首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to determine whether the genetic variance in bone mineral density (BMD) and calcaneal ultrasound differs in pre- and postmenopausal women and to establish whether the genes operating before the menopause are the same as those after the menopause. Twins aged 18–75 years were recruited from the St Thomas” UK Adult Twin Registry. Quantitative model fitting techniques were used to test for differences in genetic influences in pre- and postmenopausal twins of several BMD sites and calcaneal ultrasound measures accounting for age. BMD and heel ultrasound variables were measured in 2490 female twins: 360 monozygotic pairs and 885 dizygotic pairs. The heritability in the group overall ranged from 19% to 76%. A significant increase in total variance was seen for most BMD sites after the menopause. The proportion of total variance explained by genetic influence was higher premenopausally at all sites except the femoral neck. For example, the genetic proportion of total variance for spine BMD was 88% premenopausally and 77% postmenopausally. In contrast there was no significant difference in total variance of ultrasound measures with menopause. There was no indication that traits are influenced by different genes before and after menopause. This study demonstrates that genetic and environmental influences differ significantly in pre- and postmenopausal groups for BMD, but not for calcaneal ultrasound. The total variance in BMD is greater postmenopausally, but there is evidence that the same genes are involved. These data stress the importance of accounting for menopause–gene interactions in the genetic analysis of data on osteoporosis. Received: 28 June 2000 / Accepted: 14 November 2000  相似文献   

2.
Recently a polymorphism was found in the human osteocalcin gene, and its association with bone mass was investigated in healthy postmenopausal Japanese women. The osteocalcin gene allelic variant HH was found to be overrepresented in women with osteopenia. The purpose of this study was to investigate whether the previously demonstrated polymorphism of the osteocalcin gene was related to bone mineral density (BMD; g/cm2) or osteopenia in a group of 97 healthy Caucasian adolescent females (aged 16.9 ± 1.2 years, mean ± SD). BMD of the left humerus, right femoral neck, lumbar spine and total body was measured using dual-energy X-ray absorptiometry. The relation between the allelic variants and bone density was analyzed as presence or absence of the H allele. Presence of the H allele was found to be related to a lower BMD of the humerus (0.97 vs 1.02, p = 0.03). There was also a strong tendency towards significance at the femoral neck (p = 0.06) and total body (p = 0.11). Using a multiple linear regression and including physical activity, weight, height and years since menarche, presence of the H allele was found to be an independent predictor of humerus BMD (β=−0.21, p<0.05) and femoral neck BMD (β=−0.23, p<0.01). Using logistic regression, presence of the H allele was also independently associated with a 4.5 times increased risk of osteopenia (p = 0.03) in the whole group. Osteopenia was defined as at least 1 SD lower bone density than the mean for the whole group of at least one of the BMD sites measured. We have demonstrated that the osteocalcin HindIII genotype is independently related to bone density in healthy adolescent females. The present study also suggests that presence of the H allele is predictive of osteopenia at an early age. Received: 31 January 2000 / Accepted: 25 April 2000  相似文献   

3.
Parathyroid hormone (PTH) may be an important determinant of cortical bone remodeling in the elderly. Vitamin D status is one of the determining factors in this relationship. The aim of this study was to quantify the relationship between serum PTH, vitamin D and bone mineral density (BMD) in elderly women in Reykjavik (64° N), where daily intake of cod liver oil is common and mean calcium intake is high. ln PTH correlated inversely with 25(OH)D (r=−0.26, p<0.01). In multivariate analysis PTH correlated inversely with whole body BMD (mostly cortical bone) (R 2= 2.2%, p = 0.04) but not with the lumbar spine BMD, reflecting more cancellous bone. No association was found between 25(OH)D levels and BMD at any site in univariate or multivariate analysis. Osteocalcin, a measure of bone turnover, was negatively associated with BMD and this association remained significant when corrected for PTH levels. In summary, in this fairly vitamin D replete population with high calcium intake, PTH was negatively associated with total body BMD. We infer that suppression of PTH may reduce cortical bone loss, but other factors are likely to contribute to age-related bone remodeling and osteoporosis. Received: 3 January 2000 / Accepted: 10 April 2000  相似文献   

4.
The aim of this study was to assess the pattern of ultrasound (QUS) parameters and bone mineral density at different skeletal sites in patients with primary hyperparathyroidism (PHPT) before and after surgical treatment. In 22 patients (age range 28–74 years) with PHPT we measured speed of sound (SOS), attenuation (BUA) and Stiffness at the calcaneus, amplitude-dependent speed of sound (AD-SoS) at proximal phalanges, and bone mineral density at lumbar spine (BMD-LS) and at the mid-radius (BMD-MR) and ultradistal radius (BMD-UDR) before, 1 and 2 years after surgical operation. Twenty-two age- and sex-matched healthy subjects provided control data. Before surgery, all parameters apart from SOS were significantly lower in PHPT patients than in controls. At the end of the study period, BMD-LS increased by 7.0%, BMD-UDR by 7.4% and BMD-MR by 11.0%. The changes in ultrasound parameters after surgery were lower (0.44% for SOS, 2.2% for BUA, 3.3% for Stiffness and 2.6% for AD-SoS); however, the increase was statistically significant (p<0.05 and p<0.01, respectively) only for Stiffness and AD-SoS. Our results indicate that parathyroidectomy increases both axial and appendicular BMD and influences QUS parameters differently at the calcaneus and at the phalanges. The combined use of BMD and QUS could improve the assessment of skeletal status in patients with PHPT before and after surgery. Received: 22 January 1999 / Accepted: 25 August 1999  相似文献   

5.
A cross-sectional study was carried out to obtain data on the bone mineral density status of a group of neurofibromatosis-1 patients with spinal deformities, and to search for possible accompanying changes in the bone mineral turnover. Neurofibromatosis-1 is a heredofamiliar disorder that is associated with a variety of skeletal anomalies (mostly spinal deformities) in 10–50% of patients. Intraoperatively, a poor vertebral bone quality has been observed. Efforts have been made to identify factors preventing curve progression, to optimize operational planning and to explain the pathomechanism. As part of the preoperative evaluation, dual-energy X-ray absorptiometry was used to assess the bone mineral density of the lumbar spine in 12 patients with neurofibromatosis-1, supplemented by laboratory blood/urine investigations. A significant decrease in bone mineral density of the lumbar spine was measured. An inverse relation was suggested between the severity of scoliosis and the lumbar spine Z-scores. No pivotal alterations were identified in the laboratory measurements. The bony tissue abnormality observed intraoperatively in neurofibromatosis-1 patients may be described as a diminution of the axial bone mineral density. The biochemical parameters do not support the presence of hyperparathyroidism, renal disorders or other associated diseases influencing the bone mineral turnover. The evaluation of bone mineral density in the course of the preoperative planning is proposed in neurofibromatosis-1; the exact background and the role of a possible osteoporosis in the prognosis remain to be elucidated. Received: 12 January 2001 / Accepted: 21 March 2001  相似文献   

6.
Several genetic polymorphisms are implicated as determinants of bone mineral density (BMD) in postmenopausal women. These include the Sp1 polymorphism of the collagen type Iα 1 (COLIA1) gene, the FokI and BsmI polymorphisms of the vitamin D receptor (VDR) gene, and the PvuII and XbaI polymorphisms of the estrogen receptor (ER) gene. The relative importance and the independence of these genetic effects have not been studied simultaneously in the same population. We evaluated the effects of these polymorphisms on lumbar spine BMD among 154 postmenopausal Greek women. BMD tended to differ across Sp1 genotypes (mean 0.842 g/cm2 in SS, 0.851 g/cm2 in Ss, 0.763 in ss, age-adjusted p = 0.056), mostly because ss homozygotes had lower BMD (p = 0.018 compared with SS and Ss). No other polymorphisms were associated with BMD in this population (p= 0.53 for FokI, p= 0.94 for BsmI, p = 0.80 for PvuII, p = 0.91 for XbaI). In multivariate modeling, the effect of ss homozygosity was clinically and statistically significant (–0.105 g/cm2, p= 0.013) after adjusting for age, weight, height, hormone replacement use, and the other four polymorphisms. None of the other four polymorphisms was retained as an independent predictor of BMD in a backward elimination model and no significant synergistic effects were observed when gene interactions were tested. When all five polymorphisms are considered simultaneously, the Sp1 COLIA1 polymorphism seems to have the most unequivocal effect on BMD, at least in postmenopausal women. Received: 3 July 2000 / Accepted: 14 November 2000  相似文献   

7.
Alendronate therapy in osteoporotic women decreases bone turnover and increases bone mineral density (BMD). Optimal patient management should include verification that each patient is responding to therapy. Markers of bone turnover and BMD have both been proposed for this purpose. We have investigated changes resulting from alendronate therapy with an enzyme immunoassay for bone alkaline phosphatase (BAP) and compared it with total alkaline phosphatase (TAP) and BMD of the lumbar spine, hip, and total body. Subjects were drawn from a multicenter randomized, placebo-controlled trial of alendronate in postmenopausal women with osteoporosis. BAP and TAP levels were measured at baseline and following 3, 6 and 12 months of therapy with either placebo (n= 180) or alendronate 10 mg/day (n= 134). All subjects also received 500 mg/day supplemental calcium. BMD was measured at baseline and following 3, 6, 12, 18, 24 and 36 months of therapy. To compare BAP, TAP and BMD at each site for identifying women that experienced a skeletal effect of alendronate, we calculated least significant change (LSC) values from the long-term intraindividual variability in each placebo-treated woman. Median levels of BAP decreased by 34%, 44% and 43% at 3, 6 and 12 months, respectively, in alendronate-treated women (p<0.0001 compared with baseline and with placebo). These changes were significantly greater (p<0.0001) than changes observed for TAP. Following 6 months of alendronate therapy, 90% of the women had experienced a decrease in BAP exceeding the LSC compared with only 71% for TAP. The greatest number of women similarly identified with BMD at any site (i.e. a gain in BMD exceeding the LSC) was 81% for spinal BMD at 36 months. All other sites were less than 70% at 36 months. Short-term changes in BAP and TAP were modestly associated with subsequent changes in BMD at all sites (Spearman’s rho −0.22 to −0.52, p<0.05). Compared with TAP and BMD, BAP testing rapidly and sensitively identified skeletal effects of alendronate thus enabling appropriate drug monitoring of osteoporotic women. Though BAP and TAP changes were modestly predictive of BMD changes, the value of the bone marker tests is their ability to detect rapidly a skeletal effect of therapy. Received: 19 May 2000 / Accepted: 31 October 2000  相似文献   

8.
The vitamin D receptor gene (VDRG) polymorphism as a factor of bone turnover rate or bone mineral density (BMD) is a controversial issue, especially in different ethnic populations. In addition to intron 8 (Bsm1, Taq1) and exon 9 (Apa1), VDRG polymorphism is present at its translation initiation site on exon 2. The VDRG has two translation initiation sites. The first shows a thymine/cytosine polymorphism and can be detected by restriction fragment length polymorphism (RFLP) using the endonuclease Fok1. This start codon polymorphism (SCP) of the VDRG was detected by polymerase chain reaction and then by RFLP with Fok1. While the f allele was assigned for the presence of the restriction site, the F allele was assigned for the absence of the restriction site, and the encoded vitamin D receptor is shorter by three amino acids. We examined the association between this SCP of the VDRG and bone turnover as well as BMD in 101 premenopausal Taiwanese women aged 40–53 years. Total body bone mineral content and BMD of proximal femur and lumbar spine were measured by dual-energy X-ray absorptiometry. We found a prevalence of 39.6% for the f allele of the VDRG. The frequencies of FF, Ff and ff genotypes were 35.6%, 49.5% and 14.9%, respectively. There was no statistically significant difference in BMD at any site or bone turnover markers among the three Fok1 genotypes (FF, Ff and ff). The SCP is independent of Bsm1, Apa1 or Taq1 polymorphisms of the VDRG at intron 8 and exon 9. In conclusion, the SCP polymorphism detected by endonuclease Fok1 does not significantly influence BMD or bone turnover in premenopausal women in Taiwan. Received: 7 July 1998 / Accepted: 10 November 1998  相似文献   

9.
Familial dysautonomia (FD) patients suffer from multiple fractures and have reduced bone pain, which defers the diagnosis. The pathogenesis of bone fragility in FD is unknown. This study aimed to characterize bone mineral metabolism and density in FD. Seventy-nine FD patients aged 8 months to 48 years (mean age 13.9 ± 10.4 years, median 12.3) were studied. Clinical data included weight, height, bone age, weekly physical activity and history of fractures. Bone mineral density (BMD) of the lumbar spine (n= 43), femoral neck (n= 26), total hip (n= 22) and whole body (n= 15) were determined by dual-energy X-ray absorptiometry. Serum 25-hydroxyvitamin D3, osteocalcin, bone alkaline phosphatase (B-ALP), parathyroid hormone and urinary N-telopeptide cross-linked type 1 collagen (NTx) were determined in 68 patients and age- and sex-matched controls. Forty-two of 79 patients (53%) sustained 75 fractures. Twenty-four of 43 patients had a spine Z-score <–2.0, and 13 of 26 had a femoral neck Z-score <–2.0. Mean femoral neck BMD Z-score was lower in patients with fractures compared with those without (–2.5 ± 0.9 vs –1.5 ± 1.0, p= 0.01). Mean body mass index (BMI) was 16 kg/m2 in prepubertal patients and 18.4 kg/m2 in postpubertal patients. Bone age was significantly lower than chronological age (75.5 vs 99.3 months in prepubertal patients, p<0.001; 151 vs 174 in post-pubertal patients, p<0.05). NTx and osteocalcin levels were higher in FD patients compared with controls (400 ± 338 vs 303 ± 308, BCE/mM creatinine p<0.02; 90 ± 59.5 vs 61.8 ± 36.9 ng/ml, p<0.001, respectively). B-ALP was lower in FD patients compared with controls (44.66 ± 21.8 vs 55.36 ± 36.6 ng/ml, p<0.04). Mean spine Z-score was significantly lower in physically inactive compared with active patients (–3.00 ± 1.70 vs –1.77 ± 1.3, respectively, p= 0.05). We conclude that fractures in FD patients are associated with reduced BMD. FD patients have increased NTx and osteocalcin. Contributing factors include reduced BMI, failure to thrive and reduced physical activity. Preventive therapy and early diagnosis are essential. Received: 21 May 2001 / Accepted: 27 November 2001  相似文献   

10.
Association of BST B1 restriction fragment length polymorphism (RFLP) of the parathyroid hormone (PTH) gene with bone mineral density (BMD) was examined in 383 healthy postmenopausal women in Japan who were unrelated. The RFLP was represented as B or b, the capital letter signifying the presence of and the small letter the absence of restriction site for BST B1. The frequency of each genotype—BB, Bb, and bb—was 82.5%, 16.7%, and 0.8%, respectively. When we statistically compared age, years after menopause, body height, and body weight between the BB genotype and the Bb genotype groups, there was no significant difference between the groups. However, the lumbar BMD and the score of BMD adjusted for age and body weight (Z score) were significantly lower in the group of genotype Bb than in the BB: 0.859 ± 0.019 g/cm2 versus 0.925 ± 0.011 (mean ± SE, P= 0.01) and −0.412 ± 0.138 versus 0.067 ± 0.082 (mean ± SE, P= 0.01). In addition, the Z score of total body BMD in the Bb genotype group was lower than that in the BB group. Comparison of serum and urinary biochemical bone metabolic markers suggested that the subjects with Bb genotype might be in a relatively higher state of bone turnover than those with BB genotype. These results suggest that the polymorphism in the PTH gene would be a useful genetic marker for lower BMD and the susceptibility for osteoporosis. Received: 19 March 1998 / Accepted: 24 June 1998  相似文献   

11.
A recent meta-analysis of 16 publications suggested that bone mineral density (BMD) is not associated with vitamin D receptor (VDR) gene polymorphism (VDRGP) at the 0.05 significance level when a study with genotyping mistakes is excluded. We wished to determine whether ‘positive’ findings supporting the BMD–VDRGP association may be explained by chance, and what factors affect the outcomes of these studies. Seventy-five articles and abstracts on the association of VDRGP with BMD and related skeletal phenotypes published before January 1997 were identified. Twenty-three of 67 (34.3%) studies on spinal BMD and 22 of 51 (43.1%) on femoral neck BMD had found a BMD–VDRGP association at p<0.05, significantly (p= 7 × 10–14 for spinal BMD, p= 9 × 10–16 for hip BMD) higher than the expected 5% false positive rate under the null hypothesis of ‘no association’. ‘Positive’ results were more frequently observed in studies on females before the menopause than those on females after the menopause (p<0.02) or on male and female subjects combined (p<0.05) when skeletal phenotypes at any bone sites were considered. The ‘positive rate’ among studies was also influenced by the age range of subjects studied and by the inclusion of subjects with osteoporosis. It is concluded that: (1) BMD is associated with VDRGP with high levels of confidence and (2) non-genetic factors and genetic heterogeneity interfere with the detection of the effects of VDRGP on bone phenotypes. Received: 20 January 1998 / Accepted: 7 April 1998  相似文献   

12.
Although genetic factors have been strongly implicated in determining bone mineral density (BMD), the role of the vitamin D receptor (VDR) polymorphism remains controversial. An overall consensus is difficult, as the populations studied have been heterogeneous with respect to menopausal status and ethnicity. Moreover, some studies have examined only small populations, and relatively few studies have been conducted in Asian populations. There is mounting evidence that calcium homeostasis in Asian populations differs from that in Caucasians. This difference may be mediated, in part, through VDR effects. In a cross-sectional study we have examined the relationship between the VDR polymorphism and BMD in 272 women (mean age 75 years) and 237 men (mean age 73 years) of Chinese origin from Hong Kong. Consistent with other studies in Asian populations we found higher frequencies of the T, b and a alleles compared with those reported in Caucasian populations. Moreover, no significant difference in BMD was observed when subjects were grouped by a combination of the genotypes (bbAATT, bbAaTT, bbaaTT, BbAaTt, BbAATt). These results suggest that VDR polymorphism is not associated with BMD in elderly Hong Kong Chinese men and women. Received: 16 July 1998 / Accepted: 15 February 1999  相似文献   

13.
In two recent case–control studies premature greying of the hair was associated with a lowering of bone mineral density (BMD) and osteopenia, suggesting that this might be a clinically useful risk marker for osteoporosis. We report a further re-examination of this proposal in 52 prematurely grey-haired women from East Yorkshire who responded to an advertisement inviting them for bone densitometry. Thirty-five had no clinical or drug history that could influence bone density. All were Caucasian with a mean age of 52.8 years. In the group as a whole the mean BMD values at the lumbar spine and femoral neck were no different from those of a young adult, but there was a trend toward a greater than average BMD than that of the local age-matched population (p= 0.097 and 0.218, respectively). Twenty women were premenopausal, with an average age of 45.3 years. Mean BMD values at the lumbar spine and femoral neck in this group were no different from those of young adults. There was, however, a trend toward a BMD greater than that of the local age-matched population at the femoral neck (p= 0.117). Fifteen women were postmenopausal with an average age of 62.9 years and an average age at menopause of 51.1 years. Mean BMD values at both the lumbar spine and femoral neck in this group were lower than those of young adults, but no different from those of the local age-matched population. In conclusion, our group of prematurely grey-haired women had average BMD for their age, and we are therefore unable to support the proposed clinical usefulness of premature greying as a risk marker for osteoporosis. Received: 1 December 1998 / Accepted: 11 March 1999  相似文献   

14.
The aim of the study was to establish population ranges of bone mineral density (BMD) for Hong Kong Chinese men and women for the Hologic QDR 2000 bone densitometer, to compare these values with the manufacturer’s reference ranges, to compare these values with population ranges for women obtained for the Norland X26 bone densitometer, and to examine variations between the two densitometers. The subjects were 164 men aged 40–79 years and 436 women aged 20–89 years, who were all ethnic Chinese, recruited from volunteers, social centers for the elderly and general practice clinics. BMD in women began to decline rapidly between ages 50 and 79 years, averaging about 10% loss per decade from the young adult (20–29 years) mean. The percentage losses from young adult mean values in the spine, femroal neck, trochanter and total femur were 23%, 30%, 31% and 33%, respectively, from 20 to 79 years. In the ninth decade no further decrease in BMD occurred with the exception of a further 4% at the hip sites. In men, no decrease in spine BMD occurred between 40 and 70 years. Compared with BMD in the fourth decade, 10%, 13%, and 11% of BMD was lost at the femoral neck, trochanter and total femur, respectively, by the seventh decade. These values show differences compared with the manufacturer’s reference ranges for Caucasians and Japanese. BMD values for the spine were comparable between Hologic and Norland densitometers, but Hologic values for femoral neck and trochanteric regions were lower than the Norland values. Data provided by this study may thus be used as normative values for the Hologic QDR2000 bone densitometer, instead of values provided by the manufacturer. BMD values at the hip sites are not interchangeable between Norland and Hologic bone densitometers, and estimation of numbers of the population with osteoporosis will depend on the model of densitometer used. Received: 31 May 2000 / Accepted: 31 October 2000  相似文献   

15.
Acromegaly caused by growth hormone (GH) hypersecretion is characterized by enhanced skeletal growth and soft tissue enlargement. Insulin-like growth factor-1 (IGF-1) is the main peripheral mediator of GH action and it has a crucial role in the maintenance of a normal bone mass. However, in some patients with acromegaly, secondary osteoporosis is observed, despite the strong anabolic effect of GH and IGF-1 in bones. It is thought to be due to hypogonadism. The bone changes are accompanied by increased turnover. The aim of this study was to assess bone properties by ultrasound and turnover in patients with acromegaly. The study was carried out in 26 patients (13 men, 13 women): 14 with active acromegaly and 12 cured by surgery who had non-active disease. Speed of sound (SOS), broadband ultrasound attenuation (BUA) and their combination Stiffness Index (SI) by quantitative ultrasound (QUS) of the heel, hormonal status, serum osteocalcin (OC) concentration and the urinary excretion of pyridinoline collagen crosslinks (PYR) were all studied. Controls were 20 age- and sex-matched healthy persons. We observed statistically significantly lower QUS values in patients with active disease than in those whose disease was cured. The differences were more pronounced in men. QUS values were lower in the entire group of patients compared with the controls; however, the differences were not statistically significant. Serum OC concentrations and urinary PYR excretion were higher in active disease. Statistically significant inverse correlations between serum GH levels and SOS (r=–0.58, p = 0.002); BUA (r=–0.66; p= 0.0001); T-score (r = −0,65, p= 0.0001) and Z-score (r=–0.66, p = 0.0001) were found only in male patients. No correlations between IGF-1, duration of the disease, OC, PYR and other data studied were observed. In conclusion, we have shown decreased QUS parameters suggesting impaired bone properties and quality in terms of density and elasticity in men, but not in women, with active acromegaly. This finding suggests osteoporosis with increased bone turnover. The above-mentioned changes might be caused by the action of GH on trabecular bone and its metabolism, since no hypogonadism in male patients was shown. Moreover, the influence of acromegaly on heel geometry and soft tissue swelling should also be considered. Received: 20 February 2001 / Accepted: 23 October 2001  相似文献   

16.
Osteoporosis is a common disorder with a strong genetic component. Our aim was to evaluate the correlation of the vitamin D receptor gene intron 8 BsmI polymorphism with bone mineral density (BMD) and their relationship to osteoporosis. We determined the vitamin D receptor gene intron 8 BsmI polymorphism using polymerase chain reaction-based restriction analysis in 171 postmenopausal Chinese women in Taiwan. The polymorphism was detected using the restriction enzyme BsmI, where the B allele indicated absence of the cuttable site and the b allele its presence. BMD of the lumbar spine and proximal femur were measured using dual-energy X-ray absorptiometry. The allelic frequencies for postmenopausal Chinese women in Taiwan were 12.3% for B and 87.7% for b in BsmI restriction fragment length polymorphisms. The prevalence of each genotype in the study population was: 6.4% BB, 11.7% Bb and 81.9% bb. The three genotypic groups differed significantly in BMD at the lumbar spine and the femoral neck. These differences corresponded to significant gene-dose effects at the lumbar spine and femoral neck (p<0.001 for both sites). The relative risk for the development of osteoporosis was about 2–3 times as great as that predicted by the differences between genotypes in BMD, and remained significant even after adjustment for age, height and weight. The vitamin D receptor gene intron 8 BsmI polymorphism is associated with reduced BMD and predisposes women to osteoporosis. Received: 21 February 2001 / Accepted: 31 May 2001  相似文献   

17.
Regular walking is associated with reduced risk of fracture and, in our recent randomized trial, reduced calcaneal bone loss relative to controls. The present follow-up study compared the effects on dual-energy X-ray absorptiometry, ultrasound and biochemical indices of bone density and metabolism of (i) taking up (ii) continuing with and (iii) ceasing brisk walking for exercise. Subjects were 68 postmenopausal women aged 60–70 years. Twenty previously sedentary women remained sedentary (Sed/Sed) whilst 17 took up brisk walking (Sed/Walk). Fifteen women who had been walking regularly for 1 year returned to their former sedentary lifestyle (Walk/Sed), whilst 16 continued brisk walking over a second year (Walk/Walk). Bone mineral density (BMD), broadband ultrasonic attenuation (BUA), and biochemical markers of bone formation (serum osteocalcin, C-terminal propeptide of type I collagen and bone alkaline phosphatase) and resorption (urinary deoxypyridinoline) were assessed at baseline and 12 months. Women in the Sed/Walk and Walk/Walk groups completed a mean (SEM) of 16.9 (0.7) and 20.8 (1.2) min of brisk walking per day, respectively. Changes in BMD did not differ significantly between groups. Calcaneal BMD decreased significantly in Walk/Sed women [by 2.7 (1.4)%; p= 0.01] whilst changes in other groups were not significant. Calcaneal BUA increased significantly (p= 0.02) in Sed/Walk women [by 7.4 (3.3)%] relative to other groups. Urinary deoxypyridinoline increased over the year in the Sed/Sed group but there were no significant changes in biochemical markers in other groups. Women taking up brisk walking for exercise showed no change in BMD but a significant increase in calcaneal BUA. There was no significant effect on BMD or BUA of continuing brisk walking but calcaneal BMD declined on ceasing brisk walking. Bone resorption increased in sedentary women but not exercisers, suggesting the effect on exercise on bone in postmenopausal women could be through amelioration of this increased turnover. Received: 12 September 2000 / Accepted: 13 February 2001  相似文献   

18.
The relationship between Fok I polymorphism of the vitamin D receptor start codon, bone mineral density (BMD) and vertebral fractures was studied in 684 Chinese men and women. A significant trend was observed only in Chinese women aged 70–79 years. The mean BMD at the total body was 0.85 ± 0.01 g/cm2, 0.82 ± 0.01 g/cm2and 0.84 ± 0.01 g/cm2 for elderly women of the FF, Ff and ff genotypes respectively (p= 0.06 by ANOVA). Similar but statistically non-significant trends were observed at the hip and spine. However, no association between BMD and the Fok I genotype was observed in younger women (aged 50–59 years) and elderly men (aged 70–79 years). In all study groups, there was no effect of an interaction between Fok I polymorphism and calcium intake on BMD (p>0.05 for the interaction effects by two-way ANOVA). No significant association was observed between Fok I polymorphism and vertebral fracture in elderly men or women (p>0.05 by the chi-square test). We conclude that the Fok I polymorphism may have a weak effect on the BMD of elderly Chinese women. Received: 2 February 2001 / Accepted: 27 August 2001  相似文献   

19.
The use of different reference ranges may give rise to different T-score values for the same bone mineral density (BMD) value. This study was designed to quantify the differences in the classification of a particular population on the basis of normal ranges obtained from other reference databases. The T-scores obtained in a sample of 148 women by applying the Spanish normal range were compared with the normal range obtained in NHANES III for femoral neck. Significant differences were found when T-scores were compared, but there were no differences in categorizations using the WHO criteria. The application of these reference ranges to a female population aged older than 45 years with known BMD showed significant differences in classification. In conclusion, the T-score can vary according to the normal range used as reference, but it has little influence on the categorization of individual patients. However, it may be important when applied to a general population. Received: 17 November 1999 / Accepted: 29 October 1999  相似文献   

20.
This paper describes a study to assess the clinical value of bilateral femoral neck bone mineral density (BMD) measurements. Although a range of factors will determine clinical decisions, the classification of the site with the lowest T-score is likely to have significant bearing on the management of a patient. While it is common practice to measure BMD at the lumbar spine and a single neck of femur, knowledge of the BMD of the second femur may also be of diagnostic value. Using dual-energy X-ray absorptiometry, BMD of the lumbar spine and right and left femoral neck was measured in a group of 2372 white, Caucasian women (mean age ± SD, 56.6 ±13.9 years) routinely referred for bone densitometry. Analysis of the measurements showed a significant (p= 0.02) but small difference between the mean BMD of the right (0.840 ± 0.152 g/cm2) and left (0.837 ± 0.150 g/cm2) femoral neck. Further investigation of femur scans revealed 79 (3.3%) patients in whom one side was osteoporotic while the other side and spine were normal or osteopenic using the World Health Organization diagnostic criteria in combination with manufacturer”s reference data. Patients in whom the femoral neck BMD measurements differed by less than the precision error of the system were then excluded. This left only 51 (2.2%) patients, that is 29 (1.2%) for right femur and spine scan and 22 (0.9%) for left femur and spine scan, in whom knowledge of both femoral neck BMD measurements could have altered the classification of the lowest site assessed to osteoporotic. These data suggest that there is only a small benefit from performing bilateral femoral neck BMD measurements. Since BMD measurements are only one of a range of factors considered as part of a patient”s management, it is suggested that the extra time, cost and radiation dose associated with measurement of the second femur may not be justified. Received: 28 October 1999 / Accepted: 2 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号