首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2',3'-Dideoxy-5-fluoro-3'-thiacytidine (FTC) is a nucleoside analog that selectively inhibits human immunodeficiency and hepatitis B viruses in vitro. In this study, the preclinical pharmacokinetics of racemic FTC in rhesus monkeys following intravenous and oral administration were characterized. The terminal half-life of FTC was independent of the route of administration and averaged 1.34 +/- 0.18 h (mean +/- standard deviation). Total clearance of FTC was moderate to high, averaging 1.49 +/- 0.24 liters/h/kg. Qualitative assessment of urine samples suggests that renal excretion of unchanged FTC was the major route of elimination of the nucleoside. The compound was also eliminated by metabolism and the deaminated biotransformation product 2,3'-dideoxy-5-fluoro-3'-thiauridine (FTU) was detected in serum and urine. This metabolite has no antiviral activity in human lymphocytes and liver cells. FTC and the metabolite FTU were conjugated, to a minor extent yielding the corresponding glucuronides. No 5-fluorouracil was detected in serum or urine. This is consistent with chromatographic studies using a chiral column that indicated that when racemic FTC is treated with cellular cytidine-deoxycytidine deaminase, the D-(+)-enantiomer of FTC is slowly deaminated to D-(+)-FTU, whereas the L-(-)-enantiomer is essentially resistant to this enzyme. The steady-state volume of distribution of FTC in serum averaged 2.23 +/- 0.42 liters/kg, and the nucleoside analog was distributed into the cerebrospinal fluid, which suggests that this drug penetrated the blood-brain barrier. Absorption of FTC after oral administration was rapid, with bioavailability averaging 73 +/- 6%. Taken together, the results indicate that the unusual L-(-)-enantiomer of FTC should be evaluated further in rhesus monkeys prior to determination of whether this compound is useful for treatment of human immunodeficiency and hepatitis B virus infections.  相似文献   

2.
Racemic 2'-deoxy-3'-thiacytidine (BCH 189) is a dideoxycytidine analog having a sulfur atom in place of the 3' carbon. The enantiomers of BCH 189 have been resolved and found to be equipotent in antiviral activity against human immunodeficiency virus types 1 and 2. However, the (-)-enantiomer (3TC) is considerably less cytotoxic than the (+)-enantiomer.  相似文献   

3.
The (-)-enantiomer of 2'-deoxy-3'-thiacytidine (3TC) was found to be a potent and selective inhibitor of human immunodeficiency virus types 1 (HIV-1) and 2 (HIV-2) in vitro. We determined its antiviral activity against a number of laboratory strains of HIV-1 and HIV-2 in a range of CD4-bearing lymphocyte cell lines (mean 50% inhibitory concentration [IC50] range, 4 nM to 0.67 microM). 3TC was also active against a range of HIV-1 strains in peripheral blood lymphocytes (mean IC50 range, 2.5 to 90 nM). The IC50 for cytotoxicity in seven lymphocyte cell cultures, including human peripheral blood lymphocytes, ranged from 0.5 to 6 mM. 3TC had no detectable antiviral activity against a range of other viruses or in cells chronically infected with HIV-1 or HIV-2. The effects of time of addition of the compound and varying the multiplicity of infection on the antiviral activity of 3TC were determined. The results showed that 3TC is a potent and selective inhibitor of HIV-1 and HIV-2 replication in vitro.  相似文献   

4.
The acyclic cytosine nucleoside analog cytallene [1-(4'-hydroxy-1',2'-butadienyl)cytosine], which has both (+)- and (-)-enantiomers, was evaluated for its anti-hepatitis B virus (HBV) activity in 2.2.15 cells and was found to have potent activity against HBV DNA synthesis. The R-(-)-enantiomer was found to be the more active of the cytallene enantiomers, with a 50% inhibition concentration against HBV synthesis (HBIC50) of 0.08 microM. Its antiviral activity could be reversed by deoxycytidine (dC) and less efficiently by cytidine. Upon removal of the R-(-)-enantiomer from culture medium, the synthesis of HBV DNA could reinitiate, which suggested that the antiviral action is reversible. The R-(-)-enantiomer was also found to be more cytotoxic than the S-(+)-enantiomer. The degree of cytotoxicity varied among the cell lines, with a 50% inhibition of cell growth at greater than 10 microM. The R-(-)-enantiomer had no effect on HBV RNA synthesis and mitochondrial DNA synthesis at a concentration of 10 times or more than the HBIC50. The two enantiomers cannot be deaminated by dC deaminase, and they can be phosphorylated by cytoplasmic dC kinase. The R-(-)-enantiomer of cytallene is the first acyclic cytosine analog with potent inhibitory activity against HBV similar to those of other L-(-)-ddC analogs.  相似文献   

5.
The (S)- and (R)-enantiomers of acyclic purine nucleoside phosphonate analogs (i.e., 3-hydroxy-2-phosphonomethoxypropyl [HPMP] derivatives, 3-fluoro-2-phosphonomethoxypropyl [FPMP] derivatives, and 2-phosphonomethoxypropyl [PMP] derivatives of adenine [A], 2-aminopurine, 2,6-diaminopurine [DAP], and guanine [G]) have been synthesized and evaluated for antiviral activity. As a rule, the HPMP derivatives proved effective against DNA viruses but not RNA viruses or retroviruses. In particular, (S)-HPMPA, (S)-HPMPDAP, and (R)- and (S)-HPMPG were exquisitely inhibitory to herpes simplex virus type 1 (50% effective concentrations, 0.63, 0.22, 0.10, and 0.66 microM, respectively). The FPMP and PMP derivatives showed marked inhibitory activities against retroviruses but not DNA viruses. The (S)-enantiomer of FPMPA and the (R)-enantiomer of PMPA were approximately 30- to 100-fold more effective against human immunodeficiency virus and Moloney murine sarcoma virus (MSV) than their enantiomeric counterparts. In contrast, both (S)- and (R)-enantiomers of the DAP and G derivatives proved equally effective against retroviruses, except for (R)-PMPDAP, which was 15- to 40-fold more inhibitory than (S)-PMPDAP. (R)-PMPDAP emerged as the most potent and selective inhibitor of MSV-induced transformation of murine C3H/3T3 cells and human immunodeficiency virus-induced cytopathicity in MT-4 and CEM cells (50% effective concentration, approximately 0.1 to 0.6 microM). When administered intraperitoneally at a single dose as low as 2 mg/kg, (R)-PMPDAP efficiently decreased MSV-induced tumor formation in newborn NMRI mice and significantly increased the survival time of MSV-infected mice. In addition, upon oral administration to MSV-infected mice, (R)-PMPDAP showed marked antiretroviral efficacy.  相似文献   

6.
The inhibition of biochemical processes requiring S-adenosylmethionine as a co-factor have led to many nucleoside-based medicinal agents. Included in this group are 5'-deoxy-5'-(isobutylthio)adenosine (SIBA), a nucleoside with antiparasitic, antiviral and antiproliferative effects, and 5'-noraristeromycin, a carbocyclic-derived nucleoside with potent antiviral properties. This report brings together the structural components of these two compounds by describing both enantiomers of carbocyclic 5-nor SIBA (3 and 4). Owing to the recent interest in 2',3'-dideoxy-2',3'-didehydro nucleosides as antiviral agents, this derivative of 3 (5) is also described. All three compounds were screened against a variety of viruses and were found to be inactive at high concentrations or at limiting concentrations for the screening methods. The viruses subjected to 3-5 were herpes simplex virus types 1 and 2, human cytomegalovirus, vaccinia virus, vesicular stomatitis virus, respiratory syncytial virus, varicelIa zoster virus, coxsackie virus, parainfluenza-3 virus, sindbis virus, punta toro virus, reovirus-1, human immunodeficiency virus, influenza virus types A and B, adenovirus type 1 and measles virus. These results suggest that the C-5' methylene of the C-5' thio-based carbocyclic nucleosides is important for their antiviral properties.  相似文献   

7.
The anti-hepatitis B (anti-HBV) activities of the (-) and (+) enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine (2'-deoxy-3'-thia-5-fluorocytosine [FTC]) were studied by using an HBV-transfected cell line (HepG2 derivative 2.2.15, subclone P5A). The (-) isomer was found to be a potent inhibitor of viral replication, with an apparent 50% inhibitory concentration of 10 nM, while the (+) isomer was found to be considerably less active. Both isomers showed minimal toxicity to HepG2 cells (50% inhibitory concentration, > 200 microM) and showed minimal toxicity in the human bone marrow progenitor cell assay. In accord with the cellular antiviral activity data, the 5'-triphosphate of (-)-FTC inhibited viral DNA synthesis in an endogenous HBV DNA polymerase assay, while the 5'-triphosphate of the (+) isomer was inactive. Unphosphorylated (-)-FTC did not inhibit product formation in the endogenous assay, suggesting that the antiviral activity of the compound is dependent on anabolism to the 5'-triphosphate. Both (-)- and (+)-FTC were anabolized to the corresponding 5'-triphosphates in chronically HBV-infected HepG2 cells. The rate of accumulation and the steady-state concentration of the 5'-triphosphate of (-)-FTC were greater. Also, (-)-FTC was not a substrate for cytidine deaminase and, therefore, is not subject to deamination and conversion to an inactive uridine analog. The (+) isomer is, however, a good substrate for cytidine deaminase.  相似文献   

8.
9.
Four different isomers of 2',3'-dideoxy-3'-thiacytidine [beta-DL-(+-)-BCH-189] were evaluated in primary human lymphocytes infected with human immunodeficiency virus type 1. The beta-L-(-) isomer was the most potent enantiomer, with a median effective concentration of 1.8 nM and no discernible cytotoxicity up to 100 microM. The relative order of potencies for the isomers was beta-L-(-) greater than beta-DL-(+-) racemic greater than beta-D-(+) greater than alpha-L-(+) greater than alpha-D-(-). The beta-L-(-) enantiomer was as potent as 3'-azido-3'-deoxythymidine.  相似文献   

10.
3'-Azido-2',3'-deoxythymidine and carbovir [racemic and (-) enantiomer] were evaluated individually and in combination for antiviral activity against human immunodeficiency virus type 1 replication and cytotoxicity in vitro. The combination of these drugs synergistically inhibited human immunodeficiency virus type 1 replication in C3 and Jurkat cells and in human peripheral blood mononuclear cells, although the same combination also produced synergistic cytotoxicity in human peripheral blood mononuclear cells.  相似文献   

11.
12.
Racivir is a 50:50 racemic mixture of the (-)- and (+)-beta-enantiomers of 2'-deoxy-3'-thia-5-fluorocytosine (FTC), which is being developed for the treatment of HIV and hepatitis B virus (HBV). The (+)-enantiomer of FTC is approximately 10-20-fold less potent than (-)-FTC, but it selects for a different HIV mutation in human lymphocytes. Plasma concentrations from a group of 54 rats, 12 pregnant rabbits and 60 dogs enrolled in large toxicity studies using a wide variety of oral doses, were compared using non-compartment pharmacokinetic modelling versus dose, treatment duration, species and gender. The pharmacokinetics of Racivir were also compared with those of a previously published pharmacokinetic study in rhesus monkeys and with data from HIV-infected human male volunteers. The (+)-FTC, but not the (-)-enantiomer, can be deaminated to the non-toxic inactive metabolite (+)-FTU. Therefore, the plasma exposure to (+)-FTU was also determined. The order of relative plasma exposure to (+)-FTU was rhesus monkeys > humans > pregnant rabbits > dogs > rats. Allometric scaling was performed to relate systemic clearance/fraction of drug absorbed (Cl/F) and terminal phase volume of distribution (Vbeta/F) versus species body weights. No individual animal species mimicked the Cl/F values in humans. However, allometric scaling using a combination of rats, pregnant rabbits and monkeys predicted the mean human Cl/F value better than a combination of rats and rabbits only (within 0.24 and SD of mean vs 0.81 SD of the observed mean value). Similarly, human Vbeta/F values were best predicted using a combination of rat and monkey data (within 0.64 SD of mean value). Species demonstrating greater deamination to (+)-FTU tended to have greater than predicted Cl/F values. The Cmax values of dogs were the closest to humans, but were statistically different. This study highlights the importance of selecting animal species that demonstrate similar cytidine deaminase activity to humans when performing preclinical dosing studies on Racivir and other antiviral agents that are substrates for mammalian cytidine deaminases.  相似文献   

13.
The (-) and (+) enantiomers of the nucleoside analog cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine (2',3'-dideoxy-5-fluoro-3'-thiacytidine; FTC) have been shown to inhibit hepatitis B virus replication in vitro in HepG2 derivative 2.2.15 (subclone P5A) cells. (-)-FTC and (+)-FTC were anabolized to 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate in this cell line. (-)-FTC was more efficiently phosphorylated to the 5'-triphosphate than (+)-FTC, and levels of 3.6 and 0.2 pmol/10(6) cells, respectively, were detected after incubation with 1 microM compound for 24 h. A time course study showed that nucleotides were formed rapidly in a dose-dependent manner and reached a steady-state intracellular concentration by 3 to 6 h. The intracellular half-life of (-)-FTC 5'-triphosphate was 2.4 h. Both (-)- and (+)-FTC were converted to diphosphocholine derivatives, analogous to CDP-choline, but only (+)-FTC was converted to the diphosphoethanolamine derivative, analogous to CDP-ethanolamine. (-)-FTC was not detectably deaminated at either the nucleoside or nucleotide level. (+)-FTC was partially deaminated by these cells. The transport of (-)-and (+)-FTC was examined in HepG2 cells. (+)-FTC enters these cells by way of the nitrobenzylthioinosine-susceptible, equilibrative nucleoside transporter. In contrast, the influx of (-)-FTC was only partially susceptible to inhibitors of nucleoside transport, indicating that (-)-FTC may have multiple transport mechanisms. These metabolic results are consistent with the conclusion that (-)-FTC 5'-triphosphate mediates the anti-hepatitis B virus activity of (-)-FTC.  相似文献   

14.
The (-) enantiomer of gossypol but not the (+) enantiomer had good antiviral activity in peripheral blood mononuclear cells against human immunodeficiency virus type 1 at a concentration more than 20-fold lower than that required for cytotoxicity; however, in H9 cells the (-) enantiomer, although more potent as an antiviral agent, was more cytotoxic.  相似文献   

15.
We describe a novel nucleoside analog, 2'-deoxy-3'-thiacytidine (BCH-189), in which the 3' carbon of the ribose ring of 2'-deoxycytidine has been replaced by a sulfur atom. In MT-4 T cells, this compound had significant time- and dose-dependent antiviral activity against five different strains of human immunodeficiency virus type 1 (HIV-1) (mean 50% inhibitory dose, 0.73 microM); known 3'-azido-3'-deoxythymidine (AZT)-resistant HIV-1 variants did not exhibit cross-resistance to it. BCH-189 also suppressed HIV-1 replication in the U937 monocytoid cell line as well as in primary cultures of human peripheral blood mononuclear cells; in these latter systems, suppression was fuller and longer lasting than that induced by AZT. Moreover, BCH-189 was less toxic than AZT in cell culture. BCH-189 may be a promising drug for the treatment of HIV-1-associated disease.  相似文献   

16.
The L enantiomer of 2',3'-dideoxycytidine (DDC) was recently shown to inhibit selectively human immunodeficiency virus type 1 (HIV-1) in vitro. In the current study, the potent anti-HIV activity of L-DDC was confirmed and extended to several HIV-1 and HIV-2 strains in various cell culture systems, including primary human lymphocytes and macrophages. Furthermore, its 5-fluoro congener, beta-L-2',3'-dideoxy-5-fluorocytidine (L-FDDC), was found to have more potent anti-HIV activity and a higher therapeutic index in acutely infected human peripheral blood mononuclear cells. These compounds had no marked activity against HIV-1 isolates resistant to the oxathiolane pyrimidine nucleosides (-)-beta-L-2',3'-dideoxy-5-fluoro-3'-thiacytidine [(-)-FTC] and (-)-beta-L-2',3'-dideoxy-3'-thiacytidine, but 3'-azido-3'-deoxythymidine (AZT)-resistant viruses were susceptible to L-DDC and L-FDDC. Cytotoxicity studies with human myeloid progenitor cells indicated that L-DDC and L-FDDC had median inhibitory concentrations comparable to those of AZT, DDC, and FDDC, but L-DDC and L-FDDC were significantly less toxic than AZT, DDC, and FDDC when erythroid progenitor cells were used. L-FDDC had the highest selectivity indices (6,000 and 9,000 for erythroid and myeloid progenitor cells, respectively) of all the compounds evaluated. Further preclinical development of L-FDDC is warranted in order to determine its potential usefulness in the treatment of HIV infections.  相似文献   

17.
The heterosubstituted nucleoside analogue dOTC [( )-2'-deoxy-3'-oxa-4'-thiocytidine, BCH-10652] is a racemic compound structurally related to 3TC (lamivudine), but has the oxygen and sulphur in the furanosyl ring transposed. Both the enantiomers (-)dOTC (BCH-10618) and (+)dOTC (BCH-10619) had equivalent activity against wild-type strains of HIV-1 in C8166 T-cells (EC50 1.0-10.0 microM) and in PBMCs (EC50 0.1-3.0 microM). Investigation of the activity of dOTC and its enantiomers against laboratory strains of HIV-1 with defined resistance to 3TC, AZT (zidovudine), ddl (didanosine), PMEA (adefovir), nevirapine and saquinavir indicated that sensitivity was maintained (<3-fold change in EC50) in all cases, with the exception of HIV-1RF 3TC-resistant viruses. The degree of resistance recorded for dOTC (four- to sevenfold), (-)dOTC (five- to eightfold) and (+)dOTC (five- to >18-fold) against these M1841 or M184V mutants, was significantly less than that recorded for 3TC (>100-fold). In addition, the inhibitory effect of the compounds against clinical isolates of HIV-1 recovered from patients with suspected resistance to 3TC and AZT was investigated. Clinical isolates were genotyped using the Murex Line Probe Assay (LiPA) and subgrouped into wild-type, 3TC-resistant and dual 3TC/AZT-resistant, as well as undefined or mixed genotype populations. Compared with the mean EC50 values obtained with genotypically and phenotypically wild-type clinical isolates, the mean EC50 values calculated for isolates phenotypically resistant to 3TC or 3TC and AZT were only 2.6-, 1.6- and 8.2-fold higher for dOTC, (-)dOTC and (+)dOTC, respectively. When the rate of emergence of virus resistant to dOTC and its enantiomers in vitro was investigated, virus resistant to (+)dOTC was readily selected for (<10 passages), and a methionine (ATG) to isoleucine (ATA) amino acid change at codon 184 was identified. In contrast, virus resistant to dOTC and (-)dOTC took longer to appear (15-20 passages), with a methionine (ATG) to valine (GTG) amino acid change at position 184 identified in both cases. In addition, virus passaged 20 times in the presence of dOTC also had a partial lysine (AAA) to arginine (AGA) exchange at position 65. These viruses showed only low-level resistance to dOTC and its enantiomers, but were highly resistant to 3TC. The antiviral effects of dOTC in combination with the nucleoside RT inhibitors AZT, 3TC, d4T (stavudine) and ddl, the non-nucleoside RT inhibitor nevirapine and the protease inhibitors saquinavir, ritonavir and indinavir was investigated. Two-way drug combination assays were carried out in peripheral blood mononuclear cell (PBMC) cultures by measuring the reduction in p24 viral antigen levels, and data was analysed using the MacSynergy II program. dOTC in combination with 3TC or d4T showed a moderate synergistic effect while all other combinations had an additive interaction.  相似文献   

18.
C2 symmetry-based human immunodeficiency virus (HIV) protease inhibitors were examined in vitro as single agents or in combination with 3'-azido-2',3'-dideoxythymidine (AZT) or 2',3'-dideoxyinosine for activity against HIV type 1 (HIV-1). Ten C2 symmetry-based or pseudo-C2 symmetry-based HIV protease inhibitors were active against a laboratory strain (HIV-1IIIB) in the HIV-1 cytopathic effect inhibition assay. Three inhibitors, A75925, A76928, and A77003, selected to represent a range of aqueous solubility and antiviral activity, were active against four different HIV-1 strains tested. These three inhibitors exhibited a significant inhibition of the cytopathic effect of HIV-1 against the CD4+ ATH8 cell line, with 90% inhibitory concentrations ranging from 0.1 to 4 microM. Cellular toxicity was negligible at up to 20 microM. Furthermore, they completely inhibited the replication of monocytotropic strain HIV-1Ba-L in purified monocytes and macrophages at 0.75 to 2 microM. Potent inhibitory activity against a primary HIV-1 isolate and an AZT-resistant HIV-1 variant was also observed for all three inhibitors in phytohemagglutinin-activated peripheral blood mononuclear cells. When these three HIV protease inhibitors and AZT or 2',3'-dideoxyinosine were used in combinations against a primary HIV isolate in phytohemagglutinin-activated peripheral blood mononuclear cells and the results were analyzed with the COMBO program package, their antiviral activities were identified to be synergistic in some cases and additive in others. The present data warrant further investigations of these compounds as potential antiviral agents for the therapy of HIV infections.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号