首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In patch-clamped membranes from neonatal rat cardiocytes, elementary Na+ currents were recorded at 19 degrees C for study of the inhibitory influence of several antiarrhythmic drugs including lidocaine, diprafenone, propafenone, and prajmalium on DPI-modified cardiac Na+ channels. Diprafenone (20 mumol/l) and lidocaine (300 mumol/l) induced a voltage- and time-dependent block of reconstructed macroscopic sodium current (INa). The drugs depressed the sustained, noninactivating INa component (which reflects the number and open probability of DPI-modified Na+ channels) effectively, in a voltage- and time-dependent fashion. Once opened, DPI-modified Na+ channels are highly drug-sensitive. Antiarrhythmic drugs (propafenone, diprafenone, and, to a lesser extent, lidocaine) provoke a flicker block, that is, the long-lasting openings are chopped into a large number of short and grouped openings. This indicates rapid transitions between a drug-associated, blocked state and a drug-free, conducting state. The latter has a unitary conductance of 12 pS, very similar to the control value in the absence of antiarrhythmic drugs. The decrease in open time of drug-treated DPI-modified Na+ channels is concentration-dependent. Hill coefficients for propafenone of about 1.0 and for prajmalium of about 0.7 were calculated. A blocking rate constant of 6.1 x 10(7) mol-1sec-1 for propafenone, but of 1.5 x 10(7) mol-1sec-1 for prajmalium was obtained at -30 mV. The unblocking rate constant for propafenone was, also at -30 mV, about twice as large as the unblocking rate constant for prajmalium. The open channel block kinetics are essentially voltage-dependent. The affinity of the channel-associated drug receptor increases on membrane depolarization. The blocking rate constant was inversely related to the number of Na+ ions moving through the open channel. It is concluded that the manifestation of this voltage- and Na+-dependent flicker block is intimately related to removal of fast Na+ inactivation.  相似文献   

2.
Intravenous infusion of aldosterone (10 microgram/kg body wt per h for 5 h) in four 2-month-old calves decreased salivary and urinary sodium (Na+) concentration and increased salivary potassium (K+) concentration without modifying salivary flow or urinary K+ concentration. Intravenous angiotensin II infusion (0.3 microgram/kg body wt per min for 1 h) in four Na+-replete 16-month-old bulls decreased salivary Na+ concentration and increased that of K+. It also increased plasma cortisol and plasma aldosterone concentrations, and decreased plasma renin activity (PRA). In four 16-month-old bulls Na+ deficiency (induced by chronic cannulation of the right parotid duct and loss of saliva for 5 days) had similar effects to those observed following aldosterone infusion in calves: a decrease in salivary Na+/K+ ratio. This decrease was associated with an increase in PRA and an increase in plasma aldosterone concentration. In these animals a close positive relationship was observed between PRA and plasma aldosterone concentration (r = 0.91; n = 20; P less than 0.01). Thus in cattle, during Na+ deficiency, the effect of aldosterone on parotid glands participates in the regulation of Na+ metabolism.  相似文献   

3.
Currents through individual Na channels in the apical membrane of the rat cortical collecting tubule were resolved by using the patch-clamp technique. In cell-attached patches, the channels had a conductance of 5 pS with 140 mM NaCl in the pipet. The conductance was a saturable function of external Na, with a maximal value of about 8 pS and a half saturation at about 75 mM Na. In excised inside-out patches, the selectivity of the channels for Na over K was estimated from reversal potentials to be at least 10:1. The channels underwent spontaneous transitions between open and closed states. Both states had mean lifetimes of 3-4 sec. Amiloride (0.5 microM) added to the pipet induced more frequent closures and openings of the channels and a reduction in the mean open time. These channels are presumed to mediate Na reabsorption by this nephron segment in vivo.  相似文献   

4.
PRL is involved in osmoregulation in lower vertebrates. Its serum concentration starts to increase during the metamorphosis of bullfrog tadpoles. Adult bullfrog skin transports Na(+) from the apical to the basolateral side across the skin. PRL is involved in the regulation of this transport. We investigated the effect of ovine PRL on the epithelial Na(+) channel (ENaC), Na(+)/K(+)-pump, and basolateral K(+) channels, which regulate Na(+) transport across adult bullfrog skin, by measuring the short-circuit current (SCC). At 0.1 microg/ml, PRL had no effect on the SCC. PRL (1 microg/ml) was sufficient to stimulate the SCC since 1 and 10 microg/ml of PRL each increased SCC 1.8-fold. Current-fluctuation analysis revealed that PRL (10 microg/ml) increased the density of active ENaC almost 1.8-fold. The effect of PRL on the Na(+)/K(+)-pump was investigated using apically nystatin-permeabilized skin with Ca-free Na-Ringers' solution on each side. PRL (10 microg/ml) increased SCC in this condition around 1.1-fold, suggesting that PRL stimulates the Na(+)/K(+)-pump [although PRL (1 microg/ml) had no effect on this SCC]. The effect of PRL on basolateral K(+) channels was investigated using apically nystatin-permeabilized skin with high-K Ringer's solution on the apical side. PRL (10 microg/ml) had no effect on the SCC, suggesting that PRL does not affect basolateral K(+) channels. Thus, although PRL stimulates the Na(+)/K(+)-pump, this effect probably contributes less than that on ENaC to the regulation of Na(+) transport across adult bullfrog skin.  相似文献   

5.
正常肠系膜动脉平滑肌细胞钙激活钾通道活性的观察   总被引:2,自引:1,他引:2  
为了解人体正常肠系膜动脉平滑肌细胞钙激活钾通道的特性 ,取 2 4例人体正常肠系膜动脉小枝节段 ,用酶消化法获取标本细胞 ,以膜片钳制技术检测钙激活钾通道的活性 ,通过Pclamp专用软件实时采样记录其平均开放时间、平均关闭时间及平均开放概率等。结果发现 ,人体肠系膜动脉平滑肌细胞钙激活钾通道开放具有明显电压依赖性 ,在对称性高钾液中 ,电流 -电压关系曲线在 10~ 6 0mV范围内可被直线拟合。在细胞吸附式膜片和内面向外膜片中 ,通道电导分别为 192 .3± 2 9.2Ps和 2 0 2 .5± 5 8.3Ps。开放概率和开放数目随Ca2 + 浓度的增加而增加 ,膜内面应用四乙胺可减少通道开放概率及电流幅值。提示人体肠系膜动脉平滑肌细胞钙激活钾通道与人体其他血管相似 ,主要为大电导钙激活钾通道 ,具有电压和钙浓度双重依赖性。  相似文献   

6.
7.
The ability of cortisol to increase gill Na+,K(+)-ATPase activity was examined in several salmonid species during development. Coho salmon (Oncorhynchus kisutch) parr were unresponsive to cortisol in vitro (10 micrograms/ml for 2 days) in November. Responsiveness was significant from January to March, peaking in January just prior to seasonal increases in gill Na+,K(+)-ATPase activity. Gill tissue became unresponsive to in vitro cortisol in April when in vivo gill Na+,K(+)-ATPase activity peaked. The ability of cortisol to stimulate gill, Na+,K(+)-ATPase activity in postemergent fry (2-3 months after hatching) was examined in chum (O. keta), chinook (O. tschawytscha), coho, and Atlantic salmon (Salmo salar). Initial levels of gill Na+,K(+)-ATPase activity were elevated in chum salmon, which normally migrate as fry. Cortisol (10 micrograms/ml for 4 days in vitro) increased gill Na+,K(+)-ATPase activity in chum salmon fry (48% above initial levels), had a limited but significant effect in chinook salmon fry, and had no effect in coho and Atlantic salmon fry. In an in vivo experiment, Atlantic salmon previously exposed to simulated natural photoperiod (SNP) and continuous light (L24) received four cortisol injections of 2 micrograms.g-1 every third day. SNP fish responded with increased gill Na+,K(+)-ATPase activity (+66%), whereas L24 fish were not affected. Atlantic salmon presmolts with initially low levels of gill Na+,K(+)-ATPase activity responded to cortisol in vitro, whereas smolts with initially high levels of gill Na+,K(+)-ATPase activity were unresponsive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A fundamental and essential property of nearly all salt-transporting epithelia is the tight parallel coupling between the magnitude of the K-conductive pathway at the basolateral membrane and the activity of the Na,K-dependent ATPase (Na,K-ATPase). In the present study, we demonstrate that the coupling response in the renal proximal tubule is governed, at least in part, through the interaction between ATP-sensitive K channels and Na,K-ATPase-mediated changes in intracellular ATP levels. First, we identified a K-selective channel at the basolateral membrane, which is inhibited by the cytosolic addition of ATP. Second, conventional microelectrode analysis in the isolated perfused proximal straight tubule revealed that these channels are the major determinant of the macroscopic K conductance so that ATP-mediated changes in the open probability of the K channel could alter the extent of K recycling. Indeed, the increase in the macroscopic K conductance upon stimulation of transcellular Na transport and pump activity was found to be paralleled by a decrease in intracellular ATP. Finally, a causal link between parallel Na,K-ATPase-K-channel activity and ATP was established by the finding that intracellular ATP loading uncoupled the response. With our recent observations that similar ATP-sensitive K channels are expressed abundantly in other epithelia, we postulate that ATP may act as a universal coupling modulator of parallel Na,K-ATPase-K-channel activity.  相似文献   

9.
A variant of hereditary stomatocytosis with marked pseudohyperkalaemia   总被引:3,自引:0,他引:3  
A family with an unusual form of hereditary stomatocytosis is described. The affected members showed a mild, dominantly-inherited, haemolytic anaemia with intracellular Na and K levels of 41-48 and 44-53 mmol/(l cells) respectively. This anaemia was associated with marked 'pseudohyperkalaemia': that is, loss of K from red cells on storage at room temperature. At 37 degrees C, 'leak' tracer flux rates (assessed as the ouabain + bumetanide-resistant K fluxes) showed a roughly 5-fold acceleration compared to normal, and an abnormal temperature dependence with a shallow slope between 37 and 20 degrees C (mean Q10 (ratio of reaction rates at temperature T and T - 10) over this interval, 1.6; normal 2.2). The pseudohyperkalaemia could be attributed to the disparity between pump and leak at 20 degrees C. This is an identical mechanism to that previously shown for the haemato logically trivial condition, 'familial pseudohyperkalaemia. No protein or lipid abnormality was found in the membrane of these cells.  相似文献   

10.
Studies were performed to determine relationships among Na+, K+-ATPase, the transmucosal Na+ gradient, and bile-acid transport in metabolically viable cells isolated from rat ileum. Incubation of cells with 0, 10(-6), 10(-5), 10(-4) and 10(-3) M ouabain resulted, respectively, in a 0, 10.3, 42.1, 97.0, and 100% decrease in glycocholate uptake and a 0, 10.7, 46.4, 76.8, and 100% decrease in Na+, K+-ATPase activity. Thus, one-half maximal inhibition of glycocholate uptake and Na+, K+-ATPase activity occurred at 5.5 x 10(-5) M and 1.7 x 10(-5) M ouabain, respectively. A change in glycocholate uptake was correlated with a change in Na+, K+-ATPase activity after daily injections of methylprednisolone. After 4 days treated animals showed a 26% and 36% increase in glycocholate uptake and Na+, K+-ATPase activity, respectively, over pair-fed saline-treated controls (p less than 0.001). Methylprednisolone did not significantly alter the activity of (Mg++)-ATPase when compared with controls (p greater than 0.05). Glycocholate uptake was reduced by the omission of Na+ from the incubation medium. Preincubation of cells at 37 degrees C with gramicidin D, 10 micrograms/ml, to alter membrane permeability to Na+, resulted in a significant rise in cell Na+ (p less than 0.01) and a significant fall in glycocholate uptake from values in untreated cells (p less than 0.01) to approach values for glycocholate uptake at 0 degrees C. These data suggest that Na+, K+-ATPase may play a role in a bile-acid uptake into ileal cells possibly by maintaining a Na+ electrochemical potential gradient for coupled Na+-bile-acid transport.  相似文献   

11.
AIMS: The hyperpolarization-activated cyclic nucleotide-gated (HCN) current I(f)/I(HCN) is generally thought to be carried by Na(+) and K(+) under physiological conditions. Recently, Ca(2+) influx through HCN channels has indirectly been postulated. However, direct functional evidence of Ca(2+) permeation through I(f)/I(HCN) is still lacking. METHODS AND RESULTS: To possibly provide direct evidence of Ca(2+) influx through I(HCN)/I(f), we performed inside-out and cell-attached single-channel recordings of heterologously expressed HCN channels and native rat and human I(f), since Ca(2+)-mediated I(f)/I(HCN) currents may not readily be recorded using the whole-cell technique. Original current traces demonstrated HCN2 Ca(2+) inward currents upon hyperpolarization with a single-channel amplitude of -0.87+/-0.06 pA, a low open probability of 3.02+/-0.48% (at -110 mV, n=6, Ca(2+) 2 mmol/L), and a Ca(2+) conductance of 8.9+/-1.2 pS. I(HCN2-Ca2+) was significantly activated by the addition of cAMP with an increase in the open probability and suppressed by the specific I(f) inhibitor ivabradine, clearly confirming that Ca(2+) influx indeed was conducted by HCN2 channels. Changing [Na(+)] (10 vs. 100 mmol/L) in the presence or absence of 2 mmol/L Ca(2+) caused a simple shift of the reversal potential along the voltage axis without significantly affecting Na(+)/Ca(2+) conductance, whereas the K(+) conductance of HCN2 increased significantly in the absence of external Ca(2+) with increasing K(+) concentrations. The mixed K(+)-Ca(2+) conductance, however, was unaffected by the external K(+) concentration. Notably, we could also record hyperpolarization-activated Ca(2+) permeation of single native I(f) channels in neonatal rat ventriculocytes and human atrial myocytes in the presence of blockers for all known cardiac calcium conduction pores (Ca(2+) conductance of human I(f), 9.19+/-0.34 pS; amplitude, -0.81+/-0.01 pA; open probability, 1.05+/-0.61% at -90 mV). CONCLUSION: We directly show Ca(2+) permeability of native rat and, more importantly, human I(f) at physiological extracellular Ca(2+) concentrations at the physiological resting membrane potential. This might have particular implications in diseased states with increased I(f) density and HCN expression.  相似文献   

12.
The cold and menthol receptor, TRPM8, also designated CMR1, is a member of the transient receptor potential (TRP) family of excitatory ion channels. TRPM8 is a channel activated by cold temperatures, voltage, and menthol. In this study, we characterize the cold- and voltage-induced activation of TRPM8 channel in an attempt to identify the temperature- and voltage-dependent components involved in channel activation. Under equilibrium conditions, decreasing temperature has two effects. (i) It shifts the normalized conductance vs. voltage curves toward the left, along the voltage axis. This effect indicates that the degree of order is higher when the channel is in the open configuration. (ii) It increases the maximum channel open probability, suggesting that temperature affects both voltage-dependent and -independent pathways. In the temperature range between 18 degrees C and 25 degrees C, large changes in enthalpy (DeltaH=-112 kcal/mol) and entropy (DeltaS=-384 cal/mol K) accompany the activation process. The Q10 calculated in the same temperature range is 24. This thermodynamic analysis strongly suggests that the process of opening involves large conformational changes of the channel-forming protein. Therefore, the highly temperature-dependent transition between open and closed configurations is possible because enthalpy and entropy are both large and compensate each other. Our data also demonstrate that temperature and voltage interact allosterically to enhance channel opening.  相似文献   

13.
Hyperventilation has been found to increase the phospholipid content of broncho-alveolar lavage fluids. Had the temperature of conservation of the lungs an influence? Two groups of rats were allowed to ventilate normally (NV), and two groups (HV) were induced to hyperventilate for 1 h by addition of a dead space. After sacrifice, the isolated lungs were kept for 25 min at 37 degrees C (NV37 and HV37), or 10 degrees C (NV10 and HV10), and then washed at the same temperatures. The phospholipid content of lavage fluid was only found to be increased in the HV37 group (P less than 0.05). Neither hyperventilation followed by conservation of lungs at 10 degrees C nor normal ventilation followed by conservation of lungs at 37 degrees C led to an increase in phospholipid content. It was the association of hyperventilation and conservation of lungs at 37 degrees C that led to the increase. In vivo hyperventilation is thought to lead to an equal increase in secretion and reabsorption of alveolar phospholipids, and conservation of the lungs at 37 degrees C was thought to lead to an imbalance between these two processes.  相似文献   

14.
We report four pedigrees of the group of Na(+)-K(+)-leaky red cell disorders of the 'hereditary stomatocytosis' class. Each showed pseudohyperkalaemia because of temperature-dependent loss of K(+) from red cells on storage of whole blood at room temperature. All pedigrees showed an abnormality in the temperature dependence of the 'passive leak' of the membrane to K(+). Two pedigrees, both of which showed a compensated haemolytic state with dehydrated red cells and target cells on the blood film, showed a novel pattern, in which the profile was flat between 37 degrees C and about 32 degrees C then dropped as the temperature was reduced to zero. The third showed the 'shallow slope' profile, with stomatocytes on the blood film and very markedly abnormal intracellular Na(+) and K(+) levels. Minimal haemolysis was present. The fourth pedigree, of Asian origin, showed the shoulder pattern (minimum at 32 degrees C, maximum at 12 degrees C) with essentially normal haematology. Both of these latter two forms have previously been seen in other pedigrees. The first variant represents a novel kind of temperature dependence of the passive leak found in these pedigrees presenting with pseudohyperkalaemia.  相似文献   

15.
The net passive influx of Na+ and efflux of K+ (orthodirection) through the red blood cell membranes from spontaneously hypertensive rats (SHR) were observed to be significantly higher (p less than 0.05) than those of three strains of normotensive rats when the measurements were made at 4 degrees C. Similar comparative studies, carried out at 37 degrees C, in the absence or presence of ouabain, showed no difference in these fluxes through this membrane from SHR compared to those from Wistar-Kyoto (WKY) rats, one of the normotensive strains. A study was undertaken to determine the temperature at which the greater cation fluxes in SHR red blood cells occurred. The net fluxes of Na+ and K+ decreased as the temperature was reduced from 37 degrees to 15 degrees C, but a paradoxical increase in the fluxes was observed as the temperature was decreased from 15 degrees to 4 degrees C. Only with this temperature shift (15 degrees to 4 degrees C) was the increase in flux significantly greater in SHR than in WKY cells. Subsequent studies were designed to determine whether the difference in the transport systems of red blood cells of SHR and WKY could be observed in fluxes of these cations in either direction across the membrane. For "reverse direction" flux studies, red blood cells were loaded with Na+ (to 130 mEq/liter cell water) and depleted of K+ (to 30 mEq/liter cell water) by incubation with the ionophore monensin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The kidney plays a key role in maintaining potassium (K) homeostasis. K excretion is determined by the balance between K secretion and absorption in distal tubule segments such as the connecting tubule and cortical collecting duct. K secretion takes place by K entering principal cells (PC) from blood side through Na+, K+ -ATPase and being secreted into the lumen via both ROMK-like small-conductance K (SK) channels and Ca2+ -activated big-conductance K (BK) channels. K reabsorption occurs by stimulation of apical K/H-ATPase and inhibition of K recycling across the apical membrane in intercalated cells (IC). The role of ROMK channels in K secretion is well documented. However, the importance of BK channels in mediating K secretion is incompletely understood. It has been shown that their activity increases with high tubule flow rate and augmented K intake. However, BK channels have a low open probability and are mainly located in IC, which lack appropriate transporters for effective K secretion. Here we demonstrate that inhibition of ERK and P38 MAPKs stimulates BK channels in both PC and IC in the cortical collecting duct and that changes in K intake modulate their activity. Under control conditions, BK channel activity in PC was low but increased significantly by inhibition of both ERK and P38. Blocking MAPKs also increased channel open probability of BK in IC and thereby it may affect K backflux and net K absorption Thus, modulation of ERK and P38 MAPK activity is involved in controlling net K secretion in the distal nephron.  相似文献   

17.
INTRODUCTION: L-type calcium channels were studied in cell-attached patches from ventricular cell membranes of human fetal heart. METHODS AND RESULTS: Experiments were performed in the presence of 70 mM Ba2+ as the charge carrier at 22 degrees C to 24 degrees C. Unitary current sweeps were evoked by 300-msec depolarizing pulses to 0 mV from a holding potential of -50 mV at 0.5 Hz. Recorded currents were blocked by nisoldipine (1 microM) and stimulated by (-)Bay K 8644 (1 microM). During control, channel activity was seen in 13.9%+/-4.2% of the total 200 sweeps. Ensemble average current amplitude was 0.03+/-0.01 pA (n = 6) and average conductance was 20.4+/-0.2 pS (n = 5). Analysis of single channel kinetics showed open time and closed time histograms were best fit by one and two exponentials, respectively. Mean open time was tau(o) = 0.99+/-0.05 msec (n = 6). Mean closed time fast (tau(cf)) and slow (tau(cs)) component values were tau(cf) = 0.85+/-0.09 msec and tau(cs) = 8.0+/-0.94 msec (n = 6), respectively. With intrapipette (-)Bay K 8644 (1 microM), mean open time was best fit by two exponentials, tau(of) = 0.9+/-0.2 msec (n = 10) and tau(os) = 13.4+/-2.6 msec (n = 10); mean close time values were tau(cf) = 0.6+/-0.1 msec (n = 10) and tau(cs) = 9.8+/-1.9 msec (n = 10), respectively. With (-)Bay K 8644, channel activity was 66.5%+/-7.4%, the ensemble average current was 0.52+/-0.04 pA (n = 10) and the conductance 20.7+/-0.5 pS (n = 5). CONCLUSION: (1) the data establishes the characteristics of L-type Ca channels of human fetal hearts and their modulation by dihydropyridines; (2) the open time kinetics differ from those of avian embryonic and rat fetal hearts; and (3) the findings provide new and relevant information for understanding the physiologic behavior of unitary Ca2+ channels in the developing human heart and the baseline comparison for diseases that implicate Ca2+ channels in their etiology, such as autoimmune-associated congenital heart block.  相似文献   

18.
目的研究多索茶碱对支气管哮喘(简称哮喘)患者外周血嗜酸粒细胞(EOS)钙依赖性钾离子(KCa)通道的作用及机制。方法分离8例哮喘急性发作期患者外周血EOS,并均分为对照组和多索茶碱孵育组,采用细胞贴附式膜片钳技术封接成功后在浴槽液中加入0.2μm ol/L血小板活化因子(PAF)激活KCa通道,比较两组EOS KCa通道动力学的改变。结果细胞贴附式时浴槽液中加入0.2μm ol/L PAF时出现电流活动,对照组通道开放概率为0.135±0.021、开放时间为(5.75±0.40)m s、关闭时间为(2.17±0.50)m s,多索茶碱孵育组其相应值分别为0.044±0.018、(2.39±0.13)m s、(23.73±2.50)m s,两组比较差异均有统计学意义(P均<0.05)。结论PAF能开放EOSKCa通道,多索茶碱可通过缩短EOS KCa通道开放时间,延长关闭时间,降低哮喘患者EOS KCa通道开放概率。  相似文献   

19.
23Na and 39K NMR studies of ion transport in human erythrocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号