首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
TGFbeta1 acts as a potent negative regulator of the cell cycle and tumor suppressor in part through induction of cyclin dependent kinase inhibitors p15(ink4b), p21, and p57. We previously showed that primary mouse epidermal keratinocytes (MEK) expressing a v-ras(Ha) oncogene undergo hyperproliferation followed by growth arrest and senescence that was dependent on TGFbeta1 signaling and associated with increased levels of p16(ink4a) and p19(ARF). Here we show that the induction of both p16(ink4a) and p19(ARF) in v-ras(Ha) expressing keratinocytes is dependent on TGFbeta1 signaling, as TGFbeta1 treatment or Smad3 overexpression induces both p16(ink4a) and p19(ARF) protein and mRNA, while Smad3 depletion or Smad7 overexpression blocks induction. Genetic ablation of the cdkn2a (ink4a/arf) locus reduced sensitivity to TGFbeta1 mediated cell cycle arrest and induction of senescence suggesting that alteration of TGFbeta1 responses may be an additional pathway impacted by the inactivation of cdkn2a locus during tumor development.  相似文献   

2.
K Kurokawa  T Tanaka  J Kato 《Oncogene》1999,18(17):2718-2727
p19ARF encoded by the INK4a tumor suppressor gene locus functions upstream of p53 to induce cell cycle arrest. p19ARF can interact with MDM2 and p53 in cells ectopically overexpressing these three components, but the biochemical cascades from p19ARF to cell cycle arrest has not been fully elucidated. In this study, we generated stably transfected NIH3T3 cells that express exogenous p19ARF under the control of a heavy metal-inducible metalothionine promoter. Cells arrested in G1 by ectopically expressed p19ARF contained considerably reduced G1 cyclin dependent kinase (cdk2 and cdk4) activities. The expression of cyclin A (a regulatory subunit of cdk2) markedly decreased, while cyclin D1, the major cdk4 partner in fibroblasts, expressed at a slightly higher level and formed complexes with cdk2 and cdk6 in addition to cdk4. Induction of p19ARF activated p53 by increasing its stability, and allowed the expression of p21Cip1, which bound to all of the cyclin D1-cdk complexes (cyclin D1-cdk2, -cdk4, and -cdk6) thereby inhibiting their kinase activities. p19ARF formed complexes with several cellular proteins including mouse MDM2. The majority of MDM2 was found in the complex with p19ARF, while no p53 was detected in association with p19ARF. Thus, we propose that p19ARF neutralizes MDM2 by sequestration from p53, which results in activation of p53, inhibition of G1 cyclin-cdk activities, and G1 arrest.  相似文献   

3.
Lindström MS  Wiman KG 《Oncogene》2003,22(32):4993-5005
p19ARF is induced in response to oncogene activation or during cellular senescence in mouse embryo fibroblasts, triggering p53-dependent and p53-independent cell cycle arrest and apoptosis. We have studied the involvement of human p14ARF as a regulator of p53 activity in normal human skin fibroblasts (NHFs) or WI38 lung embryonic fibroblasts expressing conditional Myc or E2F1 estrogen receptor fusion proteins. Both Myc and E2F1 activation rapidly induced p53 phosphorylation at Ser-15, p53 protein accumulation, and upregulation of the p53 target genes MDM2 and p21. Activation of E2F1 induced p14ARF mRNA and protein levels. In contrast, Myc activation did not induce any significant increase in p14ARF mRNA or protein levels in neither NHFs nor WI38 fibroblasts within 48 h. Myc and E2F1 induced p53 and cell cycle arrest even after silencing of p14ARF using short-interfering RNA. Treatment with the ATM/ATR kinase inhibitor caffeine prevented p53 accumulation upon activation of Myc or E2F1. Our results indicate that p53 phosphorylation, but not p14ARF, plays a major role for the induction of p53 in response to Myc and E2F1 activation in normal human fibroblasts.  相似文献   

4.
The signal transduction pathway regulated by the retinoblastoma tumor suppressor protein, pRB, is abrogated in the majority of human cancers. Using a series of cell lines derived from oral squamous cell carcinomas (SCCs) that were not subjected to radiation or chemotherapy treatment, we detected specific hyperactivity of cyclin dependent kinase (cdk) 6 but not cdk4. Subcellular localization studies showed a predominant nuclear localization of cdk6, demonstrating that this kinase was biologically active. The molecular basis for this aberration are mutations in the MTS1 locus of chromosome 9p21. This locus encodes two partially overlapping genes, the cdk inhibitor p16(ink4a), and p14(ARF), an inhibitor of mdm2-mediated degradation of p53. Our analysis demonstrates that the mutations of the MTS1 locus in oral SCC specifically target expression of the p16(ink4a) gene but less frequently affect p14(ARF). These results suggest that hyperactivity of cdk6 represents a distinct mechanism for pRB inactivation in oral SCC.  相似文献   

5.
Introduction of a v-rasHa oncogene into cultured mouse keratinocytes by transduction with a defective retrovirus is sufficient to transform keratinocytes to the benign phenotype. Transduced keratinocytes overexpress TGF alpha and hyperproliferate in culture medium with 0.05 mM Ca2+. Whereas normal keratinocytes respond to elevated medium Ca2+ by cessation of proliferation and induction of terminal differentiation, v-rasHa keratinocytes are not induced to differentiate by Ca2+. We now demonstrate that v-rasHa keratinocytes have elevated basal levels of phosphatidylinositol, inositol phosphates and diacylglycerols in 0.05 mM Ca2+ medium. Basal turnover of phosphatidylcholine is not altered by the rasHa oncogene. The generation of inositol phosphates is even further stimulated in v-rasHa cells by an increase in extracellular Ca2+ or by exposure to aluminum fluoride. Thus, the v-rasHa gene product does not stimulate the inositol phospholipid pathway maximally and additional phosphatidylinositol is available for turnover in response to inducers of phospholipase C activity. TGF alpha and medium conditioned by v-rasHa keratinocytes, both of which stimulate proliferation of normal cells in 0.05 mM Ca2+, transiently increased phosphatidylinositol turnover in normal keratinocytes but did not inhibit Ca(2+)-induced terminal differentiation. In contrast, sustained elevation in basal phosphatidylinositol metabolism was produced by aluminum fluoride. Combined exposure to aluminum fluoride and exogenous TGF alpha caused hyperproliferation, resistance to Ca(2+)-induced differentiation and morphological changes identical to those of v-rasHa keratinocytes. These results provide a link between the biological consequences of v-rasHa gene expression and biochemical changes which are known to alter the keratinocyte phenotype.  相似文献   

6.
MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL.  相似文献   

7.
The Pezcoller lecture: cancer cell cycles revisited   总被引:60,自引:0,他引:60  
Sherr CJ 《Cancer research》2000,60(14):3689-3695
  相似文献   

8.
Replicative senescence may be an important tumor suppressive mechanism for human cells. We investigated the mechanism of cell cycle arrest at senescence in human mammary epithelial cells (HMECs) that have undergone a period of 'self-selection', and as a consequence exhibit diminished p16INK4A levels. As HMECs approached senescence, the proportion of cells with a 2N DNA content increased and that in S phase decreased progressively. Cyclin D1-cdk4, cyclin E-cdk2 and cyclin A-cdk2 activities were not abruptly inhibited, but rather diminished steadily with increasing population age. In contrast to observations in fibroblast, p21Cip1 was not increased at senescence in HMECs. There was no increase in p27Kip1 levels nor in KIP association with targets cdks. While p15INK4B and its binding to both cdk4 and cdk6 increased with increasing passage, some cyclin D1-bound cdk4 and cdk6 persisted in senescent cells, whose inhibition could not be attributed to p15INK4B. The inhibition of cyclin E-cdk2 in senescent HMECs was accompanied by increased inhibitory phosphorylation of cdk2, in association with a progressive loss of Cdc25A. Recombinant Cdc25A strongly reactivated cyclin E-cdk2 from senescent HMECs suggesting that reduction of Cdc25A contributes to cyclin E-cdk2 inhibition and G1 arrest at senescence. Although ectopic expression of Cdc25A failed to extend the lifespan of HMECs, the exogenous Cdc25A appeared to lack activity in these cells, since it neither shortened the G1-to-S phase interval nor activated cyclin E-cdk2. In contrast, in the breast cancer-derived MCF-7 line, Cdc25A overexpression increased both cyclin E-cdk2 activity and the S phase fraction. Thus, mechanisms leading to HMEC immortalization may involve not only the re-induction of Cdc25A expression, but also activation of this phosphatase.  相似文献   

9.
The alternative reading frame (ARF) tumor suppressor mediates growth arrest or apoptosis through activation of the p53 tumor suppressor. A prevailing concept is that ARF uses p21Cip1/Waf1, a p53-responsive gene and cyclin-dependent kinase (Cdk) inhibitor, to block cell cycle progression. Using p21 nullizygous cells, we demonstrate that p21 is nonessential for the antiproliferative activity of ARF and p53, although it likely governs the arrest through Cdk inactivation when present. ARF overexpression in p21-positive and p21-negative mouse embryo fibroblasts (MEFs), but not in primary cells lacking p53, induced a biphasic (G1 and G2) cell cycle arrest. The ARF-induced growth arrest, regardless of p21 status, coincided with activation of p53 and accumulation of hypophosphorylated retinoblastoma protein (retinoblastoma protein). In ARF-arrested p21-positive cells, the presence of growth-inhibitory retinoblastoma protein correlated with an absence of Cdk2-dependent kinase activity, an increase in p21 association with inactive Cdks, and a lack of cyclin A expression. In contrast, p21-/- mouse embryo fibroblasts were arrested by ARF despite containing elevated levels of cyclin A protein and highly active Cdk2-dependent kinases. These findings provide evidence that ARF can block growth through a p21-independent pathway(s) that overrides Cdk2 activation.  相似文献   

10.
11.
12.
Olsen CL  Gardie B  Yaswen P  Stampfer MR 《Oncogene》2002,21(41):6328-6339
Using an estrogen-inducible retroviral system, we demonstrate that oncogenic Raf-1 induces growth arrest and morphological changes in finite lifespan human mammary epithelial cells (HMEC). This arrest does not rely on expression of the cyclin-dependent kinase inhibitor (CKI) p16(INK4a), nor on changes in expression of the CKIs p21(Cip1), p14(ARF), p27(Kip1) or p57(Kip2). The Raf-induced arrest is independent of viral oncogene mediated inactivation of p53 and pRB, or c-myc overexpression. Flow cytometric analysis demonstrates that cells arrest in both G1 and G2. The Raf-induced arrest is mitigated or eliminated in some immortally transformed HMEC. Immortal HMEC that have both overcome replicative senescence and undergone the recently described conversion process maintain growth in the presence of transduced oncogenic Raf-1; they also gain EGF-independent growth and a low frequency of anchorage-independent growth. However, HMEC that have overcome replicative senescence but have not undergone conversion and HMEC immortalized by transduction with the catalytic subunit of telomerase, hTERT, remain severely growth arrested. These results indicate that the molecular mechanisms responsible for the Raf-1-induced growth arrest may vary among different finite lifespan cell types, and that in HMEC, this mechanism is altered during the conversion process, rather than as a direct consequence of overcoming senescence or expressing hTERT.  相似文献   

13.
14.
TGFbeta1 is a potent growth inhibitor of both primitive and more differentiated human myeloid leukemic cells. The extent of the growth inhibitory response to TGFbeta varies with cell type, and is not linked to stages of differentiation of cell lines. Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGFbeta1-mediated growth inhibition of human MV4-11 myeloid leukemia cells. Both G1-phase and G2-phase cyclins and cdks participate in the regulation of TGFbeta1-mediated growth inhibition of MV4-11 cells. By both depressing cdk2 synthesis and up-regulating cyclin E-associated p27, TGFbeta1 may magnify its inhibitory efficiency. TGFbeta1 also rapidly inhibits phosphorylation of pRb at several serine and threonine residues. The underphosphorylated pRb associates with E2F-4 in G1 phase, whereas the phosphorylated pRb mainly binds to E2F-1 and E2F-3 in proliferating MV4-11 cells. Since TGFbeta1 upregulates p130/E2F-4 complex formation and downregulates p107/E2F-4 complex formation, with E2F-4 levels remaining constant, our results suggest that E2F-4 is switched from p107 to pRb and p130 when cells exit from the cell cycle and arrest in G1 by TGFbeta1. In summary, TGFbeta1 inhibits growth of human myeloid leukemic cells through multiple pathways, whereas the "cdk inhibitor" p27 is both a positive and negative regulator.  相似文献   

15.
The senescence checkpoint constrains the proliferative potential of normal cells in culture to a finite number of cell doublings. In this study, we investigated the mechanism of cyclin dependent kinase (cdk) inhibition in senescent human prostatic epithelial cells (HPECs). Progression of HPECs from early passage to senescence was accompanied by a gradual loss of cells in S phase and an accumulation of cells containing 2N DNA. Furthermore, G1-S phase-associated kinase activities progressively diminished with increasing cell passage. In senescent HPECs, cdk4 and cyclin E1- and A-associated kinases were catalytically inactive. In contrast to observations in senescent fibroblasts, levels of the kinase inhibitor protein (KIP) inhibitor p21CIP1 diminished over the proliferative life span of HPECs. p27KIP1 levels fell as cells approached senescence, and the association of both p21CIP1 and p27KIP1 with cdk4/6 complexes was decreased. However, the level of cyclin E1-associated KIP molecules was unaltered as cells progressed into senescence. Progression to senescence was accompanied by a progressive increase in both the level of p16(INK4A) and in its association with cdk4 and cdk6. As HPECs approached senescence, cdk4- and cdk6-bound p16(INK4A) showed a shift to a slower mobility due to a change in its phosphorylation profile. As p16(INK4A) increased in cdk4 and cdk6 complexes, there was a loss of cyclin D1 binding. The altered phosphorylation of p16(INK4A) in senescent prostatic epithelial cells may facilitate its association with cdk4 and cdk6 and play a role in the inactivation of these kinases.  相似文献   

16.
p16ink4 and pRb, two components of a key G1/S regulatory pathway, and tumor suppressors commonly targeted in oncogenesis, are among the candidates for gene therapy of cancer. Wild-type p16 and a constitutively active pRb(delta cdk) mutant both blocked G1 in short-term experiments, but only p16 imposed a sustained G1 arrest. Unexpectedly, cells conditionally exposed to pRb(delta cdk) entered S phase after 2 days, followed by endoreduplication between days 4-6. The distinct phenotypes evoked by p16 vs pRb(delta cdk) appear mediated by cyclin E/CDK2 which, while active in the pRb(delta cdk)-expressing cells, became rapidly inhibited through restructuring diverse cyclin/CDK/p21 complexes by p16. These results provide novel insights into the roles of p16, pRb and cyclin E in G1/S control and multistep oncogenesis, with implications for gene therapy strategies.  相似文献   

17.
18.
Several types of epithelial neoplasms exhibit high expression of transforming growth factor beta1 (TGFbeta-1), indicating that they have acquired tolerance to this normally growth inhibitory cytokine. Since cyclin D1 is expressed at high levels in murine skin tumors coincident with high levels of TGFbeta-1 expression, we hypothesized that cyclin D1 may override TGFbeta-1 induced growth arrest. We observed that in primary murine keratinocytes treated with TGFbeta-1, cyclin D1 is quickly suppressed at both the mRNA and protein level. Since changes in other cell cycle proteins occur at a later time during TGFbeta-1 treatment, the early suppression of cyclin D1 suggests that this gene is a critical target for TGFbeta-1 growth suppression. Using primary keratinocytes from transgenic mice that overexpress cyclin D1 (K5-D1 mice), we observed partial resistance to TGFbeta-1 growth inhibition. This resistance involves changes in the cyclin/cdk/inhibitor complexes rather than differences in expression of the TGFbeta receptors or signaling. Comparison of cdk associated kinase activity between wild-type and K5-D1 cells shows differential regulation. We conclude that deregulated cyclin D1 and subsequent alterations in cell cycle machinery provides keratinocytes the ability to at least partially override growth inhibitory signals.  相似文献   

19.
Elevation of the cyclin-dependent kinase (cdk) inhibitor, p27(kip1) is necessary for Interleukin (IL)-4-mediated growth arrest of human low grade astrocytoma (RTLGA) cells and occurs at 24 h of treatment. Pathways involved in IL4 alteration of p27(kip1) are unknown, however. Here we investigated whether other cdk inhibitors contributed to the actions of IL-4 on RTLGA cells. By 12 h of IL-4 treatment, both cdk4 and cdk2 kinase activities against the retinoblastoma protein (pRb) were reduced and nuclear entry of pRb was prohibited. Twelve-hour cdk complexes contained elevated p21(waf1/cip1) but not p27(kip1), p15(ink4B) or p16(ink4A). IL-4 increased p21(waf1/cip1) but not p27(kip1) mRNA levels, and stimulated luciferase activity of a p21(waf1/cip1) promoter-luciferase reporter. In p53-mutant WITG3 cells, IL-4 did not alter p21(waf1/cip1) mRNA and promoter-luciferase activity or p27(kipl) protein, suggesting a need for functional p53. STAT6 phosphorylation by IL-4, however, occurred in both p53-mutant WITG3 and p53-functional RTLGA cells. Pre-treatment of RTLGA with anti-sense but not missense p21(waf1/cip1) oligonucleotide prior to IL-4: (a) restored cdk activities; (b) reduced cdk4-associated p21(waf1/cip1) levels; (c) prevented p27(kipl) elevation; and (d) reversed growth arrest. These results are the first to suggest that p21(waf1/cip1) is essential for IL-4-mediated elevation of p27(kip) and growth arrest of astrocytoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号