首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis of endocannabinoids has profound effects on the function of the endocannabinoid signaling system in the regulation of prostate carcinoma cells. Prostate carcinoma cells exhibit a wide range of hydrolysis activity for 2-arachidonoylglycerol (2-AG), the major endocannabinoid. However, enzyme(s) responsible for 2-AG hydrolysis and their functions in prostate cancer have not been characterized. In this study, we demonstrated that fatty acid amide hydrolase (FAAH) was differentially expressed in normal and prostate carcinoma cells. In PC-3 cells, overexpression of FAAH resulted in increased FAAH protein, 2-AG hydrolysis, cell invasion and cell migration. Conversely, small-interfering RNA (siRNA) knockdown of FAAH in LNCaP cells decreased FAAH protein, 2-AG hydrolysis and cell invasion. Furthermore, CAY10401, a FAAH inhibitor, decreased cell invasion and it enhanced the reduction of invasion in FAAH siRNA-transfected LNCaP cells. Immunohistochemistry staining of commercial tissue microarrays (TMAs) demonstrated FAAH staining in 109 of 157 cores of prostate adenocarcinomas but weak staining in 1 of 8 cores of normal prostate tissues. These results suggest that FAAH regulates 2-AG hydrolysis and invasion of prostate carcinoma cells and is potentially involved in prostate tumorigenesis.  相似文献   

2.
Endocannabinoids have been implicated in cancer. Increasing endogenous 2-arachidonoylglycerol (2-AG) by blocking its metabolism inhibits invasion of androgen-independent prostate cancer (PC-3 and DU-145) cells. Noladin ether (a stable 2-AG analog) and exogenous CB1 receptor agonists possess similar effects. Conversely, reducing endogenous 2-AG by inhibiting its synthesis or blocking its binding to CB1 receptors with antagonists increases the cell invasion. 2-AG and noladin ether decrease protein kinase A activity in these cells, indicating coupling of the CB1 receptor to downstream effectors. The results suggest that cellular 2-AG, acting through the CB1 receptor, is an endogenous inhibitor of invasive prostate cancer cells.  相似文献   

3.
The 5-lipoxygenase (5-LO) product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), which is a potent chemoattractant for myeloid cells, is known to promote the survival of prostate cancer cells. In the present study, we found that PC3 prostate cancer cells and cell lines derived from breast (MCF7) and lung (A-427) cancers contain 5-hydroxyeicosanoid dehydrogenase (5-HEDH) activity and have the ability to synthesize 5-oxo-ETE from its precursor 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when added as an exogenous substrate. H(2)O(2) strongly stimulated the synthesis of 5-oxo-ETE and induced dramatic increases in the levels of both glutathione disulfide and NADP(+). The effects of H(2)O(2) on 5-oxo-ETE and NADP(+) were blocked by N-ethylmaleimide (NEM), indicating that this effect was mediated by the glutathione reductase-dependent generation of NADP(+), the cofactor required by 5-HEDH. 5-Oxo-ETE synthesis was also stimulated by agents that have cytotoxic effects on tumor cells, including 4,7,10,13,16,19-docosahexaenoic acid, tamoxifen and MK-886. Because PC3 cells have only modest 5-LO activity compared with inflammatory cells, we investigated their ability to contribute to the transcellular biosynthesis of 5-oxo-ETE from neutrophil-derived 5-HETE. Stimulation of neutrophils with arachidonic acid and calcium ionophore in the presence of PC3 cells led to a large and selective increase in 5-oxo-ETE synthesis compared with controls in which PC3 cell 5-oxo-ETE synthesis was selectively blocked by pretreatment with NEM. The ability of prostate tumor cells to synthesize 5-oxo-ETE may contribute to tumor cell proliferation as well as the influx of inflammatory cells, which may further induce cell proliferation through the release of cytokines. 5-Oxo-ETE may be an attractive target in cancer therapy.  相似文献   

4.
Extensive studies have implicated the role of dietary fatty acids in prostatecancer progression. Platelet-type 12-Lipoxygenase (12-LOX) has beenshown to regulate growth, metastasis, and angiogenesis of prostate cancer. The effect of two 12-LOX inhibitors, Baicalein and N-benzyl-N-hydroxy-5-phenylpentamide (BHPP), on the mechanisms controlling cell cycle progression and apoptosis were examined in two prostate cancer cell lines, PC3 and DU-145. Treatment with Baicalein or BHPP resulted in a dose-dependent decrease in cell proliferation, as measured by BrdUrd incorporation. This growth arrest was shown to be because of cell cycle inhibition at G0/G1, and was associated with suppression of cyclin D1 and D3 protein levels. PC3 cells also showed a strong decrease in phosphorylated retinoblastoma (pRB) protein, whereas the other retinoblastoma-associated proteins, p107 and p130, were inhibited in DU-145 cells. Treatment with 12-hydroxyeicosatetraenoic acid in the presence of Baicalein blocked loss of pRB, whereas 12(S)-HETE alone induced pRB expression. Treatment with either Baicalein or BHPP resulted in significant apoptosis in both cell lines as measured by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. DU-145 cells underwent apoptosis more rapidly than PC-3 cells. The mechanisms involved were decreased phosphorylation of Akt, loss of survivin and subsequent activation of caspase-3 and caspase-7 in each cell line, decreased Bcl-2 and Bcl-X(L) expression in DU-145, and a shift in Bcl-2/Bax levels favoring apoptosis in PC-3 cells. Addition of 12(S)-HETE protected both cell lines from Baicalein-induced apoptosis, whereas other LOX metabolites, 5(S)-HETE, or 15(S)-HETE did not. These results show that the 12-LOX pathway is a critical regulator of prostate cancer progression and apoptosis, by affecting various proteins regulating these processes. Therefore, inhibition of 12-LOX is a potential therapeutic agent in the treatment of prostate cancer.  相似文献   

5.
Calcitonin (CT) is synthesized and secreted in prostate epithelium, and its secretion from malignant prostates is several-fold higher than from benign prostates. CT receptor (CTR) is expressed in malignant prostate epithelium, and its activation stimulates growth of prostate cancer (PC) cells via activation of adenylyl cyclase and calcium/phospholipid pathways. To identify the role of "CT System" in prostate cancer, we tested the expression of CT and CTR mRNAs in invading tumor cells of prostate cancer specimens. The effect of CT on in vitro invasion of PC cell lines and on activation of gelatinases was also examined. The cells of primary tumors and those invading stroma co-expressed CT/CTR mRNAs. Exogenously added CT increased in vitro invasion of PC cell lines and caused a rapid, several-fold but transient increase in protein kinase A activity. In contrast, anti-CT serum caused a dose-dependent inhibition of in vitro invasion of PC-3M cells. CT also increased the concentration and activities of MMP-2 and MMP-9. Rp.cAMP, a competitive inhibitor of cAMP-dependent protein kinase A, myristoylated protein kinase A inhibitory peptide (PKI) as well as the expression of dominant negative form of PKA all attenuated basal in vitro invasion of PC-3M cells, and CT could not increase in vitro invasiveness in their presence. These results suggest that overexpression of "CT System" in invasive PC tumors significantly contributes to increased invasiveness of prostate cancer cells. The action of CT may be mediated by protein kinase A signaling, which subsequently leads to increased cell invasion and secretion of gelatinases.  相似文献   

6.
This study was performed to determine the relationship of lysophosphatidic acid (LPA) stimulation and increased Ras homolog A (RhoA) activity to nuclear factor kappa B (NF-kappaB) activity, and the role of these factors in regulating prostate cancer cell invasion. PC-3 high invasive cells demonstrated constitutively increased RhoA, NF-kappaB, and in vitro Matrigel invasion which were further induced by LPA stimulation or transfection with constitutively active RhoA Q63E mutant. LPA treatment rapidly and transiently induced RhoA activity followed by maximally increased DNA binding of NF-kappaB at 1 h and AP-1 at 4 h. The LPA-induced NF-kappaB DNA binding was preceded by transient IkappaBalpha phosphorylation, and decreased total IkappaBalpha levels. Further demonstrating the relationship between RhoA and NF-kappaB activation, PC-3 cells stably transfected with constitutively active RhoA Q63E demonstrated constitutively increased phospho-IkappaBalpha, while PC-3 cells transfected with dominant negative RhoA N19 exhibited decreased phospho-IkappaBalpha levels. The LPA-induced Matrigel invasion and NF-kappaB DNA binding activity were both inhibited by expression of the RhoA inhibitor C3 exoenzyme or dominant negative mutant NF-kappaB inhibitor IkappaBalpha S32/36A. Similarly, transfection with dominant negative IkappaBalpha S32/36A inhibited PC-3 RhoA Q63E cell in vitro invasion. Treatment of PC-3 high invasive and RhoA Q63E cells with sodium salicylate or lactacystin inhibited NF-kappaB and invasion, while pyrrolidine dithiocarbamate (PDTC) treatment of PC-3 high invasive cells inhibited NF-kappaB only. Each inhibitor blocked LPA-induced invasion while PDTC inhibited LPA-induced NF-kappaB and invasion to the greatest extent. These results point to a model where LPA stimulates RhoA and increased PC-3 prostate cancer cell invasion activity through an NF-kappaB-dependent pathway.  相似文献   

7.
It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.  相似文献   

8.
Calcitonin (CT) is synthesized and secreted in prostate epithelium, and its secretion from malignant prostates is several folds higher than that in benign prostates. CT receptor (CTR) is expressed in malignant prostate epithelium, and its activation increases invasiveness of prostate cancer (PC) cells via activation of protein kinase A. Since the role of urokinase-type plasminogen activator (uPA) in invasion of PC has been established, we tested the hypothesis that CT increases invasion of PC cells by stimulating uPA secretion from PC cells. Exogenously added CT stimulated the secretion of uPA from PC-3M cells in a dose-dependent manner, which was blocked by Rp.cAMP, a competitive inhibitor of protein kinase A. CT stimulated the secretion of MMP-2 and MMP-9 from PC-3M cells, and also increased their invasiveness. Both these actions of CT were blocked by uPA-neutralizing antibodies. Immunofluorescence studies with PC-3M cells suggest that CT stimulated redistribution of cellular uPA to focal adhesion sites, which was further confirmed by co-immunoprecipitation of uPA with focal adhesion kinase (FAK) in response to CT. These results suggest that CT increases invasiveness of PC cells by stimulating PKA-mediated uPA secretion and by redirecting the secreted uPA to focal adhesion sites. The results also suggest that uPA may, at least in part, mediate proinvasive actions of CT on PC cells by stimulating the secretion of gelatinases and degradation of focal adhesion sites.  相似文献   

9.
OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells. METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells. RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC -3 cells. While the growth curve of the hepsin gene transfected PC -3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05). CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.  相似文献   

10.
目的 探讨AnnexinA2(ANXA2)的异常表达在前列腺癌(prostate cancer,PC)进展中的作 用机制。方法 采用免疫组织化学化检测ANXA2在85例PC标本中的表达水平,Western blot检测不 同转移潜能的前列腺癌细胞LNCaP、C4-2B 和PC-3、PC-3M中ANXA2的表达水平;siRNA技术干扰 PC-3细胞中ANXA2表达后,MTT检测细胞增殖,Western blot检测MMP-2、MMP-9表达水平的改变, Transwell小室和划痕试验检测PC-3细胞体外侵袭能力及迁移能力的变化。结果 ANXA2阳性率在 Gleason评分为5~6、7、8~10分中的阳性率分别是77.5%(31/40)、58.3%(21/36)、11.1%(1/9),三 者之间表达差异有统计学意义(P <0.05),随着前列腺癌细胞转移潜能升高而ANXA2表达水平依次降低(P<0.01);siRNA技术干扰AnnexinA2表达后,PC-3-ANXA2-siRNA生长速度增加(P<0.05),Western blot检测到PC-3-ANXA2-siRNA细胞的ANXA2表达水平明显降低,而MMP-2、MMP-9表达水平上调,Transwell小室和划痕实验分别发现PC-3-ANXA2-siRNA细胞体外侵袭及迁移能力增加。结论 下调AnnexinA2的表达能够促进前列腺癌进展,机制上可能是通过上调MMP-2和MMP-9的表达来实现的。  相似文献   

11.
Eicosanoids modulate the interaction of tumor cells with various host components in cancer metastasis. Their synthesis involves the release of arachidonic acid (AA) from cellular phospholipids by phospholipase A2 (PLA2), followed by metabolism by cyclooxygenases (COXs) and lipooxygenases (LOXs). This study aimed to identify the pathway(s) of AA metabolism that are required for the invasion of prostate tumor cells. DU-145 and PC-3 human prostate cancer cell lines were used to test the effect of inhibitors of PLA2, COX, or LOX on the invasion of prostate tumor cells through Matrigel in vitro using the Boyden chamber assay and fibroblast-conditioned medium as the chemoattractant. We used nontoxic doses that did not inhibit simple cell motility and did not decrease clonogenic survival. All of the inhibitors caused a significant reduction in AA release from treated cells compared with control cells, which indicated that the treatments were biochemically active. Invasion through Matrigel was inhibited by the PLA2 inhibitor 4-bromophenacyl bromide (4-BPB), the general COX inhibitor ibuprofen (IB), and the highly selective COX-2 inhibitor NS398. Inhibition of cell invasiveness by 4-BPB (1.0 microM), IB (10.0 microM), and NS398 (10.0 microM) was reversed by the addition of prostaglandin E2 (PGE2). PGE2 alone, however, did not stimulate invasiveness, which suggests that its production is necessary for rendering the cells invasive-permissive but not sufficient for inducing invasiveness. In contrast, we found no significant inhibition of invasion of prostate tumor cells treated with esculetin (1.0 microM) or nordihydroguiaretic acid (1.0 microM), which are specific inhibitors of LOX. We also tested the effect of 4-BPB, IB, NS398, and esculetin on the secretion of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), as key enzymes in the proteolysis of Matrigel during invasion, using gelatin zymograms and Western blots. Cells that received 4-BPB, IB, or NS398, but not esculetin showed a significant reduction in the levels of proMMP-2, MMP-9, and proMMP-9 in the culture medium. DU-145 cells did not secrete TIMP-1, and the drugs did not alter the secretion of TIMP-2. This work highlights the role played by COX in disturbing the balance between MMPs and TIMPs in prostate cancer cells, and it points to the potential use of COX inibitors, especially COX-2 selective inhibitors, in the prevention and therapy of prostate cancer invasion.  相似文献   

12.
Changes in the expression and activity of lipid-metabolizing enzymes, including the linoleic acid (LA)-metabolizing enzyme 15-lipoxygenase-1 (15-LO-1), may play a role in the development and progression of human prostate carcinoma (PCa). We reported that human 15-LO-1 (designated as leukocyte type 12-LO or 12/15-LO in mouse) is expressed in human prostate and increased in PCa, particularly high-grade PCa. Genetically engineered mouse (GEM) models of PCa could facilitate the study of this gene and its regulation and function in PCa progression. In this study, we examine the protein expression and enzyme activity levels of 12/15-LO associated with PCa progression in the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) model of PCa. This GEM model develops prostatic intraepithelial neoplasia (PIN), followed by invasive gland-forming PCa and invasive and metastatic less differentiated PCa, with neuroendocrine (NE) differentiation (NE Ca). In the wild-type and TRAMP prostates, the most prominent LA metabolite was 13-hydroxyoctadecadienoic acid (13-HODE). Lesser amounts of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid (HETE) were made from arachidonic acid (AA). In TRAMP prostates, 12/15-LO activity was increased compared to wild type at 20, 29, 39, and 49 weeks, as assessed by LA conversion to 13-HODE, and by AA conversion to 12/15-HETE, respectively. Immunostaining demonstrated that the increased capacity to generate 13-HODE was paralleled by an increase in neoplastic epithelial expression of 12/15-LO in PIN and invasive carcinomas. In conclusion, although there is a basal 12/15-LO activity in the wild-type mouse prostate, there is a marked increase in the expression of 12/15-LO with TRAMP PCa progression, paralleling our previously reported increased expression of the ortholog 15-LO-1 in high-grade human PCa. Thus, 12/15-LO and LA metabolism in the TRAMP model shares similarities to human PCa, and may allow to confirm a role for LA metabolism and other biologic functions of 15-LO-1 in human PCa. In addition, the TRAMP model will serve as a tool for testing the suitability of 12/15-LO-and ultimately human 15-LO--as a therapeutic target during PCa progression.  相似文献   

13.
背景与目的:前列腺癌多发生于前列腺外周带,前列腺增生多发于前列腺移行带。前列腺疾病的带性差异机制可能与前列腺组织微环境有关。该研究的前期研究提示,不同区带来源的前列腺基质细胞对上皮细胞的作用存在明显差异,基因芯片筛查发现LMO2蛋白在前列腺外周带基质细胞高表达与前列腺癌发生、发展密切相关。该研究旨在分析前列腺基质细胞LMO2基因的表达对前列腺癌细胞系增殖、侵袭能力的影响及其机制。方法:分别应用慢病毒过表达载体和短发卡RNA(shRNA)建立过表达和低表达LMO2的前列基质细胞,利用实时荧光定量聚合酶链反应(real-time lfuorescent quantitative polymerase chain reaction,RTFQ-PCR)、蛋白[质]印迹法(Western blot)分别检测LMO2 mRNA和蛋白的表达;将不同处理的前列腺基质细胞分别同PC-3细胞共培养,利用CCK-8检测PC-3的增殖能力,利用基质胶侵袭实验检测PC-3的侵袭能力;利用生物素标记的人蛋白抗体芯片检测过表达LMO2的前列腺基质细胞条件培养基中蛋白因子表达变化。结果:成功建立过表达及低表达LMO2的前列腺基质细胞;CCK-8实验及基质胶实验提示,与过表达LMO2的前列腺WPMY-1基质细胞共培养后,PC-3细胞的增殖和侵袭能力增强;与低表达LMO2的CAFs细胞共培养后,PC-3细胞的增殖和侵袭能力降低;蛋白芯片检测发现过表达LMO2后,前列腺外周带基质细胞分泌白介素-11(interleukin-11, IL-11)和成纤维细胞生长因子-9(ifbroblast grouth factor-9,FGF-9)增多。结论:LMO2基因在前列腺外周基质细胞中的高表达可能与前列腺癌的发生、发展有关;过表达LMO2的前列腺基质细胞通过旁分泌IL-11、FGF-9等细胞因子促进前列腺癌细胞增殖与侵袭。  相似文献   

14.

Background:

Bone metastases in prostate cancer (CaP) result in CaP-related morbidity/mortality. The omega-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA) and lipophilic statins affect metastasis-like behaviour in CaP cells, regulating the critical metastatic step of CaP migration to the bone marrow stroma.

Methods:

Microscopic analysis and measurement of adhesion and invasion of CaP cells through bone marrow endothelial cells (BMEC) was undertaken with AA stimulation and/or simvastatin (SIM) treatment. Amoeboid characteristics of PC-3, PC3-GFP and DU-145 were analysed by western blotting and Rho assays.

Results:

The CaP cell lines PC-3, PC3-GFP and DU-145 share the ability to migrate across a BMEC layer. Specific amoeboid inhibition decreased transendothelial migration (TEM). AA stimulates amoeboid characteristics, driven by Rho signalling. Selective knock-down of components of the Rho pathway (RhoA, RhoC, Rho-associated protein kinase 1 (ROCK1) and ROCK2) showed that Rho signalling is crucial to TEM. Functions of these components were analysed, regarding adhesion to BMEC, migration in 2D and the induction of the amoeboid phenotype by AA. TEM was reduced by SIM treatment of PC3-GFP and DU-145, which inhibited Rho pathway signalling.

Conclusions:

AA-induced TEM is mediated by the induction of a Rho-driven amoeboid phenotype. Inhibition of this cell migratory process may be an important therapeutic target in high-risk CaP.  相似文献   

15.
16.
17.
18.

Background:

High intake of omega-6 polyunsaturated fatty acids (PUFA) has been associated with clinical progression in prostate cancer (CaP). This study investigates the signalling mechanism by which the omega-6 PUFA arachidonic acid (AA) induces prostatic cellular migration to bone marrow stroma.

Methods:

Western blot analysis of the PC-3, PC3-GFP, DU 145 and LNCaP cells or their lipid raft (LR) components post AA stimulation was conducted in association with assays for adhesion and invasion through the bone marrow endothelial monolayers.

Results:

Arachidonic acid increased transendothelial migration of PC3-GFP cells (adhesion 37%±0.08, P=0.0124; transmigration 270%±0.145, P=0.0008). Akt, Src and focal adhesion kinase (FAK) pathways were induced by AA and integrally involved in transendothelial migration. LR were critical in AA uptake and induced Akt activity. Ephrin receptor A2 (EphA2), localised in LR, is expressed in DU 145 and PC-3 cells. Arachidonic acid induced a rapid increase of EphA2 Akt-dependent/ligand-independent activation, while knockdown of the EphrinA1 ligand decreased AA induced transendothelial migration, with an associated decrease in Src and FAK activity. Arachidonic acid activated Akt in EphA2 LNCaP cells but failed to induce BMEC transendothelial invasion.

Conclusion:

Arachidonic acid induced stimulation of EphA2 in vitro is associated fundamentally with CaP epithelial migration across the endothelial barrier.  相似文献   

19.
The multiherb anti-inflammatory product Zyflamend was investigated for its antiproliferative effects on PC3 human prostate cancer cells and eicosanoid metabolism in this prostate cancer cell line. Zyflamend produced a concentration-dependent inhibition of cloned COX-1, COX-2, and 5-LOX enzyme activities, with inhibition of 5-HETE production being greater than that of PGE(2) formation. Applied to intact PC3 cells, Zyflamend was found to be most potent against 12-LOX, followed by 5-LOX and then COX activities. The concentration-dependent inhibition of PC3 cell proliferation was associated with a selective G(2)/M arrest of the cell cycle and induction of apoptosis, as evidenced by flow cytometric staining of PC3 cells with annexin V. Zyflamend also produced a concentration-dependent down-regulation of 5-LOX and 12-LOX expression. Determination of cell signal transduction proteins demonstrated that Zyflamend produced an increase in p21 phosphorylation but down-regulated phosphorylation of retinoblastoma (Rb) protein. The decrease in pRb protein was shown to be due to 12-LOX inhibition and a decline in 12-HETE levels in the cells. Replenishing 12-HETE in Zyflamend-treated cells overcame the ability of this multiple herb product to inhibit cell proliferation, and concordantly, 12-HETE blocked Zyflamend's ability to down-regulate phosphorylation of Rb protein. We conclude that the effective control of human prostate cancer cell proliferation with Zyflamend is multi-mechanistic but, in part, involves regulation of aberrant tumor cell eicosanoid metabolism, especially on 5- and 12-LOX, as well as restoration of Rb tumor suppressor protein function through regulation of its phosphorylation status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号