首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular pathways in hepatocellular carcinoma   总被引:4,自引:0,他引:4  
Pang R  Tse E  Poon RT 《Cancer letters》2006,240(2):157-169
Research over the past decade has unraveled important molecular pathways involved in hepatocellular carcinoma (HCC), and several chromosomal and genetic aberrations have been identified to be responsible for initiation of the carcinogenic process. HBx protein and HCV core protein appear to play a pivotal role in hepatocarcinogenesis related to hepatitis B virus and hepatitis C virus, respectively. These viral oncoproteins allow cells to bypass some of the multi-steps in hepatocarcinogenesis, accounting for the etiological role of the two viruses in HCC. Understanding of the molecular pathways of HCC facilitates the development of novel molecular strategies for chemoprevention and therapy of HCC.  相似文献   

2.
Renal cell carcinoma (RCC), the most lethal type of genitourinary cancer, is generally resistant to chemotherapy and radiation therapy. Surgical excision of the tumor at a localized stage remains the mainstay for curative therapy. A number of drugs developed in recent years have shown limited to significant efficacy in treating RCC. These drugs act by blocking critical signaling pathways associated with RCC tumor growth and survival and angiogenesis. Beyond well-validated signaling targets such as VHL, VEGFR and mTOr, additional pathways including HGF/c-MET and wnt/β-catenin have emerged as important to RCC pathogenesis. Mutations in one or more components of these signaling networks may affect tumor response to therapy. This review summarizes the state of knowledge about signaling pathways in RCC and discusses the known genetic and epigenetic alterations that underlie dysregulation of these pathways.Key words: RCC, signaling pathways, kinases, mTOR, targeted therapy, genetics, epigenetics  相似文献   

3.
Patients with hepatocellular carcinoma (HCC) are prone to folate deficiency (FD). Here we showed that, in cell line-specific manner, FD caused resistance to FD-induced oxidative stress and multi-drug resistance (MDR). This resistance was due to upregulation of glucose-regulated protein 78 (GRP78) and Survivin. Using siRNA and Epigallocatechin gallate (EGCG), we found that GRP78 and Survivin cooperatively conferred MDR by decreasing FD-induced ROS generation. Our data showed that FD increases GRP78 and Survivin, which serve as ROS inhibitors, causing MDR in HCC. We suggest that folate supplementation may enhance the efficacy of chemotherapy.  相似文献   

4.
5.
Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer diagnosed worldwide. HCC occurs due to chronic liver disease and is often diagnosed at advanced stages. Chemotherapeutic agents such as doxorubicin are currently used as first-line agents for HCC therapy, but these are non-selective cytotoxic molecules with significant side effects. Sorafenib, a multi-targeted tyrosine kinase inhibitor, is the only approved targeted drug for HCC patients. However, due to adverse side effects and limited efficacy, there is a need for the identification of novel pharmacological drugs beyond sorafenib. Several agents that target and inhibit various signaling pathways involved in HCC are currently being assessed for HCC treatment. In the present review article, we summarize the diverse signal transduction pathways responsible for initiation as well as progression of HCC and also the potential anticancer effects of selected targeted therapies that can be employed for HCC therapy.  相似文献   

6.
Recent genome-wide screens have identified genes associated with the metastatic potential of hepatocellular carcinoma (HCC); however, there is little overlap between the identified genes, and interpretations of the results remain controversial. These inconsistencies may be related to differences in the sample populations, use of distinct microarray platforms and algorithms, and the complicated modes of HCC recurrence. We investigated the gene expression profiles of extrahepatic recurrence (EHR) and early intrahepatic recurrence (IHR), which are two representative modes of recurrence of HCC attributable to metastasis. We used DNA microarray analysis and identified 46 signature genes for EHR in 35 HCCs in a supervised learning manner. The obtained gene expression profile was compared with that for early IHR that was determined previously in the same manner. The 46 signature genes for EHR included many cell adhesion-related genes (ITGA6, SPP1, DNMBP, CD44 and POSTN), which all showed higher expression in HCC with EHR than in HCC without EHR. The 46 signature genes for early IHR included 10 immune response-related genes, which all showed lower expression in HCC with early IHR than in HCC without early IHR. The signature genes for EHR included only two immune response-related genes (P=0.013). These results suggest that alteration of the cell adhesion system plays a central role in EHR and that reduction of the immune response is a specific step in early IHR. These results indicate that the metastatic processes in EHR and early IHR involve different molecular pathways.  相似文献   

7.
8.
BackgroundMethylation plays an important role in hepatocellular carcinoma (HCC) by altering the expression of key genes. The aim of this study was to screen the aberrantly methylated-differentially expressed genes (DEGs) in HCC and elucidate their underlying molecular mechanism.MethodsGene expression microarrays (GSE101685) and gene methylation microarrays (GSE44909) were selected. DEGs and differentially methylated genes (DMGs) were screened. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the Database for Annotation, Visualization, and Integrated discovery (DAVID). The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to analyze the functional protein-protein interaction (PPI) network. Molecular Complex Detection (MCODE) analysis was performed using the Cytoscape software. Hub genes were verified in The Cancer Genome Atlas (TCGA) database.ResultsA total of 80 hypomethylation-high expression genes (Hypo-HGs) were identified. Pathway enrichment analysis showed DNA replication, cell cycle, viral carcinogenesis, and the spliceosome. The top 5 hub genes were minichromosome maintenance complex component 3 (MCM3), checkpoint kinase 1 (CHEK1), kinesin family member 11 (KIF11), PDZ binding kinase (PBK), and Rac GTPase activating protein 1 (RACGAP1). In addition, 189 hypermethylation-low expression genes (Hyper-LGs) were identified. Pathway enrichment analysis indicated enrichment in metabolic pathways, drug metabolism-other enzymes, and chemical carcinogenesis. The top 5 hub genes were leukocyte immunoglobulin like receptor B2 (LILRB2), formyl peptide receptor 1 (FPR1), S100 calcium binding protein A9 (S100A9), S100 calcium binding protein A8 (S100A8), and myeloid cell nuclear differentiation antigen (MNDA). The methylation status and mRNA expression of MCM3, CHEK1, KIF11, PBK, and S100A9 were consistent in the TCGA database and significantly correlated with the prognosis of patients.ConclusionsCombined screening of aberrantly methylated–DEGs based on bioinformatic analysis may provide new clues for elucidating the epigenetic mechanism in HCC. Hub genes, including MCM3, CHEK1, KIF11, PBK, and S100A9, may serve as biomarkers for the precise diagnosis of HCC.  相似文献   

9.
It has long been known that tumors depend on energy production pathways that are different from those of normal cells. These unique pathways require the expression and function of tumor-specific enzymes. Some of these glycolytic enzymes, as well as other modulators of tumor behavior, have recently been elucidated. In theory, inhibiting such enzymes or appropriately affecting such modulators should deprive tumors of energy, while leaving nontransformed cells unaffected. These factors include certain hexokinases that catalyze glycolysis in tumors and can be inhibited by 3-bromopyruvate. 2-deoxyglucose is another modulator that depletes hexokinase stores and cannot undergo further catabolism, thus depriving tumors of their energy source. Other enzymes or modulators are under scrutiny and have shown promise. Preliminary experiments on animals with hepatocellular carcinoma have indeed shown very encouraging results. It appears that modulating the energy production pathways of tumors is poised to become a substantial research area for cancer treatment. This review will focus on the energy production pathways of transformed cells, highlight the differences between transformed and normal cells in this regard and summarize recent experiments that take advantage of these disparities in cancer treatment.  相似文献   

10.
It has long been known that tumors depend on energy production pathways that are different from those of normal cells. These unique pathways require the expression and function of tumor-specific enzymes. Some of these glycolytic enzymes, as well as other modulators of tumor behavior, have recently been elucidated. In theory, inhibiting such enzymes or appropriately affecting such modulators should deprive tumors of energy, while leaving nontransformed cells unaffected. These factors include certain hexokinases that catalyze glycolysis in tumors and can be inhibited by 3-bromopyruvate. 2-deoxyglucose is another modulator that depletes hexokinase stores and cannot undergo further catabolism, thus depriving tumors of their energy source. Other enzymes or modulators are under scrutiny and have shown promise. Preliminary experiments on animals with hepatocellular carcinoma have indeed shown very encouraging results. It appears that modulating the energy production pathways of tumors is poised to become a substantial research area for cancer treatment. This review will focus on the energy production pathways of transformed cells, highlight the differences between transformed and normal cells in this regard and summarize recent experiments that take advantage of these disparities in cancer treatment.  相似文献   

11.
Sakurai T  Kudo M 《Oncology》2011,81(Z1):24-29
Angiogenesis is regulated by the highly coordinated function of various proteins with pro- and antiangiogenic functions. Proangiogenic factors include vascular endothelial growth factor (VEGF), fibroblast growth factor, platelet-derived growth factor, insulin-like growth factor, transforming growth factor, angiopoietins, and several chemokines; antiangiogenic factors include thrombospondin-1, angiostatin, and endostatin. Matrix metalloproteinases display a dual role in vascular development. Notch signaling affects remodeling of the primary vascular network of uniformly sized vessels into functionally and morphologically distinct arteries, veins, and capillaries. Tumors, described as 'wounds that never heal', lose the appropriate balance among these factors. Although VEGF-targeted therapies are showing promise, new angiogenesis targets are needed to make additional gains. Here, we highlight recent advances in our understanding of the regulation of tumor angiogenesis and discuss the potential of molecular targeting as a new therapeutic approach.  相似文献   

12.
Hepatocarcinogenesis is a process attributed to progressive genomic changes that alter the hepatocellular phenotype producing cellular intermediates that evolve into hepatocellular carcinoma (HCC). During the preneoplastic phase, the liver is often the site of chronic hepatitis and/or cirrhosis, and these conditions induce liver regeneration with accelerated hepatocyte cycling in an organ that is otherwise proliferatively at rest. Hepatocyte regeneration is accelerated by upregulation of mitogenic pathways involving molecular and genetic mechanisms. Hepatic growth factors, inhibitors and triggers may also play a role. This process leads to the production of monoclonal populations of aberrant and dysplastic hepatocytes that have telomerase re-expression, microsatellite instability, and occasionally structural aberrations in genes and chromosomes. Development of dysplastic hepatocytes in foci and nodules and the emergence of HCC are associated with the accumulation of irreversible structural alterations in genes and chromosomes even if the genomic basis of the malignant phenotype is largely heterogeneous. Therefore, a malignant hepatocyte phenotype may be produced by changes in genes acting through different regulatory pathways, thus producing several molecular variants of HCC. On these bases, a key point for future research will be to determine whether the deletions are specific, due to particular loci in the minimally deleted regions of affected chromosome arms, or whether they are non-specific with loss of large portions of chromosomes or entire chromosome arms leading to passive deletion of loci. The final aim is the possibility of identifying a step where carcinogenetic processes could be terminated.  相似文献   

13.
The mechanisms by which c-erbB-dependent signaling contribute to the invasive potential of HNSCC remain to be fully elucidated. We have previously shown that c-erbB autocrine and/or paracrine stimulation upregulates MMP-9 but has no effect on the related gelatinase, MMP-2. BTC, a major c-erbB ligand, has the ability to efficiently activate all c-erbB receptors and to bind directly to EGFR and c-erbB-4. BTC is commonly expressed in HNSCC cells and exerts the most potent effects in terms of MMP induction relative to other c-erbB ligands so far tested. In the present study, we explored the contribution of major downstream events triggered by BTC/c-erbB receptor signaling to the regulation of MMP-9 and in vitro invasiveness of HNSCC cells. In human HNSCC cell lines, SIHN-006 and Detroit-562, BTC treatment resulted in rapid tyrosine phosphorylation of all c-erbB receptors whereas both endogenous MMP-9 and BTC-stimulated MMP-9 were predominantly mediated via EGFR. BTC induced ERK1/2, JNK/SAPK and Akt phosphorylation with differing kinetics but not p38 kinase. The BTC-dependent activation of JNK and PI3K/Akt pathways occurred predominantly via EGFR, whereas activation of the MEK-1/ERK pathway occurred via all 4 c-erbB receptors, although again predominantly via EGFR. Selective inhibition of ERK/MAPK (by PD98059 or U0126) and PI3K (by LY294002 or wortmannin) led to marked reduction of both basal and BTC-induced MMP-9 activity and invasive ability of HNSCC cells. In contrast, inhibition of p38 kinase with SB203580 produced no such effects. A specific inhibitor of NF-kappa B, BAY 11-7085, also blocked the stimulatory effect of BTC. No remarkable inhibition of MMP-9 and invasion was observed on targeting other cellular activities, such as PKA, PKC and PLC-gamma. Taken together, our data show that BTC induces MMP-9 production and invasion primarily through activation of EGFR, MAPK and PI3K/Akt in HNSCC cells.  相似文献   

14.
Jou YS  Lee CS  Chang YH  Hsiao CF  Chen CF  Chao CC  Wu LS  Yeh SH  Chen DS  Chen PJ 《Cancer research》2004,64(9):3030-3036
Systematic scan and statistical analysis of loss of heterozygosity (LOH) has been widely used to define chromosomal aberrations in various cancers for cloning of tumor suppressor genes and for development of prognostic markers. However, the establishment of novel strategies is needed, so that the nonrandom but heterogeneous chromosomal aberration data could provide significant insights into our understanding of molecular pathogenesis of cancers. After comprehensive allelotyping of recurrent allelic losses with 441 highly informative microsatellite markers and overlapping LOH regions on human hepatocellular carcinoma (HCC) chromosomes, 33 minimal deleted regions (MDRs) were revealed. Five and 15 of the 33 MDRs have physical intervals in less than 5 and 10 Mb, respectively, with the smallest MDR9p1 of 2.2 Mb located at 9p21.3-p21.2. Statistical and Kaplan-Meier survival analysis revealed a significant association between the loss of MDR15q1 (15q21.1-q22.2) and the HCC patient survival (adjusted P = 0.033). After cluster analysis of 33 MDRs that represented LOH profiles of each HCC tissue based on clinicopathological features and p53 mutations, two major genetic pathways, low-stage and advanced-stage HCC, were uncovered based on high concordance of MDR clusters. We propose that the definition of genome-wide MDRs on the cancer genome not only narrows down the location of existing tumor suppressor genes to facilitate positional candidate cloning and develop potential prognostic markers after statistical association of MDRs with clinicopathological features but also dissects genetic interactions and pathways of chromosomal aberrations in tumorigenesis.  相似文献   

15.
BackgroundHepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Although immunotherapy provides hope for advanced HCC patients, the outcomes are not satisfactory and vary by individual case. In this study, we sought to establish novel molecular subtypes and a stable model based on tumor-related pathways for guiding the immunotherapy in HCC patients.MethodsA total of 15 pathways including immune pathways, stromal pathways, oncogenic pathways, and DNA damage repair pathways were used to construct molecular subtypes through consensus clustering. Immune characteristics, gene mutations, and genomic alterations including copy number variations and homologous recombination deficiency (HRD) were analyzed in different clusters. The Tumor Immune Dysfunction and Exclusion (TIDE) framework was used to predict the response to immunotherapy. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression were employed to screen prognostic genes for constructing a risk model.ResultsThree clusters/subtypes were constructed including Immune-E, Immune-D and Stromal-E. Immune-D had the worst prognosis and high enrichment of HRD pathways. Immune-E had higher immune infiltration, higher expression of major histocompatibility complex (MHC)-related genes, and higher expression of PD1, PDL1, CTLA4, and LAG3. TP53 alterations frequently occurred in Immune-D. Immune-E had a relatively high response to immunotherapy and was sensitive to chemotherapeutic drugs. Moreover, we constructed an IMScore model that was effective to classify HCC patients into different risk groups, and the IMScore had a better performance than the TIDE score.ConclusionsThis study revealed the complex interaction among the tumor microenvironment (TME), genomic alterations, and tumor-related pathways by exploring the molecular difference of 3 subtypes. The IMScore model has potential to provide guidance for immunotherapy in HCC patients.  相似文献   

16.
17.
目的:研究补骨脂酚对人肝癌细胞凋亡的影响及其作用机制。方法:应用噻唑蓝法(MTT法)和倒置显微镜技术考察补骨脂酚对HepG2细胞生长的影响;采用荧光显微镜观察补骨脂酚处理后细胞凋亡;利用蛋白免疫印迹法检测补骨脂酚对HepG2细胞中凋亡相关蛋白及MAPK家族蛋白表达的影响;引入MAPK家族蛋白抑制剂考察生长抑制率和凋亡相关蛋白表达的变化。结果:补骨脂酚可以剂量依赖性地抑制人肝癌HepG2细胞增殖,其生长抑制作用明显强于临床上常用的抗肿瘤药5-氟尿嘧啶,并且补骨脂酚对人正常肝L02细胞具有较低的毒性。进一步研究发现,补骨脂酚可以诱导HepG2细胞发生凋亡。此外,MAPK家族参与到补骨脂酚诱导的HepG2细胞凋亡过程中,补骨脂酚可以剂量依赖性激活JNK的表达发挥促凋亡的作用,同时抑制了ERK促存活通路,然而对p38无明显影响。结论:本研究首次阐明了补骨脂酚诱导人肝癌HepG2细胞生长抑制作用机制,为进一步的临床应用提供了理论依据。  相似文献   

18.
19.
上皮间质转化(EMT)在结肠癌发生发展、侵袭转移中发挥重要作用.转化生长因子-β、Wnt/β-catein、Notch、核转录因子-κB、磷脂酰肌醇-3激酶/蛋白激酶B信号通路对结肠癌EMT过程起重要的诱导调控作用.进一步阐明EMT信号通路,可为结肠癌靶向治疗带来更多的机会.  相似文献   

20.
Most hepatocellular carcinoma (HCC) patients present with locally advanced disease with a risk of development of intrahepatic or extrahepatic metastases. Conformal radiotherapy (RT) can be delivered to focal HCCs with sustained local control in selected HCC patients. However, it is frequently not possible to deliver tumoricidal doses to locally advanced HCC due to the risk of radiation-induced liver toxicity or the risk of toxicity to adjacent luminal gastrointestinal organs. Combining RT with radiosensitizers is an attractive strategy to increase the therapeutic ratio for these patients. Clinical experience in combining RT and radiosensitizers in HCC is limited. Hepatic arterial chemoembolization (or transcatheter arterial chemoembolization, TACE) has been used in combination with RT for the treatment of HCC, as have halogenated pyrimidines. More recently, there is a growing experience of RT delivered with molecular targeted agents in HCC. In this review, the rationale for potential radiation sensitization and the clinical experience in HCC for different classes of radiation sensitizers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号