首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of 2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate (MN-1695) was studied in rats, guinea pigs, dogs and monkeys. MN-1695 was metabolized to more than 8 metabolites after oral administration in a dose of 3.1 mg/kg in rats. These metabolites were isolated from the urine and characterized by cochromatography with reference compounds, mass spectrometry and other instrumental analysis. The main metabolite in the urine was MN-1695 X m-OH, which was excreted as a conjugate, in rats and guinea pigs, and MN-1695 X N-oxide in dogs. In monkeys, MN-1695 X m-OH (free and conjugate) and MN-1695 X N-oxide predominated in the urine, although MN-1695 was not extensively metabolized. In rats, over 90% of the radioactivity excreted into the bile consisted of the polar metabolites. The major metabolic pathways of MN-1695 found in various animal species involved the hydroxylation at the positions of 3 and 4 of the aromatic ring and the N-oxidation at the position of 3 of the s-triazine ring. In addition, the sulfur-containing metabolites were detected in all species examined.  相似文献   

2.
Ifetroban is a potent and selective thromboxane receptor antagonist. This study was conducted to characterize the pharmacokinetics, absolute bioavailability, and disposition of ifetroban after i.v. and oral administrations of [14C]ifetroban or [3H]ifetroban in rats (3 mg/kg), dogs (1 mg/kg), monkeys (1 mg/kg), and humans (50 mg). The drug was rapidly absorbed after oral administration, with peak plasma concentrations occurring between 5 and 20 min across species. Plasma terminal elimination half-life was approximately 8 h in rats, approximately 20 h in dogs, approximately 27 h in monkeys, and approximately 22 h in humans. Based on the steady-state volume of distribution, the drug was extensively distributed in tissues. Absolute bioavailability was 25, 35, 23, and 48% in rats, dogs, monkeys, and humans, respectively. Renal excretion was a minor route of elimination in all species, with the majority of the dose being excreted into the feces. After a single oral dose, urinary excretion accounted for 3% of the administered dose in rats and dogs, 14% in monkeys, and 27% in humans, with the remainder excreted in the feces. Extensive biliary excretion was observed in rats with the hydroxylated metabolite at the C-14 position being the major metabolite observed in rat bile. Ifetroban was extensively metabolized after oral administration. Approximately 40 to 50% of the radioactivity in rat and dog plasma was accounted for by parent drug whereas, in humans, approximately 60% of the plasma radioactivity was accounted for by ifetroban acylglucuronide.  相似文献   

3.
In this study the absorption, tissue distribution and excretion of 14C-labeled di-n-octyltin dichloride ([14C]DOTC) in rats were investigated after oral and intravenous (i.v.) administration. Although after i.v. administration with 1.2 mg [14C]DOTC/kg body weight the tissue radioactivity was about 3-4 times higher than after oral administration with 6.3 mg [14C]DOTC/kg body weight, the relative tissue accumulation was found to be the same after the oral and i.v. dosage. The highest amount of radioactivity was found in liver and kidney, and to a lesser degree in adrenal, pituitary and thyroid glands. The lowest activity was recovered from blood and brain. No selective accumulation was observed in thymus, although it has been reported that thymus atrophy is the most sensitive parameter of DOTC toxicity in rats. For all tissues a time dependent decrease in radioactivity was found, except for kidney. The excretion of radioactivity in feces and urine was determined after a single i.v. or oral dose of 1.2 and 2 mg [14C]DOTC, respectively. After i.v. administration most of the radioactivity was excreted in the feces which was characterized by a biphasic excretion pattern. In orally treated rats more than 80% of the radioactivity was already excreted in the feces during the first day after administration. This indicated that only a small part of the DOTC was absorbed, which was calculated to be approximately 20% of the dose. Similar half-life values of 8.3 and 8.9 days were obtained from the fecal excretion of radioactivity after the i.v. and oral administration, respectively. The urinary excretion of radioactivity appeared to be independent of the body burden, since the daily amount of radioactivity excreted in urine was nearly the same independent of the route of administration as well as the time after administration.  相似文献   

4.
The absorption, disposition and excretion of (+/-) 3-isobutyl-5-methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-pyridine-3,5-dicarboxylate (nisoldipine, Bay k 5552) have been studied following a single administration of the 14C-labelled compound to rats, dogs, monkey and swine via different routes (intravenous, oral, intraduodenal) in the dose range of 0.05-10 mg.kg-1. [14C]nisoldipine was absorbed rapidly and almost completely. Peak concentrations of radioactivity in plasma were reached 0.9 h (rat), 1.4 h (dog), and 3.6 h (monkey) after oral administration with normalized maximum concentrations being in the same range for all three species (0.49-0.79). The radioactivity was eliminated from plasma with half-lives between 42 h and 54 h within an observation period up to 3 days. The contribution of unchanged [14C]nisoldipine to the concentration of total radioactivity in plasma was low after oral administration (between 0.5% (monkey) and 3.4% (dog) in the peak) indicating an extensive presystemic elimination of this compound. The bioavailability was estimated at 3.4% in rats and 11.7% in dogs. [14C]nisoldipine was highly bound to plasma proteins with free fractions of 0.9-2.9%. The excretion of the radioactivity via urine and feces/bile both after oral and intravenous administration of [14C]nisoldipine occurred rapidly and almost completely within 48 h in all species. Very small residues in the body were recovered at the end of the experiments in rats and dogs (less than 1.6% of the dose). The biliary/fecal route of excretion was preferred in rats, dogs and swine, whereas in monkey 76% of the dose was excreted renally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Following the oral administration of [14C]quinelorane, a potent and highly specific dopamine (D2) agonist, to rats, mice, and monkeys, the compound was well absorbed, with 50% or more of the radioactivity appearing in the urine within 24 hr. Dogs were pretreated with 22 consecutive daily doses of quinelorane by the oral route (in order to induce tachyphylaxis to the emetic effect) before receiving an iv dose of [14C]quinelorane; just over 80% of the radioactivity was excreted into the urine. A tissue-distribution study in rats receiving a single oral dose of 0.1 mg/kg [14C]quinelorane indicated a widespread distribution of radioactivity, with levels being notably low in the blood and plasma and high in the salivary gland, adrenals, pancreas, and spleen; levels were highest in the stomach and kidneys. The Tmax of radiocarbon in the 22 tissues varied between 0.5 and 6 hr, with some tissues showing a plateau of radioactivity between these time-points. After 8 hr, levels of radioactivity were clearly decreasing, and by 48 hr, background levels were attained. Following the oral and iv administration of quinelorane to rats, the systemic bioavailability was calculated to be 16% and the volume of distribution was found to approximate that of total extracellular water, i.e. approximately 300 ml/kg. Since absorption was satisfactory and the tissue distribution study indicated widespread radioactivity, the low bioavailability may be due to first-pass metabolism. Rats excreted marginally more of the N-despropyl metabolite than unchanged drug into the urine, and dogs excreted principally unchanged quinelorane into their urine, followed by the N-despropyl metabolite.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The metabolic disposition of recainam, an antiarrhythmic drug, was compared in mice, rats, dogs, rhesus monkeys, and humans. Following oral administration of [14C]recainam-HCl, radioactivity was excreted predominantly in the urine of all species except the rat. Metabolite profiles were determined in excreta by HPLC comparisons with synthetic standards. In rodents and rhesus monkeys, urinary excretion of unchanged recainam accounted for 23-36% of the iv dose and 3-7% of the oral dose. Aside from quantitative differences attributable to presystemic biotransformation, metabolite profiles were qualitatively similar following oral or iv administration to rodents and rhesus monkeys. Recainam was extensively metabolized in all species except humans. In human subjects, 84% of the urinary radioactivity corresponded to parent drug. The major metabolites in mouse and rat urine and rat feces were m- and p-hydroxyrecainam. Desisopropylrecainam and dimethylphenylaminocarboxylamino propionic acid were the predominant metabolites in dog and rhesus monkey urine. Small amounts of desisopropylrecainam and p-hydroxyrecainam were excreted in human urine. Selective enzymatic hydrolysis revealed that the hydroxylated metabolites were conjugated to varying degrees among species. Conjugated metabolites were not present in rat urine or feces, while conjugates were detected in mouse, dog, and monkey urine. Structural confirmation of the dog urinary metabolites was accomplished by mass spectral analysis. The low extent of metabolism of recainam in humans suggests that there will not be wide variations between dose and plasma concentrations.  相似文献   

7.
LD50 doses of 14C-labeled paraquat were administered to rats, guinea pigs and monkeys by gavage, and radioactivity was determined in excreta and tissues. Rat urine was analyzed for paraquat metabolites by thin-layer chromatography. [14C]Paraquat was absorbed from the gastrointestinal tract and reached highest serum values 0.5–1 hr after administration. Disappearance of [14C]paraquat from serum was characterized by a rapid initial decline followed by a prolonged slow decline. Tissue paraquat values were higher than serum values in rats and guinea pigs. Relative to other tissues, paraquat accumulated transiently in the lung and reached peak concentration 32 hr after administration. In rats a major portion of administered paraquat was not absorbed from the gastrointestinal tract. At 32 hr after paraquat, 52% of the administered dose remained in the gastrointestinal tract and 17 and 14% of the administered dose was excreted in the feces and urine, respectively. No radioactivity was recovered in expired air or flatus. Excretion of paraquat in urine and feces was prolonged in all species. In monkeys paraquat was measured in urine and feces 21 days after administration. Chromatography of urine from [14C]paraquat-treated rats revealed no metabolites. The primary pathologic changes induced by paraquat in the lung may be related to the transient uptake of the chemical by that organ.  相似文献   

8.
DJ-927, currently undergoing Phase I clinical trial, is a new orally effective taxane with potent antitumor effects. The absorption, tissue distribution, and excretion of DJ-927 were investigated in mice, dogs, and monkeys after a single oral administration. After oral administration of [14C]DJ-927, radioactivity was rapidly absorbed, with the Cmax occurring within 1-2 h in all species. The blood and plasma radioactivity elimination was biphasic and species-dependent. Elimination half-life of plasma in dogs was much longer than those in monkeys or mice. In mice, radioactivity was rapidly distributed to all tissues except for the central nervous system, especially to adrenal glands, liver, pituitary glands, kidneys, lungs, and spleen. In all species, radioactivity was mainly excreted in feces. Following a single oral administration to mice, more than 80% of the radioactivity was excreted within 48 h; in dogs and monkeys, 80% of the radioactivity was excreted within 168 h. Urinary excretion was less than 7% of radioactive dose in all species. In vitro plasma protein binding of [14C]DJ-927 in the mouse, dog, and monkey plasma ranged from 92-98%. These studies showed that, the novel oral taxane DJ-927 was rapidly absorbed in all three species when administered by the oral route. The long biological half-life and slow elimination of radioactivity were distinctive in particular, compared with commercial taxanes. DJ-927 (as parent compound and its metabolites) is widely distributed to tissues except the brain. These preclinical data are useful for the design of clinical trials of DJ-927 and also for their interpretation.  相似文献   

9.
The metabolic fate of etintidine, a new H2-receptor antagonist, was studied in the rat, dog, and human. Following oral or iv administration of [14C]etintidine HCl to rats, 63-72% of the dose was eliminated in urine and 15-28% in feces over 3 days. In dogs, 52-70% of the administered dose was excreted in urine and 14-18% in feces over 5 days. In the urine of both species, the major portion (generally greater than 70%) of the radioactivity was associated with parent drug and its sulfoxide metabolite. In rats, a distinct sex-related difference in metabolism was observed following oral administration of 20 mg/kg doses, with males excreting nearly twice the amount of the sulfoxide relative to females. A significant sex-related difference in metabolism was not observed in dogs following oral administration of a comparable dose, nor was it observed in either species following iv drug administration. After oral administration of [14C]etintidine HCl to human volunteers, about 86% of the dose was recovered in urine and 13% in the feces over a 7-day period. In humans, the major urinary metabolite was the N'-glucuronide conjugate. Thus, sulfoxidation does not appear to be the major urinary metabolic pathway of the drug in humans, as it is in animals. The metabolic fate of etintidine and cimetidine, another H2-receptor antagonist, are compared in three species.  相似文献   

10.
Studies on absorption, plasma concentrations and excretion with (+/-)isopropyl-2-methoxyethyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl) -3,5-pyridinedicarboxylate (nimodipine, Bay e 9736, Nimotop) have been conducted in rat, dog and monkey using the carbon-14-labelled substance and a wide range of doses (0.05-10 mg/kg) administered via different routes (intravenous, oral, intraduodenal). Nimodipine was well absorbed in all species. Peak plasma concentrations of radioactivity were determined 28-40 min (male rat), 60 min (female rat), about 3 h (dog) and 7 h (monkey) after administration. Dependent on the observation period (24-216 h) terminal half-lives for the elimination of radioactivity from plasma ranging between 4.6 h (female rat) and 157 h (dog) were observed. Comparing the AUC, the concentration of unchanged [14C]nimodipine in plasma represented only a small (maximally 37% in dogs after i.v. dose) to negligible (about 1%, monkey after oral dosing) part of the total radioactivity. Excretion of radioactivity via feces and urine was rapid in all species after both oral and intravenous dosing. Fecal (biliary) excretion was the major excretory route in rat and dog. The monkeys excreted about 40 to 50% via the urine. Residues in the body never exceeded 1.5% of the dose. [14C]nimodipine and/or its radiolabelled metabolites were secreted in milk of orally dosed lactating rats. Binding of [14C]nimodipine to plasma proteins of rat and dog was about 97%.  相似文献   

11.
The study was designed to determine the excretion balance of radiolabeled rabeprazole in urine and feces and to examine the metabolite profile in plasma, urine and feces after a single oral dose of [14C] rabeprazole, preceded by once daily dose of rabeprazole for 7 days. Six healthy subjects were enrolled in this study. The study was a single-center, open-label, multiple-dose, mass-balance study. Each subject received a single 20 mg dose of rabeprazole tablet for 7 days followed by the administration of 20 mg of [14C] rabeprazole as an oral solution after an overnight fast on Day 8. After oral dosing of [14C] rabeprazole, the mean Cmax of total radioactivity was 1,080 +/- 215 ng equivalent/ml with 0.33 +/- 0.13 hours of the mean tmax. The apparent elimination half-life of total [14C] radioactivity was 12.6 +/- 3.4 hours. The total [14C] recovery in urine and feces was 99.8 +/-0.7% by 168 hours after oral administration of [14C] rabeprazole, and mean cumulative [14C] radioactivity excreted in urine was 90.0 +/- 1.7% by 168 hours and 79.8 +/- 2.5% of the radioactivity was excreted in urine within 24 hours. Excretion via feces added to the total by 9.8%. The major radioactive component in the early plasma samples was rabeprazole, however the thioether and thioether carboxylic acid metabolites were the main radioactive components in the later plasma sample. These results support the previous finding that the substantial contribution of the non-enzymatic thioether pathway minimizes the effect of CYP2C19 polymorphism on the inter-individual variation ofplasma clearance of rabeprazole compared with other PPIs. Low levels of the sulfone metabolite were detected only in early plasma samples. No rabeprazole was detected in any urine and feces samples. The main radioactive components in urine were thioether carboxylic acid and mercapturic acid conjugate metabolites, and in the feces, the thioether carboxylic acid metabolite. The administration of [14C] rabeprazole was safe as evidenced by the lack of serious adverse events and the fact that all observed events were mild in intensity. [14C] rabeprazole was rapidly absorbed after oral administration and mostly excreted in urine.  相似文献   

12.
The metabolic disposition of 14C-labeled 4-chlorodiphenyl ether ([14C]4-CDE) was examined in rats following iv administration of a single dose (850 nmol/kg). [14C]4-CDE decayed rapidly from the blood since no unchanged [14C]4-CDE was detected in the blood beyond 2 hr after [14C]4-CDE administration. The dispositional kinetics of [14C]4-CDE in rats were best described by a two-compartment open pharmacokinetic model. Total radioactivity was excreted slowly from rats; about 41% and 33% of the administered dose were excreted into the urine and feces, respectively, within 1 week after chemical administration. About 5% of the total radioactivity administered to rats was excreted into the bile in 1 hr. The bulk of the radioactivity in the excreta was due to the presence of [14C]4-CDE metabolites. 14C-labeled 4'-hydroxy-4-CDE was the major metabolite and accounted for at least 90% of the radioactivity in the urine. The metabolic conversion of [14C]4-CDE to 14C-labeled 4'-hydroxy-4-CDE was corroborated by in vitro studies with liver microsomes of rats. In addition, [14C]4-CDE was converted by liver microsomes to reactive metabolites which bound irreversibly to microsomal protein. An arene oxide is suggested as the intermediate metabolite in the biotransformation of [14C]4-CDE by rats.  相似文献   

13.
[4S-[4 alpha, 7 alpha, (R*),12b beta]]-7-[S- (1-ethoxycarbonyl-3-phenylpropyl)amino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxo-pyrido[2,1-a][2]benzazepine-4-carboxylic acid (MDL 27,210) is the ethyl ester prodrug of a potent angiotensin-converting enzyme inhibitor, MDL 27,088. After a single dose of [14C]MDL 27,210 (3 mg/kg iv), MDL 27,210 was rapidly eliminated from the plasma of monkeys and dogs with a terminal half-life of approximately 0.3 hr. The steady-state volume of distribution was 0.15 liter/kg in dogs and 0.28 liter/kg in monkeys. Monkeys excreted 52% of the 14C dose in the feces and 41% in the urine; dogs excreted 80% of the 14C dose in the feces and 14% in the urine. The presence of a large fraction of the 14C dose in the feces of both species following iv administration suggests that significant biliary excretion occurred. MDL 27,210 administered iv to monkeys and dogs was rapidly and extensively (greater than 99.9%) metabolized, primarily to its diacid metabolite, MDL 27,088. The half-life of MDL 27,088 was 2.2 hr in dogs and 3.6 hr in monkeys.  相似文献   

14.
[14C]nitrendipine (3-ethyl 5-methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridine dicarboxylate, Bay e 5009, Baypress, Bayotensin) was administered to rats and dogs (intravenously, orally, intraduodenally, 0.5-50 mg/kg) in order to investigate absorption, disposition, and excretion of parent compound and metabolites. The absorption of radioactivity following oral administration of [14C]nitrendipine was rapid and almost complete in both species. Maximum concentrations of total radioactivity in plasma were reached after 1.2 (rat) or 0.7 h (dog). The radioactivity was eliminated from plasma with terminal half-lives of 57 (rat) and 188 h (dog) during an observation period up to 10 and 9 days, respectively. Unchanged nitrendipine contributed to the AUC of total radioactivity only 8-9% after intravenous and 1-2% after oral administration. The bioavailability of nitrendipine after oral administration amounted to 12% in rats and 29% in dogs due to a strong first pass elimination process. About two thirds of the radioactivity administered were excreted via faeces, one third via urine. Distinct sex-differences in the excretion pattern could be found in rats but not in mice. They were attributed to well-known sex differences of the metabolic capacities in rat liver. In rats the radioactivity excreted via bile (about 75% of the dose) was subject to a marked entero-hepatic circulation, about 50% of the amount excreted being reabsorbed. The radioactive residues in the body were low (0.5% of the dose after 2 days in rats; less than or equal to 0.6% after 9 days in dogs).  相似文献   

15.
Disposition of 3 - (sulfamoyl[14C]methyl) - 1,2-benzisoxazole ( [14C]AD-810) in rats, dogs and monkeys after oral administration in 20 mg/kg was studied. In preliminary human studies, healthy subjects ingested 200 mg of AD-810. [14C]AD-810 was found to be completely absorbed from digestive tracts in animals, since urinary and biliary excretion accounted for virtually total recovery of dosed radioactivity. Plasma levels reached maxima at several hours after administration in all species examined and decreased exponentially. In rats, tissue levels were virtually similar to plasma levels indicating rather even distribution in the body, and tissue radioactivity disappeared with the similar rate to plasma. Autoradiographic findings on the distribution were consistent with radiometric results. Radioactivity was evenly distributed in fetus in the pregnant rat with the similar level to maternal tissue levels. Like other sulfonamide derivatives, AD-810 was markedly taken up by erythrocytes in all species. [14C]AD-810 radioactivity was mostly excreted within 48 to 72 h after administration and its major route was urine in animals. In men, excretion of unchanged AD-810 and its metabolite in urine was found to be rather slow. No significant differences were found in absorption, distribution and excretion of radioactivity after 7 consecutive daily oral dosings of [14C]AD-810 in rats.  相似文献   

16.
The pharmacokinetics of a dopamine derivative, TA-870, and dopamine (DA) after oral administration are compared in rats and dogs. The maximum concentrations of free DA in plasma after oral administration of TA-870 were 150 ng/ml in the rat (30 mg/kg) and 234 ng/ml in the dog (33.5 mg/kg). On the contrary, the maximum plasma concentrations after oral administration of DA at an equimolar dose to TA-870 were 12 ng/ml in the rat (12 mg/kg) and 36 ng/ml in the dog (13.5 mg/kg). The AUC values of free DA in plasma after oral administration of TA-870 (30 or 33.5 mg/kg) were 4-6 times higher than those after DA in both animal species. The peak tissue levels of radioactivity in rats after oral administration of [14C]TA-870 (30 mg/kg) were also 5.5 times higher in the liver and 1-2 times higher in other tissues than those after [14C]DA dose (12 mg/kg). In rats, the main excretion route of radioactivity after oral administration of [14C]TA-870 or DA was via the urine. The total recoveries of radioactivity in the urine and feces were 91-96% of the dose within 24 hr for both compounds. Biliary excretion in rats accounted for 19.8% of the dose of [14C]TA-870 and 12.6% of the dose of [14C]DA within 24 hr. These results demonstrate that TA-870 was well absorbed from the digestive tract, extensively metabolized to dopamine, and proved to be an orally usable dopamine prodrug.  相似文献   

17.
The disposition of the carcinogen 3,3′-dichlorobenzidine (DCB) was studied in the male rat following oral administration. [14C]DCB was well absorbed by the rat with the maximum plasma radioactivity levels being found within 8 hr after dosing. The radioactivity was well distributed in the tissues 24 hr after administration with the highest levels found in the liver, followed by kidney, lung, and spleen. Repeated administration (six doses) of [14C]DCB to animals did not result in a substantial accumulation of 14C in the tissues. The elimination of radioactivity from the plasma, liver, kidney, and lung was biphasic showing an initial rapid decline (half-lives 1.68, 5.78, 7.14, and 3.85 hr, respectively) followed by a slower disappearance phase (half-lives 33.0, 77.0, 138.6, and 43.3 hr, respectively). Approximately half of the total 14C in the liver and kidney was covalently bound to cellular macromolecules 72 hr after dosing. [14C]DCB-derived radioactivity was extensively excreted by rats, mainly via the feces. Approximately 23–33% of the administered dose was recovered in the urine and 58–72% in the feces of rats within 96 hr. More than 65% of the administered 14C was eliminated in the bile of bile duct-cannulated rats within 24 hr after dosing. The radioactivity excreted in the urine and bile was primarily in the form of free (urine 71.2%, bile 25.5%) and conjugated (urine 19.6%, bile 57.9%) metabolites of DCB. Thus DCB is readily absorbed following oral administration, and then metabolized and excreted mainly via the feces.  相似文献   

18.
The metabolism and excretion of a potent and selective substance P receptor antagonist, CP-122,721, have been studied in beagle dogs following oral administration of a single 5?mg?kg?1 dose of [14C]CP-122,721. Total recovery of the administered dose was on average 89% for male dogs and 95% for female dogs. Approximately 94% of the radioactivity recovered in urine and feces was excreted in the first 72?h. Male bile duct-cannulated dogs excreted a mean of ~56% of the dose in bile, ~11% in feces, and ~25% in urine. The sum of radioactivity in bile and urine indicates >80% of the [14C]CP-122,721-derived radioactivity was absorbed by the gastrointestinal tract. CP-122,721 was extensively metabolized in dogs, and only a small amount of parent CP-122,721 was excreted as unchanged drug. There were no significant gender-related quantitative/qualitative differences in the excretion of metabolites in urine or feces. The major metabolic pathways of CP-122,721 were O-demethylation, aromatic hydroxylation, and indirect glucuronidation. The minor metabolic pathways included: Aliphatic oxidation at the piperidine moiety, O-dealkylation of the trifluoromethoxy group, and N-dealkylation with subsequent sulfation and/or oxidative deamination. In addition, the novel cleaved product 5-trifluoromethoxy salicylic acid (TFMSA) was identified in plasma. These results suggest that dog is the most relevant animal species in which the metabolism of CP-122,721 can be studied for extrapolating the results to humans.  相似文献   

19.
Studies of the metabolic disposition of (S)-2-(3-tert-butylamino-2-hydroxypropoxy)-3-[14C]cyanopyridine (I) have been performed in humans, dogs, and spontaneously hypertensive rats. After an iv injection of I (5 mg/kg), a substantial fraction of the radioactivity was excreted in the feces of rats (32%) and dogs (31%). After oral administration of I (5 mg/kg) the urinary recoveries of radioactivity for rat and dog were 19% and 53%, respectively, and represented a minimum value for absorption because of biliary excretion of radioactivity. In man, bililary excretion of I appeared to be of minor significance because four male subjects, after receiving 6 mg of I p.o., excreted 76% and 9% of the dose of radioactivity in the urine and feces, respectively. Unchanged I represented 58% of the radioactivity excreted in human urine. The half-life for renal elimination of I was determined to be 4.0 +/- 0.9 /hr. In contrast, unchanged I represented 7% and 1% of excreted radioactivity in rat and dog urine, respectively. A metabolite of I common to man, dog, and rat was identified as 5-hydroxy-I, which represented approximately 5% of the excreted radioactivity in all species. Minor metabolites of I in which the pyridine nucleus had undergone additional hydroxylation were present in dog urine along with an oxyacetic acid metabolite, also bearing a hydroxylated pyridine nucleus.  相似文献   

20.
The metabolism of tiamulin hydrogen fumarate, labeled with 3H, 14C, or both, was studied in dogs, rats, and weanling pigs. After a dose of radiolabeled tiamulin, all three species excreted more radioactivity in feces (via bile) than in urine. Dogs absorbed 86% of a single oral dose of tiamulin-3H, and the disposition of the compound was similar after a single or multiple dosage regimen. The ratio of antimicrobial activity to total radioactivity in dog plasma was only about 0.25, and was still less in dog urine. After dosing with tiamulin-14C, rats and pigs excreted at least 1% of the dose as 14CO2 in expired air. In dual-labeled studies, pigs excreted less total 14C than 3H and had greater residues of 14C than 3H in edible tissues, blood, and plasma. After the administration of tiamulin-14C to pigs, radioactivity was incorporated into liver glycogen, indicating metabolic cleavage of the side chain of tiamulin. Tiamulin-3H is the isotopically-labeled compound of choice for studying metabolism and tissue residues in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号