首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 观察骨形成蛋白(BMP)-2、转化生长因子(TGF)-β1双基因真核表达载体在骨髓基质细胞中的共表达.方法 以pGEM-T-BMP-2及pGEM-T-TGF-β1为模板,分别用引入新的酶切位点的引物,聚合酶链反应(PCR)扩增出1188 bp长度的BMP-2和1173 bp长度的TGF-β1两个目的 基因片段;依次将其定向克隆入真核双基因表达载体pIRES;酶切、分析及序列测定重组子:然后,用脂质体包裹转染骨髓基质细胞;荧光定量逆转录(RT)-PCR方法 检测BMP-2及TGF-β1基因的共表达情况.结果 双酶切可见1188 bp的BMP-2条带及核酸序列测定证实重组质粒pIRES-BMP-2-TGF-131构建正确,并在骨髓基质细胞中能同时高效表达BMP-2和TGF-β1 mRNA.结论 BMP-2和TGF-β1双基因真核载体能够在骨髓基质细胞中实现BMP-2和TGF-β1基因共表达.  相似文献   

2.
目的 构建人骨形态发生蛋白2(BMP-2)真核表达载体,鉴定并转染兔骨髓基质细胞,为转基因治疗骨缺失疾病提供实验基础。方法 双酶切克隆载体将BMP-2目的基因与真核表达载体pcDNA3.1连接,免疫组化及Western blotting检测转染BMP-2基因骨髓基质细胞的表达效果。结果 成功构建BMP-2真核表达载体,转染骨髓基质细胞后,有BMP-2表达。结论 骨髓基质细胞经基因转染后可以表达BMP-2。为进一步实验研究提供基础。  相似文献   

3.
CTGF/CCN2, a hypertrophic chondrocyte-specific gene product, possessed the ability to repair damaged articular cartilage in two animal models, which were experimental osteoarthritis and full-thickness defects of articular cartilage. These findings suggest that CTGF/CCN2 may be useful in regeneration of articular cartilage. INTRODUCTION: Connective tissue growth factor (CTGF)/CCN2 is a unique growth factor that stimulates the proliferation and differentiation, but not hypertrophy, of articular chondrocytes in vitro. The objective of this study was to investigate the therapeutic use of CTGF/CCN2. MATERIALS AND METHODS: The effects of recombinant CTGF/CCN2 (rCTGF/CCN2) on repair of damaged cartilage were evaluated by using both the monoiodoacetic acid (MIA)-induced experimental rat osteoarthritis (OA) model and full-thickness defects of rat articular cartilage in vivo. RESULTS: In the MIA-induced OA model, quantitative real-time RT-PCR assays showed a significant increase in the level of CTGF/CCN2 mRNA, and immunohistochemical analysis and in situ hybridization revealed that the clustered chondrocytes, in which clustering indicates an attempt to repair the damaged cartilage, produced CTGF/CCN2. Therefore, CTGF/CCN2 was suspected to play critical roles in cartilage repair. In fact, a single injection of rCTGF/CCN2 incorporated in gelatin hydrogel (rCTGF/CCN2-hydrogel) into the joint cavity of MIA-induced OA model rats repaired their articular cartilage to the extent that it became histologically similar to normal articular cartilage. Next, to examine the effect of rCTGF/CCN2 on the repair of articular cartilage, we created defects (2 mm in diameter) on the surface of articular cartilage in situ and implanted rCTGF/CCN2-hydrogel or PBS-hydrogel therein with collagen sponge. In the group implanted with rCTGF/CCN2-hydrogel collagen, new cartilage filled the defect 4 weeks postoperatively. In contrast, only soft tissue repair occurred when the PBS-hydrogel collagen was implanted. Consistent with these in vivo effects, rCTGF/CCN2 enhanced type II collagen and aggrecan mRNA expression in mouse bone marrow-derived stromal cells and induced chondrogenesis in vitro. CONCLUSION: These findings suggest the utility of CTGF/CCN2 in the regeneration of articular cartilage.  相似文献   

4.
BACKGROUND: Cartilage has a limited capacity to heal. Although chondrocyte transplantation is a useful therapeutic strategy, the repair process can be lengthy. Previously we have shown that over expression of bone morphogenetic protein-7 (BMP-7) in chondrocytes by adenovirus-mediated gene transfer leads to increased matrix synthesis and cartilage-like tissue formation in vitro. In this context we hypothesized that implantation of genetically modified chondrocytes expressing BMP-7 would accelerate the formation of hyaline-like repair tissue in an equine model of cartilage defect repair. METHODS: Chondrocytes treated with adenovirus vector encoding BMP-7 (AdBMP-7) or as control, an adenovirus vector encoding an irrelevant gene (Escherichia coli cytosine deaminase, AdCD) were implanted into extensive (15 mm diameter) articular cartilage defects in the patellofemoral joints of 10 horses. Biopsies were performed to evaluate early healing at 4 weeks. At the terminal time point of 8 months, repairs were assessed for morphology, MRI appearance, compressive strength, biochemical composition and persistence of implanted cells. RESULTS: Four weeks after surgery AdBMP-7-treated repairs showed an increased level of BMP-7 expression and accelerated healing, with markedly more hyaline-like morphology than control. Quantitative real-time polymerase chain reaction (PCR) analysis of the repair tissue 8 months after surgery showed that few implanted cells persisted. By this time, the controls had healed similarly to the AdBMP-7-treated defects, and no difference was detected in the morphologic, biochemical or biomechanical properties of the repair tissues from the two treatment groups. CONCLUSIONS: Implantation of genetically modified chondrocytes expressing BMP-7 accelerates the appearance of hyaline-like repair tissue in experimental cartilage defects. CLINICAL RELEVANCE: Rehabilitation after cell-based cartilage repair can be prolonged, leading to decreased patient productivity and quality of life. This study shows the feasibility of using genetically modified chondrocytes to accelerate cartilage healing.  相似文献   

5.
目的:探究慢病毒介导BMP-2过表达质粒转染骨髓间充质干细胞联合丝素蛋白支架向成骨细胞转化的作用效果。方法:构建慢病毒BMP-2过表达载体,培养骨髓间充质干细胞,构建细胞核支架的联合培养体系,体外实验利用茜素红染色和碱性磷酸酶染色检测骨髓间充质干细胞的成骨转化。选择10只新西兰大白兔,体重3.2~4.5 kg,平均3.9 kg;年龄(2.89±0.45)岁;使用口腔钻在兔子胫骨钻孔(长度5 mm、宽度2 mm、深度3 mm的锥形胫骨缺损)构建兔子胫骨骨缺损模型,HE染色观察动物模型内骨缺损的修复。实验组造模后植入丝素蛋白支架+转染BMP-2过表达载体骨髓间充质干细胞复合物,阴性对照组造模后植入丝素蛋白支架+未转染骨髓间充质干细胞复合物。结果:实验组(丝素蛋白支架+转染BMP-2过表达载体骨髓间充质干细胞复合物)中支架表面黏附的细胞与对照组(丝素蛋白支架+未转染骨髓间充质干细胞)相比,细胞数明显增多。实验组细胞外基质分泌与对照组相比,支架间细胞外基质含量明显增多。对照组支架表面元素EDX分析显示钙离子含量为0.22%,实验组支架表面元素EDX分析显示钙离子含量为0.86%,可见实验组诱导钙离子形成的能力要比对照组强。钙结节茜素红染色结果显示,对照组肉眼观无明显变化,镜下观察可见少量钙结节点。实验组肉眼观可见明显红色区域染色,镜下观察可见大量钙结节点。碱性磷酸酶染色结果显示,对照组肉眼观无明显变化,镜下观察未见明显变化。实验组肉眼观可见紫色区域染色,镜下观察可见ALP染色呈强阳性。丝素蛋白支架与骨髓间充质干细胞联合培养体系可以对软骨缺损有较好的修复作用,转染BMP-2骨髓间充质干细胞后修复作用明显优于未转染组。HE染色结果显示,对照组炎性细胞减少,支架略有消失。实验组炎性细胞明显减少,支架消失,血管生成。结论:慢病毒介导BMP-2过表达质粒可以促进BMSC向骨细胞的分化作用,并且分泌更多的含Ca2+成分的细胞外基质,从而发挥其促进骨缺损修复的作用。  相似文献   

6.
Articular cartilage damage remains an unsolved problem in orthopaedics. Insulin‐like growth factor I (IGF‐I) and fibroblast growth factor‐2 (FGF‐2) are anabolic and mitogenic for articular chondrocytes, and are candidates for the application of gene therapy to articular cartilage repair. We tested the hypothesis that the production of IGF‐I and FGF‐2 can be augmented by modulating vector designs and delivery methods used for gene transfer to articular chondrocytes. We developed a novel adeno‐associated virus (AAV)‐based plasmid (pAAV) to overexpress IGF‐I and FGF‐2 cDNAs in adult bovine articular chondrocytes. We found that the pAAV‐based vectors generated significantly more growth factor than pcDNA vectors carrying the same cDNAs. Chondrocytes cotransfected with both IGF‐I and FGF‐2 cDNAs in two separate pAAV plasmids produced significantly more IGF‐I and FGF‐2 than cells transfected by a single pAAV plasmid carrying both cDNAs in a dicistronic cassette. These data indicate that pAAV vectors are more effective than pcDNA vectors for transfer of IGF‐I and FGF‐2 genes to articular chondrocytes. They further suggest that cotransfection may be an effective strategy for multiple gene transfer to these cells. These findings may be important in applying growth factor gene transfer to cell‐based articular cartilage gene therapy. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:103–109, 2010  相似文献   

7.
Koo KH  Yeo do H  Ahn JM  Kim BS  Kim CS  Im GI 《Artificial organs》2012,36(7):629-634
We had devised a heparin-conjugated fibrin (HCF) system to deliver bone morphogenic proteins (BMPs) for a long-term period to enhance bone regeneration. In the present study, we tested the effectiveness of the delivery system for spinal fusion in a rabbit model. A total of 15 rabbits underwent posterolateral lumbar spine fusion with BMP-2 (50 μg per collagen sponge). The control group received only collagen sponges without BMP-2, another group (short-term delivery [SD] group) received collagen sponges filled with fibrin gel loaded with BMP-2, and the third group (long-term delivery [LD] group) received collagen sponges filled with HCF loaded with BMP-2. All animals were euthanized 8 weeks after surgery, and the fusion was assessed by radiographs, manual palpation, computed tomography, and mechanical testing. The fusion rate was significantly higher in the LD group using HCF than in the SD group or in the control group. Biomechanical testing showed the tensile strength was also significantly higher in the LD group using HCF than in other groups. The HCF system can provide a good option for the delivery of BMP-2 on posterolateral lumbar spine fusion.  相似文献   

8.
BMP—2对培养兔关节软骨细胞代谢的影响   总被引:8,自引:2,他引:8  
目的:探讨BMP-2对体外培养兔关节软骨细胞代谢影响进而了解其在关节软骨损伤修复中的作用。方法:利用荧光分光光度计,721-型分光光度计,^S-Na2SO4同位素掺入法等测定DNA含量、胶原和蛋白多糖的合成。结果:BMP-2既能促进原代及反分化关节软骨细胞DNA合成又能增加羟脯氨酸的含量^35S-Na2SO4掺入。结论:BMP-2能促进软骨细胞的增殖和维持其表型,还可使已丢失软骨表型的反分化软骨细胞有向恢复软骨表型方向分化的可能。  相似文献   

9.
Gene transfer is a promising approach to the delivery of chondrotrophic growth factors to promote cartilage repair. It is unlikely that a single growth factor transgene will optimally regulate these cells. The aim of this study was to identify those growth factor transgene combinations that optimally regulate aggrecan, collagen type II and collagen type I gene expression by articular chondrocytes. We delivered combinations of the transgenes encoding fibroblast growth factor-2, insulin-like growth factor I, transforming growth factor beta1, bone morphogenetic protein-2, and/or bone morphogenetic protein-7 and assessed chondrocyte responses by measuring changes in the expression of aggrecan, type II collagen and type I collagen genes. These growth factor transgenes differentially regulated the magnitude and time course of all three-matrix protein genes. In concert, the transgenes regulated matrix gene expression in an interactive fashion that ranged from synergistic to inhibitory. Maximum stimulation of aggrecan (16-fold) and type II collagen (35-fold) expression was with the combination of IGF-I, BMP-2, and BMP-7 transgenes. The results indicate that the optimal choice of growth factor genes for cell-based cartilage repair cannot be predicted from observations of individual transgenes. Rather, such gene therapy will require an empirically based selection of growth factor gene combinations.  相似文献   

10.
Members of the bone morphogenetic protein (BMP) group of the TGF-beta superfamily have been shown to enhance matrix synthesis and maintain cartilage phenotype in long-term culture. These proteins have also been shown to augment cartilage repair in vivo, and may be of potential therapeutic benefit in the treatment of damaged articular cartilage. The present study was undertaken to examine the effects of BMP-9 on the metabolism of juvenile and adult bovine cartilage in vitro, and to compare the effects to those produced by two previously characterized BMPs: BMP-2 and 13 (CDMP-2). BMP-9 lead to a 7-8-fold stimulation of proteoglycan synthesis at the highest concentration tested, and a 6.4-fold stimulation of collagen synthesis at a concentration of 50 ng/mL in juvenile cartilage. BMP-2 also lead to a 7-8-fold increase in proteoglycan synthesis at the highest concentration tested, and was able to induce collagen synthesis 6.4-fold, but at a concentration of 1000 ng/mL. Proteoglycans isolated from BMP-9 treated cartilage exhibited an increased hydrodynamic size possibly due to increased glycosaminoglycan substitution or decreased C-terminal proteolysis. Consistent with the idea of limited C-terminal proteolysis, BMP-9 treatment lead to a significant reduction in the turnover rate of proteoglycans in juvenile explants. Interestingly, all three BMPs were unable to induce a measurable anabolic response in adult cartilage explants.  相似文献   

11.
OBJECTIVE: Microfracture is used to treat articular cartilage injuries, but leads to the formation of fibrocartilage rather than native hyaline articular cartilage. Since bone morphogenetic protein 7 (BMP-7) induces cartilage differentiation, we hypothesized that the addition of the morphogen would improve the repair tissue generated by microfracture. We determined the effects of these two treatments alone and in combination on the quality and quantity of repair tissue formed in a model of full-thickness articular cartilage injury in adolescent rabbits. DESIGN: Full-thickness defects were made in the articular cartilage of the patellar grooves of forty, 15-week-old rabbits. Eight animals were then assigned to (1) no further treatment (control), (2) microfracture, (3) BMP-7, (4) microfracture with BMP-7 in a collagen sponge (combination treatment), and (5) microfracture with a collagen sponge. Animals were sacrificed after 24 weeks at 39 weeks of age. The extent of healing was quantitated by determining the thickness and the surface area of the repair tissue. The quality of the repair tissue was determined by grading specimens using the International Cartilage Repair Society Visual Histological Assessment Scale. RESULTS: Compared to controls, BMP-7 alone increased the amount of repair tissue without affecting the quality of repair tissue. Microfracture improved both the quantity and surface smoothness of repair tissue. Compared to either single treatment, the combination of microfracture and BMP-7 increased both the quality and quantity of repair tissue. CONCLUSIONS: Microfracture and BMP-7 act synergistically to stimulate cartilage repair, leading to larger amounts of repair tissue that more closely resembles native hyaline articular cartilage.  相似文献   

12.
13.
目的 :研究人重组骨形态发生蛋白 2 (rhBMP 2 )对全层关节软骨缺损的修复 ,观察修复效果。方法 :家犬 8只 (16膝 ) ,每个膝内外髁均做全层软骨缺损 ,内外髁共 3 2个缺损。随机分为 4组 ,每组 2只。每只犬一侧关节行胶原海绵吸附rh BMP填充内外髁缺损 ,另一侧以单纯胶原海绵填充作对照 ,不处理组为空白对照。术后 2、4、 8、 12周取材作大体、光镜、透射电镜观察。结果 :rh BMP组为类软骨细胞修复 ,而单纯胶原海绵组和空白组均为纤维性修复。结论 :rhBMP 2有效地促进关节软骨缺损的修复 ,可以作为临床上治疗关节软骨缺损的方法  相似文献   

14.
This study examines the use of a devitalized biological knee as a scaffold for repopulation with chondrocytes and tests the hypothesis that the devitalized scaffold would become repopulated with the foreign chondrocytes when placed in a suitable environment. Chimeric knee constructs were engineered in vitro and their ectopic in vivo fate was examined in SCID mice. The constructs were made by applying porous collagen sponges that contained viable bovine articular chondrocytes to shaved articular surfaces of devitalized embryonic chick knees. The chimeric joints were cultured for 1 week and were subsequently transplanted into dorsal subcutaneous pouches of 5-week-old mice. Specimens were prepared for histological analysis at 1, 3, 6, or 8 weeks after transplantation. Controls included empty collagen sponges, collagen sponges seeded with viable bovine chondrocytes, and devitalized chick knees without collagen sponge inserts. One week after in vitro incubation of the constructs, the porous collagen sponges with viable bovine chondrocytes were adherent to the shaved articular surfaces of the devitalized chick joints. There was abundant metachromatic neomatrix around the chondrocytes in the collagen sponges. During maintenance of the constructs in vivo, the chimeric joints exhibited dramatic changes. Bovine chondrocytes proliferated in the collagen sponges and formed abundant new matrix. Bovine chondrocytes migrated into preexisting chick cartilage canals at 1 week. Subsequently, bovine chondrocytes invaded the matrix of the devitalized chick knees. Bovine neocartilage obliterated the interface between the collagen sponge and the devitalized chick cartilage. With time in vivo, the bovine neocartilage expanded and replaced the chick matrix. The devitalized cartilage appears to provide a framework for supporting chondrogenesis in a chimeric joint.  相似文献   

15.
Cartilage defects resulting from osteoarthritis (OA) or physical injury can severely reduce the quality of life for sufferers. Current treatment options are costly and not always effective in producing stable hyaline cartilage. Here we investigated a new treatment option that could potentially repair and regenerate damaged cartilage tissue. This novel approach involves the application of infrapatellar fat‐pad derived chondroprogenitor cells onto a mechanically stable biodegradable polymer film that can be easily implanted into a defect site. Poly‐ε‐caprolactone (PCL) films were fabricated via solvent casting in either acetone or chloroform. The hydrophobicity, mechanical properties, and surface morphology of the films were examined. Progenitor cells from infrapatellar fat‐pad were isolated, expanded, and then seeded onto the films. The cells were allowed to self‐assemble on films, and these were then cultured in a chemically defined chondrogenic media for 28 days. The self‐assembled tissue was characterized via histological staining, gene expression analysis, immunohistochemistry, and biochemical analysis. Chondrogenic differentiation was induced to generate a cartilaginous matrix upon the films. Despite differences between in the appearance, surface morphology, and mechanical properties of the films cast in chloroform or acetone, both methods produced tissues rich in sulfated glycosaminoglycan and collagen, although the extracellular matrix produced on chloroform‐cast films appeared to contain more collagen type II and less collagen type I than acetone‐cast films. These self‐assembled constructs have the potential to be implanted into defect sites as a potential treatment for cartilage defect regeneration.  相似文献   

16.
骨髓基质细胞源性软骨细胞修复兔全层关节软骨缺损   总被引:15,自引:5,他引:10  
目的观察体外诱导骨髓基质细胞(MSCs)源性软骨细胞在兔股骨滑车关节面全层软骨缺损修复中的作用. 方法高密度传代培养第3代诱导MSCs分化为软骨细胞,以酸溶性Ⅰ型胶原为载体,两者混合后形成凝胶样植入物(细胞浓度为5×106/ml).于36只新西兰大耳白兔一侧股骨滑车关节面造成3 mm×5 mm全层关节软骨缺损,凝胶样植入为实验侧;另一侧分别为单纯胶原植入组(18个膝关节)和空白对照组(18个膝关节).术后4、8、12、24、32和48周取材观察缺损修复情况及新生组织的类型.参照Pineda标准对新生组织评分. 结果实验侧术后4周,植入细胞类似软骨细胞,周围有异染基质,形成透明软骨样组织;8周,深层有软骨下骨形成,软骨细胞层较正常关节软骨厚;12周,新生软骨厚度减小,与正常软骨相近,细胞呈柱状排列,结构与正常关节软骨相似,软骨下骨形成,潮线恢复;24周,新生软骨厚度较正常薄,约占55%,表面平整,潮线附近仍有肥大的软骨细胞;32周,潮线附近无肥大软骨细胞;48周,组织结构与32周时基本相同,为类透明软骨.Pineda评分24、32和48周间无差异,与4周比较有统计学意义(P<0.05).实验组2~48周期间关节功能良好.单纯胶原组与空白对照组缺损无修复,48周时软骨下骨外露,关节退变;关节功能逐渐减退,动度受限. 结论 MSCs源性软骨细胞移植体内可形成透明样软骨组织,24周后新生软骨特性稳定,48周时为透明样软骨,能维持良好的关节功能.  相似文献   

17.
Using a previously established canine model for repair of articular cartilage defects, this study evaluated the 15-week healing of chondral defects (i.e., to the tidemark) implanted with an autologous articular chondrocyte-seeded type II collagen scaffold that had been cultured in vitro for four weeks prior to implantation. The amount and composition of the reparative tissue were compared to results from our prior studies using the same animal model in which the following groups were analyzed: defects implanted with autologous chondrocyte-seeded collagen scaffolds that had been cultured in vitro for approximately 12 h prior to implantation, defects implanted with autologous chondrocytes alone, and untreated defects. Chondrocytes, isolated from articular cartilage harvested from the left knee joint of six adult canines, were expanded in number in monolayer for three weeks, seeded into porous type II collagen scaffolds, cultured for an additional four weeks in vitro and then implanted into chondral defects in the trochlear groove of the right knee joints. The percentages of specific tissue types filling the defects were evaluated histomorphometrically and certain mechanical properties of the repair tissue were determined. The reparative tissue filled 88+/-6% (mean+/-SEM; range 70-100%) of the cross-sectional area of the original defect, with hyaline cartilage accounting for 42+/-10% (range 7-67%) of defect area. These values were greater than those reported previously for untreated defects and defects implanted with a type II collagen scaffold seeded with autologous chondrocytes within 12 h prior to implantation. Most striking, was the decreased amount of fibrous tissue filling the defects in the current study, 5+/-5% (range 0-26%) as compared to previous treatments. Despite this improvement, indentation testing of the repair tissue formed in this study revealed that the compressive stiffness of the repair tissue was well below (20-fold lower stiffness) that of native articular cartilage.  相似文献   

18.
OBJECTIVE: AG-041R, a novel indolin-2-one derivative, has recently been demonstrated to induce systemic hyaline cartilage hyperplasia in rats. The aim of this study was to characterize its anabolic actions on chondrocytes. DESIGN: Chondrocytes were isolated from knee joints of 5-week-old SD rats. Effects of AG-041R on cartilage matrix synthesis were examined by measuring [(35)S]sulfate incorporation into proteoglycans, Alcian blue staining, and Northern blotting of cartilage matrix genes. ALP activity, mineral deposition and the expression of markers for hypertrophic chondrocytes, were assessed for terminal differentiation of chondrocytes. Roles of endogenous TGF-beta/BMPs and MEK1/Erk signaling in the action of AG-041R were investigated using the neutralizing soluble receptors and the MEK1 inhibitor. RESULTS: AG-041R accelerated proteoglycan synthesis assessed by both [(35)S]sulfate incorporation and Alcian blue stainable extracellular matrix accumulation. It also up-regulated the gene expression of type II collagen and aggrecan, as well as tenascin, a marker for articular cartilage. In contrast, AG-041R suppressed ALP activity, mineralization, and the gene expression of type X collagen and Cbfa1, indicating that AG-041R prevents chondrocyte terminal differentiation. AG-041R increased in BMP-2 mRNA, and the neutralizing soluble receptor for BMPs reversed the stimulatory effects of AG-041R on cartilage matrix synthesis. Moreover, AG-041R activated MEK1/Erk pathway, which was revealed to prevent chondrocyte terminal differentiation. CONCLUSION: AG-041R stimulates cartilage matrix synthesis without promoting terminal differentiation in rat articular chondrocytes, which is mediated at least in part by endogenous BMPs and Erk. The data demonstrates that AG-041R has a potential to be a useful therapeutic agent for articular cartilage disorders.  相似文献   

19.
Bone morphogenic protein-7 (BMP-7) supports ectopic cartilage and bone formation, is expressed in normal articular cartilage, and increases matrix synthesis in chondrocytes. Based on this knowledge, we hypothesized that an adenovirus (Ad) vector encoding human BMP-7 could be used to modify chondrocytes genetically to improve their capacity for cartilage repair. An adenovirus vector encoding BMP-7 (AdBMP-7) was constructed and its bioactivity confirmed by ectopic bone formation assay. AdBMP-7 modification of bovine chondrocytes induced expression of BMP-7 mRNA and bioactive protein, resulting in an increase in incorporation of 35SO4- into proteoglycan, 3H-proline uptake into protein, and the expression of the cartilage-specific matrix genes, aggrecan and type II collagen. An in vitro model of chondrocyte transplantation was used to demonstrate the feasibility of using genetically modified chondrocytes to enhance formation of cartilage-like tissue. When transplanted onto cartilage explants and maintained in vitro for 3 weeks, chondrocytes modified with AdBMP-7 formed 1.9-fold thicker tissue than chondrocytes modified with a control vector (P < 0.001). This tissue was positive for type II collagen and proteoglycan but negative for type X collagen and demonstrated a cartilage-like morphology. These observations suggest that Ad-mediated transfer of BMP-7 gene to chondrocytes enhances the chondrocyte-specific matrix synthesis and their capacity to form cartilage-like tissue, thus representing a strategy that may improve cell-based cartilage repair.  相似文献   

20.
OBJECTIVES: To examine the localization of bone morphogenetic protein (BMP)-2 mRNA and protein in human osteoarthritic (OA) articular cartilage and osteophyte. DESIGN: Five normal, four growing and 14 OA human cartilage samples, graded histomorphologically by Mankin Score, were studied by in situ hybridization and immunohistochemistry for the expression of BMP-2. RESULTS: BMP-2 mRNA was present in chondrocytes in neonatal growing articular cartilage, but was scarcely present in normal adult articular cartilage. In OA articular cartilage, BMP-2 mRNA and protein were detected in both clustering and individual chondrocytes in moderately or severely damaged OA cartilage. In moderately damaged OA cartilage, BMP-2 mRNA was localized in both upper and middle zone chondrocytes, but was not detected in deep layer chondrocytes. In severely damaged OA cartilage, cellular localization of BMP-2 mRNA was extended to the deep zone. In the area of osteophyte formation, BMP-2 mRNA was intensely localized in fibroblastic mesenchymal cells, fibrochondrocytes, chondrocytes and osteoblasts in newly formed osteophytic tissue. The pattern of BMP-2/4 immunolocalization was associated with that of mRNA localization. CONCLUSIONS: BMP-2 mRNA and BMP-2/4 were detected in cells appearing in OA tissues. BMP-2 was localized in cells of degenerating cartilage as well as osteophytic tissue. Given the negative localization of BMP-2 in normal adult articular cartilage, BMP-2 might be involved in the regenerating and anabolic activities of OA cells, which respond to cartilage damage occurring in osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号