首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laser flash photolysis–resonance fluorescence technique has been employed to measure rate coefficients and physical vs. reactive quenching branching ratios for O(1D) deactivation by three potent greenhouse gases, SO2F2(k1), NF3(k2), and SF5CF3(k3). In excellent agreement with one published study, we find that k1(T) = 9.0 × 10-11 exp(+98/T) cm3 molecule-1 s-1 and that the reactive quenching rate coefficient is k1b = (5.8 ± 2.3) × 10-11 cm3 molecule-1 s-1 independent of temperature. We find that k2(T) = 2.0 × 10-11 exp(+52/T) cm3 molecule-1 s-1 with reaction proceeding almost entirely (∼99%) by reactive quenching. Reactive quenching of O(1D) by NF3 is more than a factor of two faster than reported in one published study, a result that will significantly lower the model-derived atmospheric lifetime and global warming potential of NF3. Deactivation of O(1D) by SF5CF3 is slow enough (k3 < 2.0 × 10-13 cm3 molecule-1 s-1 at 298 K) that reaction with O(1D) is unimportant as an atmospheric removal mechanism for SF5CF3. The kinetics of O(1D) reactions with SO2 (k4) and CS2 (k5) have also been investigated at 298 K. We find that k4 = (2.2 ± 0.3) × 10-10 and k5 = (4.6 ± 0.6) × 10-10 cm3 molecule-1 s-1; branching ratios for reactive quenching are 0.76 ± 0.12 and 0.94 ± 0.06 for the SO2 and CS2 reactions, respectively. All uncertainties reported above are estimates of accuracy (2σ) and rate coefficients ki(T) (i = 1,2) calculated from the above Arrhenius expressions have estimated accuracies of ± 15% (2σ).  相似文献   

2.
Fluorescent lipid and phospholipid probes were incorporated at 4°C into soybean protoplasts prepared from cultured soybean (SB-1) cells. Fluorescence microscopy showed that the plasma membrane as well as the nucleus were labeled. Fluorescence redistribution after photobleaching (FRAP) analysis was performed on these cells at 18°C to monitor the lateral mobility of the incorporated probes. After labeling at low concentrations (40 μg/ml) of phosphatidyl-N-(4-nitrobenzo-2-oxa-1,3-diazolyl)ethanolamine (NBD-PtdEtn), a single mobile component was observed with a diffusion coefficient (D) of ≈3 × 10-9 cm2/sec. After labeling at higher probe concentrations (≥100 μg/ml), two diffusing species were observed, with diffusion coefficients of ≈3 × 10-9 cm2/sec (“fast”) and ≈5 × 10-10 cm2/sec (“slow”). Similar results were observed with fluorescent derivatives of phosphatidylcholine and fatty acids. In contrast to these results, parallel analysis of 3T3 fibroblasts, using the same probes and conditions, yielded only a single diffusion component. These results suggest that the soybean plasma membrane may contain two distinct lipid domains in terms of lipid mobility. Consistent with this idea, experiments with soybean protoplasts yielded a single diffusion component under the following conditions: (i) labeling with NBD-PtdEtn (100 μg/ml), FRAP analysis at 37°C (D = 1.1 × 10-8 cm2/sec); (ii) labeling with NBD-PtdEtn (100 μg/ml), FRAP analysis at 18°C in the presence of 2 mM EGTA (D = 4.2 × 10-9 cm2/sec); (iii) labeling with 5-(N-dodecanoyl)aminofluorescein (a short-chain lipid probe), FRAP analysis at 18°C or 37°C (D = 2.5 × 10-8 cm2/sec). These results suggest that the plasma membrane of soybean cells may contain stable immiscible domains of fluid and gel-like lipids.  相似文献   

3.
W D Rees  L C Gibbons  L A Turnberg 《Gut》1983,24(9):784-789
The effects of non-steroidal anti-inflammatory drugs and prostaglandins E2 and F on the secretory and electrical activity of isolated rabbit fundic mucosa have been studied. Spontaneous acid secretion was inhibited by serosal side application of sodium thiocyanate (6×10−2M) and the resulting alkali secretion measured by pH stat tiration. Serosal side application of indomethacin (10−5M) or aspirin (3×10−3M) inhibited alkali secretion (0·55±0·06 to 0·12±0·06 μmol/cm2/h, n=6, p<0·01 and 0·28±0·06 to 0·11±0·03 μmol/cm2/h, n=7, p<0·02 respectively). Mucosal or serosal side prostaglandin E2 (10−5 to 10−10M) and F (10−4 to 10−10M) failed to alter the rate of alkalinisation but secretion was significantly increased by serosal side 16,16-dimethyl-prostaglandin E2 (10−6M) (0·90±0·20 to 1·50±0·30 μmol/cm2/h, n=6, p<0·01). Serosal side application of 10−6M prostaglandin E2 to fundic mucosae pretreated with either aspirin (5×10−3M) or indomethacin (10−5M), to reduce endogenous E2 formation, also failed to alter alkali secretion. Pretreatment of the mucosa with 16,16-dimethyl-E2 (10−6M) abolished the inhibitory effect of indomethacin (10−5M) on alkali secretion (n=6) but did not modify the secretory response to aspirin (3×10−3M) (fall in alkali secretion with aspirin = 81±11% and with aspirin plus 16,16-dimethyl-E2 = 72±10%, n=7). In the doses used, none of the prostaglandins or non-steroidal anti-inflammatory drugs altered transmucosal potential difference or electrical resistance. These results show that the damaging agents, aspirin and indomethacin, both inhibit gastric alkali secretion but that modes of action may differ. The observation that prostaglandins, E2 and F failed to increase alkali production suggests that their protective activity against a variety of damaging agents as shown by others, may be mediated by another mechanism.  相似文献   

4.
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.  相似文献   

5.
A SiO2–Al2O3 glass composite coating was prepared on Ti60 alloy via air spraying slurry and then a suitable baking process. It was composed of potassium silicate glass, alumina and quartz powders. The high temperature oxidation performance of the alloy with and without coating was evaluated in static air at both 800 °C and 900 °C. The results show that catastrophic oxidation occurs for Ti60 bare alloy. It had a mass gain of about 2 mg/cm2 after oxidation at 800 °C and 17 mg/cm2 at 900 °C for 100 h. On the contrary, the oxidation resistance of alloy coated with composite coating was much improved with the mass gain about 0.36 mg/cm2 and 0.95 mg/cm2 at 800 °C and at 900 °C, respectively. The microstructure evolution of the composite coating and the alloy was analyzed by scanning electron microscope and electron probe microanalyzer. The effect of the composite coating on the oxidation performance of the alloy is discussed especially in terms of oxygen diffusion and interfacial reaction.  相似文献   

6.
All-ceramic restorations have become increasingly popular in dentistry. Toward ensuring that these restorations adhere to the tooth structure, this study determines the optimal femtosecond laser (FL) treatment parameters for lithium disilicate glass-ceramics and highly translucent zirconia ceramics with respect to surface morphology. For both the ceramics, the following surface conditions were investigated: (1) as-sintered; (2) Al2O3 sandblasted; (3) FL treatment (dot pattern with line distances of 14, 20, and 40 µm); (4) FL treatment (crossed-line pattern with a line distance of 20 and 40 µm). Surface roughness parameters were estimated using a 3D confocal laser microscope; microstructures were analyzed using a scanning electron microscope. Peak fluence (Fpeak) values of 4 and 8 J/cm2 and irradiation numbers (N) of 20 and 10 shots were selected to create dot patterns in highly translucent zirconia and lithium disilicate glass-ceramics, respectively. Furthermore, Fpeak = 8 J/cm2 and N = 20 shots were chosen to obtain crossed-line patterns in both ceramics. Our results show that lithium disilicate glass-ceramics and highly translucent zirconia exhibit a similar surface morphology under each of the surface treatment conditions. Therefore, FL irradiation of dot or crossed-line patterns (at a distance of 20 and 40 µm) are potential candidates for future investigations.  相似文献   

7.
In this paper, the laser processing of the surface of bulk and layered samples (of thickness 75 nm) of Ni45Co5Mn35.5In14.5 alloy (NC5MI) was investigated using microsecond laser pulses. A Q-switched pulsed Nd3+:YAG laser, operating in the 1st harmonic (which had a wavelength of 1064 nm) with a pulse duration of 250 µs, was used. NC5MI is a metal resistant to thermal laser processing because its reflection coefficient is close to unity for long wavelengths. The aim of this paper was to learn the forms of laser processing (heating, microprocessing, ablation) for which the above-specified type of laser is useful. The samples were irradiated with various fluences in the interval of 5–32 J·cm−2. The effect of the laser interaction with the surface was explored by SEM microscopy. The threshold fluences for the bulk sample were determined as: the visible damage threshold (Fthd = 2 ± 0.2 J·cm−2), the melting threshold (Fthm = 10 ± 0.5 J·cm−2), and the deep melting threshold (Fthdm = 32 J·cm−2). Unexpectedly, these values wereincreased for the layer sample due to its silicon substrate. We have concluded that this type of laser radiation is advantageous for the annealing and melting of, or drilling holes in, the alloy, but disadvantageousto the ablation of the alloy.  相似文献   

8.
KMeY(PO4)2:5% Eu3+ phosphates have been synthesized by a novel hydrothermal method. Spectroscopic, structural, and morphological properties of the obtained samples were investigated by X-ray, TEM, Raman, infrared, absorption, and luminescence studies. The microscopic analysis of the obtained samples showed that the mean diameter of synthesized crystals was about 15 nm. The KCaY(PO4)2 and KSrY(PO4)2 compounds were isostructural and they crystallized in a rhabdophane-type hexagonal structure with the unit-cell parameters a = b ≈ 6.90 Å, c ≈ 6.34 Å, and a = b ≈ 7.00 Å, c ≈ 6.42 Å for the Ca and Sr compound, respectively. Spectroscopic investigations showed intense 5D07F4 transitions connected with D2 site symmetry of Eu3+ ions. Furthermore, for the sample annealed at 500 °C, europium ions were located in two optical sites, on the surface of grains and in the bulk. Thermal treatment of powders at high temperature provided better grain crystallinity and only one position of dopant in the crystalline structure. The most intense emission was possessed by the KSrY(PO4)2:5% Eu3+ sample calcinated at 500 °C.  相似文献   

9.
The influences of the sintering process and AgNO3 addition on the phase formation and radiation shielding characteristics of Bi1.6Pb0.4Sr2Ca2Cu3O10 were studied. Three ceramics (code: C0, C1, and C2) were prepared as follows: C0 was obtained after calcination and only one sintering step, C1 was obtained after calcination and two sintering cycles, and C2 was prepared after the addition of AgNO3 at the beginning of the final sintering stage. C2 displayed the maximum volume fraction of the Bi-2223 phase (76.4 vol%), the greatest crystallite size, and high density. The linear mass attenuation coefficient (µ) has been simulated using the Monte Carlo simulation. The µ values are high at 15 keV (257.2 cm−1 for C0, 417.57 cm−1 for C1, and 421.16 cm−1 for C2), and these values dropped and became 72.58, 117.83 and 133.19 cm−1 at 30 keV. The µ value for the ceramics after sintering is much higher than the ceramic before sintering. In addition, the µ value for C2 is higher than that of C1, suggesting that the AgNO3 improves the radiation attenuation performance for the fabricated ceramics. It was demonstrated that the sintering and AgNO3 addition have a considerable influence on the ceramic thickness required to attenuate the radiation.  相似文献   

10.
LaBaCo2−xMoxO5+δ (LBCMx, x = 0–0.08) cathodes synthesized by a sol-gel method were evaluated for intermediate-temperature solid oxide fuel cells. The limit of the solid solubility of Mo in LBCMx was lower than 0.08. As the content of Mo increased gradually from 0 to 0.06, the thermal expansion coefficient decreased from 20.87 × 10−6 K−1 to 18.47 × 10−6 K−1. The introduction of Mo could increase the conductivity of LBCMx, which varied from 464 S cm−1 to 621 S cm−1 at 800 °C. The polarization resistance of the optimal cathode LBCM0.04 in air at 800 °C was 0.036 Ω cm2, reduced by a factor of 1.67 when compared with the undoped Mo cathode. The corresponding maximum power density of a single cell based on a YSZ electrolyte improved from 165 mW cm−2 to 248 mW cm−2 at 800 °C.  相似文献   

11.
N,N′-diphenyl-N,N′-diethylurea (C17H20N2O) crystallizes in the space group P21/c. The unit cell constants are: a = 10.42 ± 0.01 Å, b = 16.86 ± 0.02 Å, c = 10.66 ± 0.001 Å, β = 125°16′ ± 5′; Z = 4, Dx = 1.16 g·cm-3, Dmeas = 1.16 ± 0.01 g·cm-3. Data for 1392 reflections were collected at room temperature on a Picker automated diffractometer. The crystal structure was solved by direct methods and refined by bloc-diagonalized matrix least-squares calculations. The molecule is characterized by a pseudo C2 symmetry; both phenyl groups are trans with respect to the oxygen atom. The hybridization of the two nitrogen atoms is intermediate between trigonal and tetrahedral; the nonplanar distortion of the amide groups is about 30°. The amide C-N bond lengths are 1.37 Å.  相似文献   

12.
Co40Fe40W20 monolayers of different thicknesses were deposited on Si(100) substrates by DC magnetron sputtering, with Co40Fe40W20 thicknesses from 10 to 50 nm. Co40Fe40W20 thin films were annealed at three conditions (as-deposited, 250 °C, and 350 °C) for 1 h. The structural and magnetic properties were then examined by X-ray diffraction (XRD), low-frequency alternative-current magnetic susceptibility (χac), and an alternating-gradient magnetometer (AGM). The XRD results showed that the CoFe (110) peak was located at 2θ = 44.6°, but the metal oxide peaks appeared at 2θ = 38.3, 47.6, 54.5, and 56.3°, corresponding to Fe2O3 (320), WO3 (002), Co2O3 (422), and Co2O3 (511), respectively. The saturation magnetization (Ms) was calculated from the slope of the magnetization (M) versus the CoFeW thickness. The Ms values calculated in this manner were 648, 876, 874, and 801 emu/cm3 at the as-deposited condition and post-annealing conditions at 250, 350, and 400 °C, respectively. The maximum MS was about 874 emu/cm3 at a thickness of 50 nm following annealing at 350 °C. It indicated that the MS and the χac values rose as the CoFeW thin films’ thickness increased. Owing to the thermal disturbance, the MS and χac values of CoFeW thin films after annealing at 350 °C were comparatively higher than at other annealing temperatures. More importantly, the Co40Fe40W20 films exhibited a good thermal stability. Therefore, replacing the magnetic layer with a CoFeW film improves thermal stability and is beneficial for electrode and strain gauge applications.  相似文献   

13.
A Patterson-type map computed with Bijvoet differences squared as coefficients, (|Fh| - |F-h|)2, as recommended by Rossmann, readily yielded the position of the S atom. The experiment was performed with Cu Kα radiation which is far from the absorption edge for sulfur. The coordinates of the remainder of the 54C, N, and O atoms were derived by means of partial structure development by use of the tangent formula. The latter was used only to effect phase extension, not phase refinement. A main purpose of this experiment was to reaffirm, as first shown in the investigation of the protein crambin by Hendrickson and Teeter, that, in the presence of a large number of lighter atoms, sulfur atoms can be located by use of anomalous dispersion at wave-lengths far from the absorption edge. The space group is P21 with a = 26.718(8) Å, b = 6.987(3) Å, c = 10.857(6) Å, and β = 99.51(4)° and contains two quinidyl ions, one sulfate ion, and two water molecules per asymmetric unit. The conformations of the two independent quinidyl ions differ mainly in the torsional angle of the bond between the vinyl side chain and the quinuclidine moiety. The R factor is 4.9% for all 2869 data.  相似文献   

14.
Thermoelectric generators are a reliable and environmentally friendly source of electrical energy. A crucial step for their development is the maximization of their efficiency. The efficiency of a TEG is inversely related to its electrical contact resistance, which it is therefore essential to minimize. In this paper, we investigate the contacting of an Al electrode on Mg2(Si,Sn) thermoelectric material and find that samples can show highly asymmetric electrical contact resistivities on both sides of a leg (e.g., 10 µΩ·cm2 and 200 µΩ·cm2). Differential contacting experiments allow one to identify the oxide layer on the Al foil as well as the dicing of the pellets into legs are identified as the main origins of this behavior. In order to avoid any oxidation of the foil, a thin layer of Zn is sputtered after etching the Al surface; this method proves itself effective in keeping the contact resistivities of both interfaces equally low (<10 µΩ·cm2) after dicing. A slight gradient is observed in the n-type leg’s Seebeck coefficient after the contacting with the Zn-coated electrode and the role of Zn in this change is confirmed by comparing the experimental results to hybrid-density functional calculations of Zn point defects.  相似文献   

15.
Xishi Tai  Jinhe Jiang 《Materials》2012,5(9):1626-1634
A new trinuclear Cd (II) complex [Cd3(L)6(2,2-bipyridine)3] [L = N-phenylsulfonyl-L-leucinato] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The results show that the complex belongs to the orthorhombic, space group P212121 with a = 16.877(3) Å, b = 22.875(5) Å, c = 29.495(6) Å, α = β = γ = 90°, V = 11387(4) Å3, Z = 4, Dc= 1.416 μg·m−3, μ = 0.737 mm−1, F (000) = 4992, and final R1 = 0.0390, ωR2 = 0.0989. The complex comprises two seven-coordinated Cd (II) atoms, with a N2O5 distorted pengonal bipyramidal coordination environment and a six-coordinated Cd (II) atom, with a N2O4 distorted octahedral coordination environment. The molecules form one dimensional chain structure by the interaction of bridged carboxylato groups, hydrogen bonds and π-π interaction of 2,2-bipyridine. The luminescent properties of the Cd (II) complex and N-Benzenesulphonyl-L-leucine in solid and in CH3OH solution also have been investigated.  相似文献   

16.
The goal of this research is the statistical optimisation of the chemical stability of hybrid microwave-sintered alumina ceramics in nitric acid. The chemical stability of ceramic materials in corrosive media depends on many parameters, such as the chemical and phase composition of the ceramics, the properties of the aggressive medium (concentration, temperature, and pressure), and the exposure time. Therefore, the chemical stability of alumina ceramics in different aqueous nitric acid solution concentrations (0.50 mol dm−3, 1.25 mol dm−3, and 2.00 mol dm−3), different exposure times (up to 10 days), as well as different temperatures (25, 40, and 55 °C), was investigated, modelled, and optimised. The chemical stability of high purity alumina ceramics (99.8345 wt.% of Al2O3) was determined by measuring the amount of eluted ions (Al3+, Ca2+, Fe3+, Mg2+, Na+, and Si4+) obtained by inductively coupled plasma atomic emission spectrometry. The changes in the density of alumina ceramics during the chemical stability monitoring were also determined. The Box–Behnken approach was employed to reach the optimum conditions for obtaining the highest possible chemical stability of alumina at a given temperature range, exposure time, and molar concentration of nitric acid. It was found that an increase in exposure time, temperature, and nitric acid concentration led to an increase in the elution of ions from hybrid microwave-sintered alumina. Higher amounts of eluted ions, Al3+ (14.805 µg cm−2), Ca2+ (7.079 µg cm−2), Fe3+ (0.361 µg cm−2), Mg2+ (3.654 µg cm−2), and Na+ ions (13.261 µg cm−2), were obtained at 55 °C in the 2 mol dm− 3 nitric acid. The amount of eluted Si4+ ions is below the detection limit of inductively coupled plasma atomic emission spectrometry. The change in the alumina ceramic density during the corrosion test was negligible.  相似文献   

17.
In this study, NiMo catalysts that have different metal loadings in the range of ca. 28–106 µg cm−2 were electrodeposited on the Ti substrate followed by their decoration with a very low amount of Au-crystallites in the range of ca. 1–5 µg cm−2 using the galvanic displacement method. The catalytic performance for hydrogen evolution reaction (HER) was evaluated on the NiMo/Ti and Au(NiMo)/Ti catalysts in an alkaline medium. It was found that among the investigated NiMo/Ti and Au(NiMo)/Ti catalysts, the Au(NiMo)/Ti-3 catalyst with the Au loading of 5.2 µg cm−2 gives the lowest overpotential of 252 mV for the HER to reach a current density of 10 mA·cm−2. The current densities for HER increase ca. 1.1–2.7 and ca. 1.1–2.2 times on the NiMo/Ti and Au(NiMo)/Ti catalysts, respectively, at −0.424 V, with an increase in temperature from 25 °C to 75 °C.  相似文献   

18.
The results of reaction yield-detected magnetic resonance (RYDMR) experiments carried out on modified bacterial photosynthetic reaction centers (RCs) are interpreted in terms of a model that assigns the initial charge-separated radical ion-pair state, PF, as the carrier of the spectrum. The radical pair theory, which has been invoked to explain magnetic field effects in RCs, was significantly expanded to take into consideration the electron dipole-dipole interaction. It is shown that this is the largest interaction between the components of the radical ion pair. Quantum statistical calculations are described simulating the RYDMR spectra and low-field effects in quinone-depleted RCs. The experimental data on which the simulations are based are (i) the magnitude of the field effect at 3,000 G, (ii) the field at which 0.5 of the maximal field effect is observed, (iii) the PF population as a function of time at zero magnetic field, (iv) the RYDMR linewidth for low microwave field strength, (v) the RYDMR intensity and width as a function of microwave field, and (vi) the maximum RYDMR intensity at HI 2|J|. With this information it was found possible to characterize PF in terms of four parameters, two containing structural information and two with kinetic implications. These are the dipole-dipole interaction, D = -47 ± 10 × 10-4 cm-1; the exchange interaction, J = -7.5 ± 1.9 × 10-4 cm-1; and the inverse rate constants of the decay of the radical pair states with singlet and triplet spin functions, respectively, kS-1 = 15 ± 4 nsec and kT-1 = 1.8 ± 0.2 nsec. The structural and dynamic implications of these parameters are discussed.  相似文献   

19.
The thermoelectric cement-based materials can convert heat into electricity; this makes them promising candidates for impressed current cathodic protection of carbon steel. However, attempts to use the thermoelectric cement-based materials for energy conversion usually results in low conversion efficiency, because of the low electrical conductivity and Seebeck coefficient. Herein, we deposited polyaniline on the surface of MnO2 and fabricated a cement-based thermoelectric device with added PANI/MnO2 composite for the protection of carbon steel in alkaline chloride solution. The nanorod structure (70~80 nm in diameter) and evenly dispersed conductive PANI provide the PANI/MnO2 composite with good electrical conductivity (1.9 ± 0.03 S/cm) and Seebeck coefficient (−7.71 × 103 ± 50 μV/K) and, thereby, increase the Seebeck coefficient of cement-based materials to −2.02 × 103 ± 40 μV/K and the electrical conductivity of cement-based materials to 0.015 ± 0.0003 S/cm. Based on this, the corrosion of the carbon steel was delayed after cathodic protection, which was demonstrated by the electrochemical experiment results, such as the increased resistance of the carbon steel surface from 5.16 × 102 Ω·cm2 to 5.14 × 104 Ω·cm2, increased charge transfer resistance from 11.4 kΩ·cm2 to 1.98 × 106 kΩ·cm2, and the decreased corrosion current density from 1.67 μA/cm2 to 0.32 μA/cm2, underlining the role of anti-corrosion of the PANI/MnO2 composite in the cathodic protection system.  相似文献   

20.
A [NiFe] hydrogenase model compound having a distorted trigonal-pyramidal nickel center, (CO)3Fe(μ-StBu)3Ni(SDmp), 1 (Dmp = C6H3-2,6-(mesityl)2), was synthesized from the reaction of the tetranuclear Fe-Ni-Ni-Fe complex [(CO)3Fe(μ-StBu)3Ni]2(μ-Br)2, 2 with NaSDmp at -40 °C. The nickel site of complex 1 was found to add CO or CNtBu at -40 °C to give (CO)3Fe(StBu)(μ-StBu)2Ni(CO)(SDmp), 3, or (CO)3Fe(StBu)(μ-StBu)2Ni(CNtBu)(SDmp), 4, respectively. One of the CO bands of 3, appearing at 2055 cm-1 in the infrared spectrum, was assigned as the Ni-CO band, and this frequency is comparable to those observed for the CO-inhibited forms of [NiFe] hydrogenase. Like the CO-inhibited forms of [NiFe] hydrogenase, the coordination of CO at the nickel site of 1 is reversible, while the CNtBu adduct 4 is more robust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号