn rat spinal cord contain multiple types of astrocytes. By using a combination of cultures enriched for glial precursors and clonal analysis, we have identified a particular astrocyte precursor that gives rise to morphologically distinct classes of astrocytes. This astrocyte precursor labels with the monoclonal antibody A2B5, is highly migratory, proliferates in response to serum and platelet-derived growth factor, and differentiates into process-bearing astrocytes, many of which subsequently assume a "pancake"-shaped morphology. A2B5+ astrocyte precursors share antigenic and migratory characteristics with previously described O2A progenitor cells but differ in their response to regulatory factors, including serum and coculture with type 1 astrocytes. More importantly, these astrocyte precursors do not give rise to oligodendrocytes. In their proliferative response to serum and their capacity to differentiate into astrocytes, these glial precursors resemble type 1 astrocyte precursors from optic nerve. However, unlike type 1 astrocyte precursors, these cells are A2B5+, highly migratory, and do not give rise to fibroblast-like astrocytes. Neonatal rat spinal cord cultures contain approximately twice the number of the A2B5+ astrocyte precursors than O2A progenitor cells. By contrast, the majority of A2B5+ cells in postnatal day 7 optic nerve cultures are O2A progenitors. The presence of large numbers of A2B5+ astrocyte precursors in rat spinal cord cultures may reflect the more complex cytoarchitecture of the spinal cord compared to the optic nerve.  相似文献   

14.
In many regions of the rat central nervous system, oligodendrocytes develop from migratory A2B5+ precursor cells. In the rat spinal cord, during early embryonic development the capacity for oligodendrogenesis appears to be restricted to ventral regions of the spinal cord, while cultures of postnatal rat spinal cord contain a distinct population of A2B5+ astrocyte precursors. To determine if, as in other regions of the CNS, spinal cord A2B5+ cells give rise directly to oligodendrocytes and astrocytes, the initial distribution, and subsequent dispersion, proliferation, and differentiation of spinal cord A2B5+ cells have been examined in both explant and dissociated cell cultures. Spinal cord oligodendrocytes develop from A2B5+ cells. At E14, A2B5+ cells are restricted to ventral regions of the spinal cord and as development proceeds they become more uniformly distributed throughout the spinal cord. In explant cultures, greater than 95% of the explants that contain oligodendrocytes also contain A2B5+ cells and a proportion of mature oligodendrocytes retain detectable A2B5 immunoreactivity briefly on their surface. The maturation of spinal cord oligodendrocyte precursors occurs in a number of distinct stages characterized by the expression of O4 immunoreactivity, which first appears at E16, and GC immunoreactivity, which first appears at E18. As spinal cord oligodendrocyte precursors acquire O4 immunoreactivity they appear to lose the ability to proliferate in response to PDGF but retain the ability to proliferate in response to bFGF, suggesting that the control of proliferation of oligodendrocyte precursors is, in part, dependent on their maturational state. In the presence of high serum, spinal cord A2B5+ cells fail to develop in isolated E14 dorsal spinal cord cultures, while in ventral cultures they subsequently differentiate into A2B5+ astrocytes suggesting that A2B5+ astrocyte precursors are also initially ventrally located. Unlike oligodendrocyte differentiation, however, the differentiation of spinal cord A2B5+ cells into astrocytes is delayed in early embryonic-derived cultures compared to those from older animals. These observations suggest that local influences may regulate the timing of spinal cord A2B5+ astrocyte development, but not spinal cord oligodendrocyte development. © 1994 Wiley-Liss, Inc.  相似文献   

15.
16.
The existence of cells sharing features of oligodendrocytes and astrocytes has been repeatedly proposed. We have studied this problem ultrastructurally in organotypic tissue culture together with light-microscopic immunocytochemistry for the astrocyte marker glial fibrillary acidic protein (GFAP) and for 2 oligodendrocyte markers, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG). Large numbers of GFAP+ cells (astrocytes) were seen, invariably giving rise to a wealth of tapering processes. In contrast, oligodendrocytes were found far less frequently either immunocytochemically or ultrastructurally, and showed smooth contours and scarcity of processes. Ultrastructurally, the cells corresponding to the intermediate glial cells in the literature which were far more numerous in culture than MBP-stained cells, were identified as reactive astrocytes by their numbers, location and morphological similarity with the GFAP-stained cells. Other characteristics were the presence of bundles of intermediate filaments and the covering of the plasmalemma adjacent to the collagen substrate by a basal lamina, in spite of the content of microtubules and the density of the cells. It was possible to demonstrate the difference between the wrapping of axons by astrocytic digitiform processes, and true myelination by processes identifiable as oligodendrocytes. We conclude that in this model the astrocytic and oligodendrocytic cell lines appear separate from the time of initial differentiation; in other systems such as dissociated cell culture, this may not be so. The cells with 'intermediate' features are in fact a reactive form of astrocyte.  相似文献   

17.
Na+ channel expression was studied in cultures of rat optic nerve astrocytes using whole-cell voltage-clamp recordings. Astrocytes from postnatal day 7 rat optic nerve (RON) expressed two distinct types of Na+ currents, which had significantly different h infinity curves. Stellate, GFAP+/A2B5+ astrocytes showed currents with h infinity curve midpoints close to -65 mV, similar to Na+ currents in most neurons. In contrast, flat fibroblast-like GFAP+/A2B5- astrocytes showed Na+ currents with h infinity midpoints around -85 mV, almost 20 mV more hyperpolarized than in neurons or A2B5+ astrocytes. Interestingly, Na+ current expression was maintained in A2B5+ astrocytes but began to decrease in A2B5- astrocytes after 6 days in vitro (DIV) and fell to or below the level of detection (i.e., 1 pA/pF) at 12 DIV. Astrocytes cultured from neonatal rats (P0) are almost exclusively GFAP+/A2B5-. These cells did not display measurable Na+ currents when studied at 2 DIV; however, Na+ current was observed after 5 DIV in A2B5- astrocytes from these neonatal (P0) cultures. These findings were substantiated by immunocytochemical experiments using 7493, an antibody raised against purified rat brain Na+ channels; in P0-derived astrocyte cultures 7493 antibody staining was initially lacking (up to 3 DIV), but it was prominent in cultures after 5 DIV, suggesting that Na+ current expression in RON astrocytes occurs postnatally.  相似文献   

18.
We previously demonstrated that substantia nigra (SN) support cells selectively increase SN dopamine (DA) neuron survival in dissociated primary culture. Increased survival was elicited specifically by nigral support cells; glia from other brain regions exerted lesser effects. We now report that Type I astrocytes, the principal component of SN support cell monolayers, mediate the enhanced DA cell survival. Initially, the predominant glial subtypes in SN support cell cultures were identified. Postnatal day 1 rat SN was dissociated and cells were grown to confluence (7-9 days in vitro; DIV). Monolayers were immunostained with antibodies against glial fibrillary acidic protein (GFAP; an astrocyte-specific marker), myelin basic protein (MBP; an oligodendrocyte marker), or A2B5 (recognizes 0-2A progenitors and Type II astrocytes). The number of GFAP+ cells far exceeded MBP+ and A2B5+ cells, suggesting that astrocytes constituted the predominant subpopulation. Further, direct comparison of GFAP+ (Type I and Type II astrocytes) and A2B5+ (Type II astrocytes) cells indicated that the vast majority were Type I astrocytes. Greater than 98% of cells reacted with glial antibodies. To definitively characterize the cellular subtype that augments survival of DA neurons, glial subcultures were established. At 2 DIV, enriched populations of Type I or Type II astrocytes, or oligodendrocytes, were tested for the ability to elicit DA neuron survival. Embryonic day 16 rat SN dissociates were added and DA cell number was assessed with antibody against tyrosine hydroxylase (TH), the DA biosynthetic enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We investigated the mechanisms by which insulin-like growth factor I (IGF-I) acts to increase the number of oligodendrocytes that develop in cultures of cells explanted from perinatal rat cerebrum. Fluorescence-activated cell sorting was used to isolate bipotential A2B5-positive oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells, which were then inoculated as single cells into microculture wells containing feeder layers of X-irradiated type 1 astrocytes. Addition of 100 ng/ml IGF-I to the culture medium increased the growth rate and the ultimate size reached by the resulting clones during the 18-day experimental period. Moreover, 75-80% of the cells in the IGF-I-treated clones differentiated into galactocerebroside (GC)-positive oligodendrocytes, whereas only 25-30% became oligodendrocytes in the absence of IGF-I. IGF-I did not increase the number of type 2 astrocytes that developed in the clones. IGF-I appeared to have the greatest effect on growth and differentiation at a stage when the majority of the cells in the clones were at an intermediate stage of development, characterized by the expression of A2B5 and O4 glycolipid antigens but not GC. Analysis of the effects of IGF-I on O4-positive, GC-negative intermediate precursor cells revealed a two to fivefold increase in the number of cells that incorporated 3H-thymidine into their DNA during a 5-h pulse. Moreover, IGF-I increased the number of cell sorter-purified O4-positive cells that developed into oligodendrocytes 4-8 days later. Therefore, IGF-I acts in two different ways to promote oligodendrocyte development: It promotes proliferation of precursor cells in the O-2A lineage, and it induces precursors to become committed to develop into oligodendrocytes.  相似文献   

20.
K Lee  S Kentroti  H Billie  C Bruce  A Vernadakis 《Glia》1992,6(4):245-257
We have used C6 glial cells (2B clone), early and late passage, as well as advanced passages (8-17) of glial cells derived from aged (18-month-old) mouse cerebral hemispheres (MACH), as model systems for studying glial properties. In this study passages 20-24 were considered "early" and passages 73-90 were considered "late." Activities of glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP) were used as biochemical markers for astrocytes and oligodendrocytes, respectively. Glial phenotypes were identified immunocytochemically using double staining for glial fibrillary acidic protein (GFAP) and A2B5 antigen (type 1 and type 2 astrocytes) or galactocerebroside (GalC) and A2B5 antigen (oligodendrocytes); cells positive for A2B5 and negative for both GFAP and GalC were considered to be precursor cells. Cultures were grown either in DMEM supplemented with 10% fetal bovine serum or in serum-free chemically defined medium (CDM) supplemented with insulin and transferrin. We report that early-passage C6 glial cells continue to be bipotential cells and when grown in the absence of serum express high GS and CNP activities correlating with the high number of GFAP- and GalC-positive cells, respectively. Late-passage cells continued to be committed to the type 2 astrocytic phenotype regardless of media composition (+/- serum). MACH cultures consist of protoplasmic type 1 astrocytes, differentiated type 2 astrocytes, and oligodendrocytes as well as glial progenitor cells. When these cultures were grown in CDM+transferrin, both GS and CNP activities increased, suggesting that transferrin has provided the signal for progenitor cells present in these cultures derived from aged brain to differentiate into type 2 astrocytes and oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号