首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Q Zhao  L B Dahlin  M Kanje  G Lundborg 《Brain research》1992,592(1-2):106-114
The formation of a regenerate between sciatic nerve segments or stumps inserted into Y-tunnelled silicone chambers was studied under conditions where regenerating axons were prevented from entering the chamber. This was accomplished by using an isolated segment of the nerve as a proximal insert. After one week, a cellular regenerate spanned the proximal and distal inserts. The size of the regenerate increased if circulation was preserved in the distal inserts. At four weeks, a perineurium-like sheath surrounded the regenerate and longitudinally oriented Schwann cell columns could be observed throughout the regenerate. A similar 'pseudo-nerve' formed towards a piece of distally inserted tendon. Thus, the information required for the formation of a nerve-like structure is inherent to the non-neuronal cells entering the chamber. Schwann cells, in contrast to regenerating axons, do not exhibit preferential growth towards nervous tissue.  相似文献   

2.
The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps,which prevent regenerating axons reaching the distal nerve.Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins,Slits,Ephrins and Semaphorins.Several recent studies have indicated key roles of Netrin1,Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury.Inside the nerve bridge,nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2.EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump.Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1;within Schwann cells,Robo1 expression is also Sox2-dependent.Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge.In addition to the Slit3/Robo1 signalling system,migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor.It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap.Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps.Therefore,understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural tissue for more effective peripheral nerve repair.  相似文献   

3.
In axonal regeneration after a peripheral nerve injury, Schwann cells migrate from the two nerve ends and at last form a continuous tissue cable across the gap which guides the axons toward the bands of Büngner. However, the behavior of migratory Schwann cells and their possible role are obscure. Using a film model in which the proximal stump of a transected nerve in mice was sandwiched between two thin plastic films, we analyzed neural regeneration in the early phase up to the 6th day after axotomy. Regenerating neurites emerged from the nodes of Ranvier adjacent to the axotomized nerve stump within 3 h after axotomy and extended along the parent nerve onto the film. All of the regenerating neurites on the surface of the film consisted of naked axons for at least 2 days after axotomy. Thereafter, Schwann cells from the proximal nerve migrated along a network of the regenerating axons and then closely attached to the axons, ensheathing them. Some of the Schwann cells advanced ahead of the axonal growth cones and were distributed over regions in which axonal extension was not yet present. As calculated from the time course of regenerating neurites, the velocity of axonal regeneration showed two phases: an initial slow phase (77 μm/day) up to the 2nd post-operative day followed by a faster phase (283 μm/day). The first observation of Schwann cells coincided with the onset of the second phase. In addition, the length of regenerating axons on the surface of the film containing many Schwann cells was significantly greater than that on the surface where Schwann cells were not yet present. It meant that migratory Schwann cells stimulated axons to elongate for a longer distance. Furthermore, Schwann cells from a distal stump showed a stronger ability to accelerate the axonal outgrowth than these from a proximal stump.  相似文献   

4.
Recently, we showed that Schwann cells transfer ribosomes to injured axons. Here, we demonstrate that Schwann cells transfer ribosomes to regenerating axons in vivo. For this, we used lentiviral vector-mediated expression of ribosomal protein L4 and eGFP to label ribosomes in Schwann cells. Two approaches were followed. First, we transduced Schwann cells in vivo in the distal trunk of the sciatic nerve after a nerve crush. Seven days after the crush, 12% of regenerating axons contained fluorescent ribosomes. Second, we transduced Schwann cells in vitro that were subsequently injected into an acellular nerve graft that was inserted into the sciatic nerve. Fluorescent ribosomes were detected in regenerating axons up to 8 weeks after graft insertion. Together, these data indicate that regenerating axons receive ribosomes from Schwann cells and, furthermore, that Schwann cells may support local axonal protein synthesis by transferring protein synthetic machinery and mRNAs to these axons.  相似文献   

5.
The effects of nerve predegeneration on the preferential growth of regenerating axons were studied using a silicone Y-chamber model. This system provided a choice for axons to grow towards two distal nerve options, either a 7-day predegenerated nerve segment (PNS) or a fresh nerve segment (FNS). The rat peroneal or tibial nerve was inserted into the proximal intlet and the PNS and FNS of the corresponding nerve were inserted into the distal outlets. At 28 days postoperative, the size of the distal regenerate was significantly greater (26%) towards the PNS for the tibial nerve group. The density and number of regenerated myelinated axons in the distal nerve segment was greater on the PNS for both the tibial (97 and 88%, respectively) and peroneal (221 and 221%, respectively) nerve groups. In contrast, the elevated density and number of nonvascular nuclei was relatively constant for both PNS and FNS. Immunocytochemical and ultrastructural evidence support the hypothesis that the early activation of Schwann cells is primarily responsible for the enhanced regeneration and maturation observed in PNS. It is suggested that PNS might improve the outcome after clinical repair of injured peripheral nerves.  相似文献   

6.
Schwann cell mitosis in response to regenerating peripheral axons in vivo   总被引:4,自引:0,他引:4  
Schwann cell mitosis has been demonstrated in chronically denervated cat tibial nerves re-innervated by axons regenerating from the proximal stump of a coapted peroneal nerve. Thymidine incorporation rose above baseline levels at the axon front, with no detectable increase in more distal regions occupied by denervated Schwann cells. Schwann cells therefore enter S phase upon the arrival of a regenerating axon in vivo as previously described in tissue culture. Intraneural treatment of the denervated distal stump with Mitomycin C prior to re-innervation delayed the subsequent appearance of myelin formation. This supports the notion that axonally stimulated division of Schwann cells is a prerequisite for myelination during nerve regeneration. Axonal advancement was also retarded by drug treatment, possibly because of a reduced level of trophic support provided by the compromised Schwann cells. A comparable absence of myelin and poor re-innervation was found in chemically untreated distal stumps that had been maintained in the denervated state for prolonged periods when Schwann cell columns are known to undergo progressive atrophy. These observations suggest that nerve repair should be delayed for limited periods if efficacious regeneration is desired.  相似文献   

7.
The Schwann cell-derived basal lamina forms a tube around single peripheral axons or small groups of axons that is continuous from the spinal cord to the target. In bullfrog tadpoles (Rana catesbeiana), motor axons transected at early developmental stages regenerate to the appropriate hindlimb region. In the present paper, we found that at these stages Schwann tubes are absent by morphological criteria, and individual axons are separated only by occasinal extensions of support cells. At stages when axons no longer regenerate to the correct hindlimb region, every axon is encased in a basal lamina tube. Schwann tubes persist in the distal stump after nerve transection, and regenerating axons grow within these tubes. These findings are consistent with previous results showing that the errors regenerating axons make in older animals are not random, but depend upon the course of the denervated Schwann tubes to which they ahve acces. In order to determine whether formation of the Schwann tube itself or interaction of its molecular constituents with growing axons was associated with loss of regenerative specificity, the expression during development of two major constituents of the basal lamina, laminin and heparan sulfate proteoglycan, was investigated. Immunoreactivity to both constituents was present both before and after the transition from specific to nonspecific regeneration, indicating that their expression per se was not sufficient to limit regnerative specificity. These data support the hypothesis that the physical constraint imposed by the Schwann cell-derived basal lamina prevents regenerative specificity. © 1993 Wiley-Liss, Inc.  相似文献   

8.
To understand better the role of local factors in the response of peripheral nerve to crush injury, we studied the distribution of albumin-like immunoreactivity (A-LI) in the rat sciatic nerve from one day to eight weeks (wk) after a crushing injury; we used electron microscopic immunocytochemistry. In the nerve distal to the crush degenerating axons demonstrated intra-axonal A-LI, and by one wk most of the Schwann cells also showed A-LI. As regenerating sprouts entered the distal nerve, those Schwann cells in contact with sprouts lost their A-LI, while those cells not in contact with axons retained immunoreactivity up to eight wk after injury. Proximal to the nerve crush many axons showed intra-axonal A-LI from one to two wk after injury, despite appearing normal ultrastructurally. This immunoreactivity diminished as the distance from the crush site increased. Many Schwann cells proximal to the crush also showed A-LI from one to four wk after injury. These findings suggest that an albumin-like protein may play a role in the response of Schwann cells and axons to injury.  相似文献   

9.
When the distal stump of a transected peripheral nerve is brought into the vicinity of the proximal nerve stump, the regenerating axons advance toward it across the gap. Similar results are obtained when a predegenerated nerve segment is used. However, when a nerve segment subjected to proximal axotomy 7 days earlier (7-day nerve segment) was placed close to the proximal end of a freshly cut nerve at a distance of less than 1.5 mm, there were neither regenerating axons nor sprouts. The same inhibition of axonal regeneration was also exhibited when a nerve segment subjected to axotomy 9 to 14 days earlier was used. To examine the inhibitory effect of the nerve segments on established regenerating axons, we positioned a 7-day nerve segment in close apposition to a proximal nerve end at 2 or 3 days after transection. The growth of the 3-day-old regenerating axons, already ensheathed by Schwann cells, was not disturbed, but the 2-day-old regenerating axons, consisting of naked axons, were eliminated by the 7-day nerve segment. It is assumed that the findings reflect a mechanism serving to eliminate abundant sprouts and immature axons, probably conferring optimum regeneration and maturation of outgrowing pioneer axons. The inhibitory effect on abundant sprouts and immature axons was completely blocked by local application of antibodies to myelin-associated glycoprotein (MAG). The MAG-containing cells appeared at 6 to 12 days after axotomy.  相似文献   

10.
There are receptors on denervated Schwann cells that may respond to the neurotransmitters that are released from growth cones of regenerating motor axons. In order to ascertain whether the interaction of the transmitters and their receptors plays a role during axon regeneration, we investigated whether pharmacological block of the interaction would reduce the number of motoneurons that regenerate their axons after nerve section and surgical repair. Peripheral nerves in the hindlimbs of rats and mice were cut and repaired, and various drugs were applied to the peripheral nerve stump either directly or via mini-osmotic pumps over a 2–4-week period to block the binding of acetylcholine to nicotinic and muscarinic acetylcholine receptors (AChRs: α-bungarotoxin, tubocurarine, atropine and, gallamine) and binding of ATP to P2Y receptors (suramin). In rats, the nicotinic AChR antagonistic drugs and suramin reduced the number of motoneurons that regenerated their axons through the distal nerve stump. In mice, suramin significantly reduced the upregulation of the carbohydrate HNK-1 on the Schwann cells in the distal nerve stump that normally occurs during motor axon regeneration. These data indicate that chemical communication between regenerating axons and Schwann cells during axon regeneration via released neurotransmitters and their receptors may play an important role in axon regeneration.  相似文献   

11.
This study investigated the effects of a membrane conduit filled with a synthetic matrix BD™ PuraMatrix™ peptide (BD) hydrogel and cultured Schwann cells on regeneration after peripheral nerve injury in adult rats.After sciatic axotomy, a 10 mm gap between the nerve stumps was bridged using ultrafiltration membrane conduits filled with BD hydrogel or BD hydrogel containing Schwann cells. In control experiments, the nerve defect was bridged using either membrane conduits with alginate/fibronectin hydrogel or autologous nerve graft. Axonal regeneration within the conduit was assessed at 3 weeks and regeneration of spinal motoneurons and recovery of muscle weight evaluated at 16 weeks postoperatively.Schwann cells survived in the BD hydrogel both in culture and after transplantation into the nerve defect. Regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel when compared with the alginate/fibronectin hydrogel and alginate/fibronectin with Schwann cells. Addition of Schwann cells to the BD hydrogel considerably increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. The conduits with BD hydrogel showed a linear alignment of nerve fibers and Schwann cells.The number of regenerating motoneurons and recovery of the weight of the gastrocnemius muscle was inferior in BD hydrogel and alginate/fibronectin groups compared with nerve grafting. Addition of Schwann cells did not improve regeneration of motoneurons or muscle recovery.The present results suggest that BD hydrogel with Schwann cells could be used within biosynthetic conduits to increase the rate of axonal regeneration across a nerve defect.  相似文献   

12.
Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.  相似文献   

13.
Patterns of expression of the extracellular matrix molecule thrombospondin (TSP) were examined during peripheral nerve regeneration following sciatic nerve crush or transection. In noninjured nerve, was present in the axoplasm, Schwann cells, endoneurium, and perineurium of the adult mouse sciatic nerve. Following nerve crush or nerve transection, levels of TSP rapidly increased distal to the trauma site. Elevated levels of TSP were present distal to regenerating axons, while expression gradually returned to normal proximal to the regenerating axons. When reinnervation was blocked, TSP levels remained high in the endoneurium in excess of 30 days, but TSP was absent by 60 days. Following reanastomosis of the proximal and distal segments after 60 days of denervation, TSP was re-expressed in the distal nerve stump. These results indicate that TSP, which is involved in neuronal migrations in the embryo and neurite outgrowth in vitro, appears to play a role in axonal regeneration in the adult peripheral nervous system.  相似文献   

14.
Branching of myelinated and unmyelinated nerve fibers in normal and regenerating personal and soleus nerves was studied by light and electron microscopy. There were at most 2% more myelinated and 13% more unmyelinated axons in the distal as compared with the proximal nerve segments. Two to four weeks after a crush lesion the distal axons became 2-3 times more numerous; thereafter their number decreased. The number of axons in the proximal nerve segment did not change. The number of myelinated sprouts in most regenerated nerves equalled the number of myelinated fibers in the proximal nerve, while the number of unmyelinated axons after 12-19 weeks was 18-60% higher than normal. Branching was not restricted to the crush region. The results indicate that following a crush lesion all axons branch but only branches of unmyelinated fibers persist for a prolonged period of time. It is tentatively suggested that regenerating axons branch when searching for a target and that when contact is made with the target this prevents additional branching and eliminates redundant branches. Myelinated axons are guided by existing Schwann cells, whereas unmyelinated axons do not follow predetermined pathways; this may explain their greater tendency to form permanent branches.  相似文献   

15.
REGENERATION IN THE PERIPHERAL NERVOUS SYSTEM   总被引:1,自引:0,他引:1  
Mammalian peripheral nerve fibres can regenerate after injury. Repair is most likely to succeed if axons are simply crushed or have only a very short (less than 0.5 cm) interstump gap to cross and most likely to fail if the interstump gap is long (greater than 1 cm) and associated with soft tissue damage. Whereas reactive axonal sprouting appears to be an intrinsic neuronal response to injury, the subsequent organization of the axonal sprouts, in particular their orderly outgrowth in minifascicles towards a distant distal stump does not occur unless Schwann cells are present. During the injury response, Schwann cells proliferate; co-migrate with regrowing axons (when the proximal stump is separated from the distal stump); respond to axonal cues by transient upregulation or re-expression of molecules which provide a favourable substrate for axonal extension; and attract bundles of regrowing axons and their associated Schwann cells across interstump gaps up to 1 cm in length. Recruited macrophages remove myelin debris from the Schwann cell tubes; they probably interact with Schwann cells in other ways during the injury response, e.g. by presenting mitogens and cytokines.  相似文献   

16.
Summary Lysolecthin has been used in many studies to induce demyelination in peripheral nerves. In the present investigation lysolecithin (lysophosphatidyl choline) was injected into rat sciatic nerves at a dose of 2–3 m of a 10 mg/ml solution in order to study the effects of this lipid on cellular elements other than myelin within the nerve. Twenty-four hours after injection, there was splitting of myelin, lysis of Schwann cells, and complete loss of non-myelinated axons and their Schwann cells at the site of injection. Numerous swollen non-myelinated axons containing accumulated organelles were seen just proximal to the site of injection at 48 h. Loss of non-myelinated axons from the distal part of the nerve was also noted at 3 days after injection but by 7 days regenerating non-myelinated axons had re-appeared in the distal part of the nerve. Although demyelination, followed by remyelination was a prominent feature in the injected segment of the nerve, no damage to myelinated axons was detected. These results suggest that the presence of the myelin sheath protects the large myelinated axons against the action of lysolecithin, but with lysis of Schwann cells, the non-myelinated axons are exposed to the action of lysolecithin. Apart from selective damage to non-myelinated fibres with subsequent degeneration, it is also possible that lysolecithin interferes with axoplasmic flow in non-myelinated axons.  相似文献   

17.
The ability of peripheral nerve fibres to regenerate through the central nervous system (CNS) extracellular matrix in the presence of CNS myelin debris was examined using living and freeze-dried optic nerve grafts. The grafts were placed end-to-end with the proximal stumps of severed common peroneal nerves of inbred mice. Within a 4 week period, regenerating peripheral nervous system fibres were found in only two of 14 living grafts. However axons always grew into freeze-dried grafts within one week, despite the presence of CNS myelin debris. The regenerating axons in freeze-dried grafts were accompanied by Schwann cells and were initially found associated with the inner aspect of the glial basal lamina. Although the extracellular matrix of the freeze-dried CNS tissue was subsequently reorganized by invading cells, it seems likely that neither the nature of the CNS extracellular matrix nor the presence of CNS myelin debris had a major inhibitory influence on peripheral nerve regeneration. It is suggested that the presence of living astrocytes covered by a basal lamina at the proximal end of the living optic nerve grafts may inhibit their penetration by regenerating axons.  相似文献   

18.
19.
Summary Long-term endoneurial changes in the distal stump of transected rat sciatic nerve were examined from 8 to 50 weeks after nerve transection. The morphological alterations were followed both in nerves which were allowed to regenerate and in nerves in which regeneration was prevented by suturing. The nerves prevented from regenerating showed markedly atrophied Schwann cell columns after 20 weeks and a disappearance of some Schwann cell columns after 30 weeks. The surrounding endoneurial fibroblast-like cells gradually lost their delicate cytoplasmic extensions and formed rough fascicles around numerous shrunken Schwann cell columns or around areas from which Schwann cells had apparently disappeared. Inside the fascicles, the Schwann cell loss was replaced by collagen fibrils or occasionally, by a dense accumulation of microfibrils. The loss of endoneurial cytoplasmic processes continued up to 50 weeks, leaving behind patches of thin fibrils around numerous shrunken Schwann cell columns or around collagenous areas where Schwann cells were lost. The endoneurial matrix showed presence of thin 25- to 30-nm collagen fibrils close to shrunken Schwann cell columns up to 50 weeks but in areas with advanced degeneration a shift towards regular 50- to 60-nm collagen fibrils occurred. The degenerated areas resembled those described in Renaut bodies and neurofibromas. Despite suturing of transected nerves to prevent sprouting, occasional regenerating sprouts were noted in the Schwann cell columns. These axons were surrounded in a sheath-like fashion by pre-existing endoneurial cell fascicles covered by a basal lamina. In the reinnervating nerves the endoneurial space gradually lost its compartmentized structures consisting of collagen fibrils and endoneurial fibroblast-like cells. After 20 weeks the endoneurial cells were inconspicuous and the extracelluar matrix consisted mainly of 50- to 60-nm collagen fibrils. During axonal growth and maturation, Schwann cells containing unmyelinated axons surrounded large, myelinated axons in a collar-like fashion. Close to these collars of Schwann cells, thin 25- to 30-nm collagen fibrils were noted in focal areas, even after 50 weeks. Occasionally, numerous clusters of regenerating axonal sprouts were noted in the perineurium. These were surrounded by multiple layers of cells possessing basal lamina. The present results show that after nerve transection the distal stump of the severed nerve shows dynamic changes in the endoneurial space, especially in nerves where reinnervation is prevented. The endoneurial fascicles around occasional axonal sprouts in sutured nerves, representing possibly a delayed type of regeneration, show that axons have a strong ability to grow but on the other hand endoneurial structures are unable to respond normally to axonal growth after advanced degeneration.  相似文献   

20.
Regeneration of rat sciatic nerve across a 5-mm excised gap was investigated after the proximal and distal stump were inserted into a silicone tubing including a native artery. Usual tubulation (silicone tube only) was used as the control. After 4, 8, and 15 weeks, the extent of nerve regeneration was evaluated electrophysiologically and histologically. The nerve regeneration and intraneural vascular reconstruction that occurred within silicone tubing with an arterial blood supply were more successful than those that occurred in the control. In the 4 weeks following implantation, the enhancement of maturation in the regenerating axons was especially noticeable. The advantages of the present procedure are (i) the provision of continuous guidance for neural outgrowth; (ii) an increased supply of nutrients for regenerating nerve fibers and Schwann cells; (iii) an increased supply of oxygen by arterial highly oxygenated blood; and (iv) the stimulation of an exchange effect within the tube due to the pumping action of artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号