首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutated oncogene peptides may be presented to T cells by HLA molecules. To be able to design the optimal peptides for stimulation of T cells in individuals with different HLA molecules, it is important to analyse the binding characteristics of oncogene peptides to HLA. HLA-DQ6 (DQ(α1*0102, ß1*0602)) and HLA-DRI (DR(α, ßl*0101)) molecules were purified from lysates of homozygous EBV-transformed cell lines. Purified HLA molecules were then tested for their ability to bind synthetic peptides in gel filtration assays. A p21 ras oncogene peptide (previously found to stimulate DQ6-restricted T-cell clones) and an influenza matrix peptide were labelled with 125I and served as indicator peptides for binding to DQ6 and DR1 respectively. Binding of homologous truncated and mutated p21 ras peptides and unrelated peptides was then evaluated by their capacity to inhibit binding of the indicator peptides. p21 ras-derived peptides were found to bind to both DQ6 and DR1 molecules indicating the existence of a promiscuous binding motif in these peptides. The binding affinities seemed to vary between the different peptides, but the amino acid substitutions resulting from natural mutations were not critical for binding. Notably, the results obtained for DQ6 in the biochemical peptide binding assay correlated well with results obtained in a functional assay using T-cell clones as probes.  相似文献   

2.
Alloreactive T cells involved in indirect recognition play a key role in initiating and sustaining graft rejection. One of the most promising approaches to achieve specific immunosuppression of indirect allorecognition resides in the use of chemically modified allopeptides. In order to design and test such peptide analogs, we have defined the dominant immunogenic peptide of the HLA-DRB1*0101 antigen recognized by DRB1*1101 responders. Next we engineered structural variants of this peptide (DRB1*0101/residues 22-35), carrying single amino acid substitutions at postulated MHC and TCR contact residues. These analogs were tested for: (i) binding affinity to recombinant HLA-DRB1*1101 protein (rDR11), and (ii) stimulatory activity exerted on a human anti-DR1/22-35 self-restricted T cell clone. The binding affinity of the analogs carrying non-homologous substitutions at putative anchor positions (24V/E and 29R/A) was significantly decreased, while little or no effect was observed in either peptide-binding or T cell proliferation assays for conserved substitution (24V/Y and 29R/K). This indicates that positions 24 and 29 are primarily involved in contacting the HLA-DR11 molecule. In contrast, single amino acid substitutions at positions 25 through 28 strongly affected the proliferative response of the clone, even when binding affinity to rDR11 was not altered. This finding suggests that positions 25 through 28 are TCR contact residues. Two peptide analogs (26L/I and 27L/V) displayed a higher stimulatory activity than the wild-type peptide and induced high-zone tolerance. Two other peptides (25R/A and 28E/Q), while binding to rDR11, did not exhibit any stimulatory activity and blocked the presentation and recognition of the wild-type peptide. Our data underscore the therapeutic potential of allopeptide analogs, as well as their value in dissecting the fine antigenic structure of a peptide determinant.  相似文献   

3.
Adoptive immunotherapy of cancer utilizes tumor antigen-specific cytotoxic T lymphocytes (CTL) as mediators of a targeted anti-tumor effect. In this study, we show that such CTL can be able to cross-recognize allogeneic major histocompatibility complex (MHC) molecules in a phenomenon of molecular mimicry. A self histo-leukocyte antigen (HLA) A*0201-restricted CTL specific for peptide MT27-35 from the human differentiation antigen Melan-A/MART-1 was shown to cross-recognize allogeneic A*0220 molecules which differ from syngeneic A*0201 for a single amino acid substitution at position 66 of the antigen-binding groove. A*0220 molecules were recognized on a variety of human cells of different histological origin but not on COS-7 cells. A second self-A*0201-restricted CTL, specific for peptide D10/6-271 encoded by the tumor-specific DAM-gene family, was shown to cross-recognize allogeneic B*3701 molecules which differ from syngeneic A*0201 by 32 amino acids in the peptide antigen-binding cleft. B*3701 molecules were recognized on a variety of cell types including COS-7 cells. These data raise new safety issues for clinical trials of cancer immunotherapy using adoptive transfer of in vitro generated, allogeneic CTL with specific anti-tumor activity.  相似文献   

4.
Fine specificity analysis of HLA B35-restricted Epstein-Barr virus (EBV)-specific cytotoxic T lymphocyte (CTL) clones revealed a unique heterogeneity whereby one group of these clones cross-recognized an EBV epitope (YPLHEQHGM) on virus-infected cells expressing either HLA B*3501 or HLA B*3503, while another group cross-recognized this epitope in association with either HLA B*3502 or HLA B*3503. Peptide binding and titration studies ruled out the possibility that these differences were due to variation in the efficiency of peptide presentation by the HLA B35 alleles. Sequence analysis of the TCR genetic elements showed that these clonotypes either expressed BV12/AV3 or BV14/ADV17S1 heterodimers. Interestingly, CTL analysis with monosubstituted alanine mutants of the YPLHEQHGM epitope indicated that the BV12/AV3+ clones preferentially recognized residues towards the C terminus of the peptide, while the BV14/ADV17S1+ clones interacted with residues towards N terminus of the peptide. Molecular modelling of the MHC-peptide complexes suggests that the differences in two floor positions (114 and 116) of the HLA B35 alleles dictate different conformations of the peptide residues L3 and/or H7 and directly contribute in the discerning allele-specific immune recognition by the CTL clonotypes. These results provide evidence for a critical role for the selective interaction of the TCR with specific residues within the peptide epitope in the fine specificity of CTL recognition of allelic variants of an HLA molecule.  相似文献   

5.
We examined whether individuals with an identical HLA-DR type utilized the same T-cell receptors (TCRs) to recognize a given allogeneic HLA-DR molecule. CD4+ T cells from three responder-cell donors possessing the DRB1*0901 allele were stimulated with HLA-DRB1*0406 molecules, subjected to the primary mixed lymphocyte reaction (MLR) and the TCRs of the activated CD4+ T cells were analysed using single strand conformation polymorphism (SSCP) and random cDNA clone sequencing. The responder cells of each donor yielded many dominant SSCP bands in several TCRAV and TCRBV segments, but none of these dominant SSCP bands derived from two or three responders. Random cDNA sequence analysis demonstrated that the alloreactive TCRs were diverse, but each of the three responder-cell donors showed some dominant cDNA clones. However, no amino acid sequence identities or similarities among the dominant cDNAs of these donors were detected. These results indicate that certain T-cell clones from each individual's TCR repertoire pool expand preferentially as a result of allogeneic HLA-DR recognition but these clones are not necessarily common to different individuals, even when their responder cells possess identical DR alleles and are stimulated with the same alloantigen.  相似文献   

6.
A peptide-binding assay employing the HLA class I molecules on intact human B cells is described. The peptide antigens are stripped from the HLA class I molecules by mild acid treatment, after which the cells are incubated with a FL-labeled reference peptide together with different concentrations of the peptide of interest. The effectiveness by which the latter peptide competes for binding to the HLA class I molecules is assayed by measuring the amount of HLA-bound FL-labeled reference peptide with FACscan analysis. The assay is easy to perform because there is no need to purify HLA class I molecules, or to transfect cells with HLA class I molecules, and no radioactive label is used. Moreover, large panels of HLA-typed human B-cell lines are available as tools for peptide binding to a vast array of HLA molecules.

The binding assay was optimized and validated with peptides of known binding capacity to either HLAA *0201 or HLA-A *0301. The kinetics of peptide binding in this assay were shown to be comparable to that in assays employing soluble HLA class I molecules. Application of the assay in the search for potential HLAA *0301 restricted CTL epitopes, derived from HIV-1 polymerase, resulted in the identification of five highaffinity binding peptides.  相似文献   


7.
To fully characterize human glutamic acid decarboxylase (GAD)65 protein T-cell epitopes associated with insulin-dependent diabetes mellitus (IDDM), CTL clones specific to GAD65 protein antigens were isolated from two congenital rubella syndrome (CRS)-associated IDDM patients. Overlapping nonamer T-cell epitopes recognized by both CD4+ or CD8+ CTL clones within peptides GAD65(252-266) and GAD65(274-286) were identified as sequences bounded by GAD65(255-266) with 6/9 overlapping residues, and GAD65(276-285) with 8/9 overlapping residues, respectively, using two panels of overlapping peptide analogs in cytotoxicity assays. HLA restrictive elements of the T-cell clones were also identified using a panel of B cell lines with different HLA phenotypes as targets in cytotoxicity assays. The antigenic GAD65 peptides elicited cytotoxic responses of peptide-specific CD4+ T-cell clones in the context of HLA DRB1*0404. The CD8+ T-cell clone specific to GAD65(255-263) was found to be restricted by HLA A3 and A11. Similarly, the CD8+ T-cell clone specific to GAD65(277-285) killed peptide-sensitized target cells expressing HLA B35 and B15. The observed HLA restriction of these overlapping epitopes implies that a tandem of [DRB1*0404-A11(3)] and/or a tandem of [DRB1*0404-B35(15)] might predispose CRS patients to development of IDDM.  相似文献   

8.
HLA-DQw3 is a broadly defined alloantigen that has been subdivided by serological, biochemical, and molecular methods into three distinct specificities: DQw7, DQw8, and DQw9. In order to characterize functionally relevant structural polymorphisms within this family of alloantigens, we generated a series of DQw3-reactive T-cell clones that together recognize six different variants of DQw3. T-cell clones IG11 and IG9 were found to recognize three distinct functional variants associated with a majority of DQw3+ cells, while clones 21J, IE6, 64B, and IC3 recognized four more narrowly distributed functional variants associated with unique DQw7, DQw8, and DQw9 subsets. Comparison of known DQB gene sequences suggested candidate recognition sites for clones IG11 and 64B in the region of amino acid residues 66 to 71 and residue 57 of the DQ beta chain. In contrast, no unique DQB or DQA sequences were found that individually corresponded to the reactivity patterns of clones 21J, IE6, IG9, or IC3, suggesting that an interaction between DQ alpha and DQ beta chains determines allo-recognition. These data are consistent with the hypothesis that T cells recognize specific alloepitopes on HLA class II molecules, either as distinct structural elements that trigger an alloresponse or, more indirectly, as contact elements that influence alloreactivity by governing the binding of foreign peptide. The results illustrate the diversity of possible T cell responses directed toward HLA-DQ molecules and suggest that T cell recognition of the DQ heterodimer alone, or a peptide antigen bound to the DQ heterodimer, can be affected either by the individual DQ alpha and beta chains, or by a more complex interaction between the two.  相似文献   

9.
A novel polymorphism was identified in a B*07 allele. B*0722 possesses a unique nucleotide substitution at nucleotide 481. This polymorphism encodes an amino acid difference from aspartic acid in B*07021 to asparagine in B*0722. The functional significance of this polymorphism on peptide binding and/or T-cell recognition is unknown.  相似文献   

10.
M Mine  S Koarada  T Sai  K Miyake  M Kimoto 《Immunology》1998,95(4):577-584
We previously showed that the mixed haplotype Abetaz/Aalphad major histocompatibility complex (MHC) class II molecules function as restricting element for autoreactive T-cell clones derived from autoimmune prone (NZBxNZW)F1 (B/WF1) mice. Subsequent analysis revealed that some of these Abetaz/Aalphad-restricted autoreactive T-cell clones were pathogenic upon transfer to pre-autoimmune B/WF1 mice. In this paper, we analysed the peptide-binding motif of Abetaz/Aalphad class II molecules. Amino acid-sequencing analysis of peptides eluted from purified Abetaz/Aalphad molecules revealed several sequences, including one that corresponds to murine l-plastin 588-601. Synthetic 18-mer l-plastin 588-605 peptide (SMARKIGARVYALPEDLV, as described by the amino acid single letter code) was demonstrated to bind to Abetaz/Aalphad MHC class II molecules on transfectant B lymphoma cells (TAbetaz). A competitive binding inhibition assay using truncation peptides revealed the core sequence for binding resides in 591Arg to 601Pro. Binding inhibition assay using substitution peptides, each having substitution to the other 19 residues at positions from 590Ala to 601Pro, revealed four major anchor sites 592Lys (p1), 594Gly (p3), 595Ala (p4), 597Val (p6) and one minor anchor site 600Leu (p9). Positively charged residues are not allowed at p3 and negatively charged residues are not allowed at p4 and p6. Relatively large hydrophobic residues (Leu, Ile) are not tolerated at p3 and p4. Met and Trp are not tolerated at p6. Based on these findings, the characteristics of peptides recognized by autoreactive T cells in B/WF1 mice are discussed.  相似文献   

11.
Viral variation has been proposed to play a role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1) infection, and is an important consideration in vaccine design. During the course of an infection, isolates with sequence changes in CD8 T-cell and B-cell epitopes arise. To determine whether sequence variation within the V3 loop of HIV-1 gp120 affects HLA-DR beta 1*0101-restricted CD4 T-cell recognition, we have generated CD4 T-cell clones (TLC) specific to gp120 V3 loop peptides. Four HLA-DR beta 1*0101-restricted groups of TLC were defined by distinct patterns of responses to a panel of peptides, consistent with a highly diverse T-cell repertoire recognizing the 30 amino acid stretch (296-326) of the gp120 V3 loop. Nevertheless, a single residue change at position 311 was found to abolish the recognition of two of the four groups of TLC. This was not due to an effect of the residue at 311 on binding to major histocompatibility complex (MHC), because: (1) irrespective of the residue at 311, peptides competed well with the influenza haemagglutinin peptide 307-319 for binding to cell-bound DR1; and (2) R311-specific TLC were also HLA DR beta 1*0101 restricted. Instead, the substitution of arginine for serine at position 311 blocked the interaction of the peptide with the T-cell receptor. Thus, despite the diversity of the T-cell response to the V3 loop of HIV-1, a single amino acid change can have a considerable influence on the responding T-cell population. As residue 311 is one of the most variable of the V3 loop residues, these results suggest that CD4 recognition can also exert pressure on viral variation consistent with a role for these cells in antiviral immunity.  相似文献   

12.
We have identified a novel HLA-B allele, B*5529. The novel allele differs from HLA-B*5501 by a single nucleotide substitution at codon 479 in exon 3 resulting in an amino acid change from alanine to valine. This alteration neither affects the peptide binding site nor the T-cell receptor (TCR) contact residues. Thus, the newly found allele is estimated to have a low alloreactive potential in case of a mismatch to the most common HLA-B allele B*5501.  相似文献   

13.
We have previously shown that iodotyrosyl formation within certain innocuous thyroglobulin (Tg) peptides confers on them immunopathogenic properties. In this report, we generated a panel of T-cell hybridoma clones specific for the immunogenic 16 mer Tg peptide p179 (amino acids 179-94) or its iodinated analogue (I-p179), with a view to examining the effects of a single iodine atom at the Y192 amino acid residue on T-cell recognition. We found that the peptide p179 was subdominant, and its binding to both A(k) and E(k) molecules was not significantly influenced by iodine. T-cell receptor (TCR) engagement was unaffected by the bulky iodine atom in two clones that responded to both analogues but it was sterically hindered in two other clones that recognized only p179. One clone was reactive only to I-p179, suggesting that the iodine atom is an integral part of its TCR ligand. Truncation analysis localized the determinant seen by all clones within the 11 mer peptide p184 (amino acids 184-194), suggesting that the cross-reactive clones were not activated by a minimal epitope lacking Y192 and that the negative influence of iodine was not the result of a flanking residue effect. These results demonstrate, at the clonal level, variable influences of a single iodine atom on the recognition of a single Tg peptide. Iodination of tyrosyl-containing, immunopathogenic Tg peptides may have unpredictable effects at the polyclonal level, depending on the extent of iodination at the particular site, and the relative number or effector function of autoreactive T-cell clones that are switched on or off by the neoantigenic determinant.  相似文献   

14.
The contributions of individual amino acids in the polymorphic β chain and the conserved chain of HLA-DR1 to influenza HA-specific DR1-restricted and anti-DR1 allospecific T-cell recognition were analyzed. The genes encoding HLA-DR1 were subjected to site-directed mutagenesis in order to introduce single amino acid substitutions at 12 positions in the β1 domain and 11 positions in the 1 domain. The β1-domain substitutions were all at polymorphic positions and introduced residues that are found in DR4 alleles. The amino acids introduced into the DR1 domain were based on the sequences of other human and mouse class II chains. The responses of 12 DR1-restricted T-cell clones specific for two peptides of HA and seven anti-DR1 allospecific clones were studied. Substitutions at positions that point up from and into the peptide-binding site in the third variable region of the β1-domain -helix caused substantial reduction in the responses of all the clones. Substitutions at multiple positions in the β1-domain floor and in the 1 domain influenced the anti-DR1 responses of the alloreactive and of the HA100-115-specific T-cell clones. In contrast, very few changes outside of the β1 domain third variable region affected the responses of the HA306-324-specific DR1-restricted T-cell clones. These results suggest that a surprisingly limited region of the HLA-DR1 molecule is critically involved in T-cell recognition of HA306-324 by DR1-restricted T cells. However, the susceptibility of the HA100-115-specific and the anti-DR1 allospecific T-cell clones to substitutions at multiple positions in both N-terminal domains shows that the response to DR1-HA306-324 is unusual and may reflect the promiscuity with which this peptide binds to HLA-DR molecules. Human Immunology 40, 311–322 (1994)  相似文献   

15.
Challenged by scattered understanding of protective immunity to Mycobacterium tuberculosis (MTB), we have mapped peptide epitopes to human leukocyte antigen (HLA)-A*0101, A*0201, A*1101, A*2402, B*0702, B*0801 and B*1501 of the secreted mycobacterial antigen Ag85B, a vaccine candidate that may be associated with immune protection. Affinity (ED(50)) and half-life (t(1/2), off-rate) analysis for individual peptide species on HLA-A and HLA-B molecules revealed binding ranges between 10(-3) and 10(-7) M. After selection of the best matches, major histocompatibility complex class I/peptide tetramer complexes were constructed to measure the CD8+ T-cell responses directly ex vivo in peripheral blood mononuclear cells (PBMC) derived from 57 patients with acute pulmonary tuberculosis. Three patterns of (allele-) specific CD8+ recognition were identified: (a). Focus on one dominant epitope with additional recognition of several subdominant T-cell epitopes (HLA-A*0301, A*2402, B*0801 and B*1501); (b). Co-dominant recognition of two distinct groups of peptides presented by HLA-B*0702; and (c). Diverse and broad recognition of peptides presented by HLA-A*0201. Peptides that bound with slow off-rates to class I alleles, that is HLA-A*0201, were associated with low frequency of CD8+ T cells in PBMCs from patients with tuberculosis. HLA-B alleles showed fast off-rates in peptide binding and restricted high numbers (up to 6%) of antigen-specific CD8+ T cells in patients with pulmonary tuberculosis.  相似文献   

16.
Analysis of the structural requirements for the interaction of antigenic peptides with HLA-A24 molecules are very important for studies of T cell recognition of various antigens, because HLA-A24 (A*2402) is most common HLA-A allele in the world, especially in Oriental population. In order to precisely investigate the interaction of peptides with HLA-A24 molecules beyond previous analysis of self-peptides eluted from HLA-A24 molecules, we examined the A*2402 interaction of 172 chemically synthesized 8-mer to 11-mer peptides carrying two residues (Try and Phe) at P2 and four residues (Phe, Trp, Leu and Ile) at their C-terminus by the use of stabilization assay. The results were statistically analyzed to assess the influence of anchor residues on peptide binding. The length of peptides (9- to 11-mer) did not affect A*2402 binding except 8-mer peptides. Peptides possessing the aromatic residues at their C-terminus bound to A*2402 molecules stronger than those bearing the aliphatic hydrophobic residues. These results indicate that two aromatic hydrophobic anchor residues permit the binding of longer peptides to A*2402 molecules. Compared to our recent studies of B*3501 and B*5101 binding peptides, the present study suggested that both B and F pockets of A*2402 molecules might be large and deep because these pockets favored bulky aromatic residues.  相似文献   

17.
A panel of CD4 T-cell clones was isolated from synovial fluid by single cell flow cytometry from a patient with treatment-resistant Lyme arthritis using a DRB1*0401 major histocompatibility complex (MHC) class II tetramer covalently loaded with outer surface protein A (OspA) peptide164-175, an immunodominant epitope of Borrelia burgdorferi. Sequencing of the T-cell receptors of the OspA reactive clones showed significant skewing of the T-cell receptor repertoire. Of the 101 T-cell clones sequenced, 81 possessed TCR beta chains that were present in at least one other clone isolated. Complete sequencing of both alpha and beta chains of a subset of clones showed that at least two distinct T-cell clones were expanded in vivo. Binding studies using a panel of Ala-substituted peptide ligands were performed to determine potential MHC binding sites of the OspAp164-175 to DRB1*0401. In addition, T-cell clones were tested functionally for their reactivity to the wild-type peptide as well as to altered peptide ligands (APLs) and peptide libraries based on the OspA epitope in order to determine the TCR contact residues and the stringency in T cell recognition. We are among the first to define the characteristics of TCR usage of T cells isolated from an inflamed immune compartment in an individual with an autoimmune disease potentially triggered by a microbial antigen.  相似文献   

18.
Rationale:  Major histocompatibility complex class I (MHC I) molecules monitor the protein content of the cell by binding small derived peptides and presenting them to cytotoxic CD8+ T cells. The goal of the human MHC project is to predict the binding strength of any given peptide/MHC complex. This prediction allows the design of peptide-based vaccines. The prediction requires representative binding data from MHC alleles from all the nine HLA supertypes. Here, we describe the genetic construction, protein production and purification as well as the establishment-binding assays for two recombinant MHC supertype alleles, HLA-B*1501 and HLA-B*5801.
Methods:  Using the Quikchange Multisite Directed Mutagenesis Kit (Stratagene), codon-optimized genes encoding HLA-B*1501 and HLA-B*5801 are created. The two MHC I molecules are fermented and purified by ion exchange chromatography, hydrophobic interaction chromatography and size exclusion chromatography. The binding (KD) of natural T-cell epitopes, as well as predicted peptide ligands, is described by radioactive immunoassays (RIAs) and enzyme-linked immunosorbent assays (ELISAs). The MHC molecules are biotinylated during expression.
Results:  The expression of MHC I resulted in multiple disulfide bond isomers, which are separated by hydrophobic interaction chromatography and used in subsequent binding studies resulting in the determination of KD for various peptide ligands ranging from strong binders (KD < 50 nM) to low binders (KD > 5 µM). Tetramerization is visualized by SDS-PAGE.
Conclusion:  An effective method for the production of highly pure MHC I molecules has been applied to HLA-B*1501 and HLA-B*5801, and RIA and ELISA binding assays for those alleles have been established, showing the binding of various peptide ligands to the MHC I molecules.  相似文献   

19.
Accumulating evidence suggests that alloreactive memory T-cells may be generated as a result of viral infection. So far, a suitable tool to define the individual human leukocyte antigen (HLA) cross-reactivity of virus-specific memory T-cells is not available. We therefore aimed to develop a novel system for the detection of cross-reactive alloresponses using single HLA antigen expressing cell lines (SALs) as stimulator. Herein, we generated Epstein-Barr Virus (EBV) EBNA3A specific CD8 memory T-cell clones (HLA-B*0801/FLRGRAYGL peptide restricted) and assayed for alloreactivity against a panel of SALs using interferon-γ Elispot as readout. Generation of the T-cell clones was performed by single cell sorting based on staining with viral peptide/major histocompatibility complex-specific tetramer. Monoclonality of the T-cell clones was confirmed by T-cell receptor (TCR) polymerase chain reaction analysis. First, we confirmed the previously described alloreactivity of the EBV EBNA3A-specific T-cell clones against SAL-expressing HLA-B*4402. Further screening against the entire panel of SALs also showed additional cross-reactivity against SAL-expressing HLA-B*5501. Functionality of the cross-reactive T-cell clones was confirmed by chromium release assay using phytohemagglutinin blasts as targets. SALs are an effective tool to detect cross-reactivity of viral-specific CD8 memory T-cell clones against individual class I HLA molecules. This technique may have important implications for donor selection and monitoring of transplant recipients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号