首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.  相似文献   

2.
The rev gene of human immunodeficiency virus type 1 (HIV-1) encodes a 116 amino acid nuclear regulatory protein (Rev) that increases the cytoplasmic expression of viral mRNAs containing the Rev response element (RRE) and coding for the structural proteins, Gag and Env. To identify the functional domains of Rev, amino acid deletion and chain termination mutations were introduced in the Rev coding region. The ability of these mutants to increase the cytoplasmic expression of a Rev-test plasmid (pSV-AR), containing the RRE cloned into the 3' noncoding region of the CAT gene in plasmid pSV2CAT, was examined in transient expression assays in HeLa cells. Our results indicate that three distinct regions mapping within the N-terminal 98 amino acids of Rev are essential for its activity. The subcellular localization of the various Rev proteins was examined in COS cells by indirect immunofluorescence. Rev was found to localize predominantly in the nucleolus of transfected cells. All mutant Rev proteins, with the exception of a deletion mutant (rev delta 41-44) lacking four Arg residues of a highly basic domain, were found to localize in the nucleolus. Mutant rev delta 41-44 exhibited weak diffuse fluorescence in the nucleus with a tendency to accumulate in the cytoplasm. A 15 amino acid region encompassing this basic domain (38-52) when fused to the Escherichia coli beta-galactosidase gene efficiently directed the fusion gene product to the nucleus and nucleolus, suggesting a role for this domain in the nucleolar localization of Rev.  相似文献   

3.
4.
5.
6.
Interaction of the human immunodeficiency virus type 1 (HIV-1) Rev protein with a structured region within env mRNA (termed RRE) mediates the export of virus structural mRNAs from the nucleus to the cytoplasm. We show that the region encompassing the basic stretch of amino acids is essential for the ability of Rev to bind to RRE RNA and function in vivo. By use of a functional truncated Rev protein in conjunction with authentic Rev, effects on gel mobilities of the Rev-RRE RNA complex attributable to multimerization of Rev protein were observed. Rev proteins, unable to multimerize, failed to bind RRE RNA. Identification of Rev mutants capable of forming multimers, but unable to bind RRE RNA, suggests that the multimerization and RNA-binding domains can be distinguished and that multimerization is likely a prerequisite for formation of the RRE RNA-binding site. A mutant Rev protein, shown previously to function as a trans-dominant inhibitor of Rev function, bound to RRE RNA as a multimer to a similar extent as wild-type Rev. This observation is consistent with the hypothesis that regulation of HIV gene expression by Rev involves the interaction with cellular factors and that the trans-dominant Rev is probably defective in this function.  相似文献   

7.
Fang J  Kubota S  Yang B  Zhou N  Zhang H  Godbout R  Pomerantz RJ 《Virology》2004,330(2):471-480
HIV-1 Rev escorts unspliced viral mRNAs out of the nucleus of infected cells, which allows formation of infectious HIV-1 virions. We have identified a putative DEAD box (Asp-Glu-Ala-Asp) RNA helicase, DDX1, as a cellular co-factor of Rev, through yeast and mammalian two-hybrid systems using the N-terminal motif of Rev as "bait". DDX1 is not a functional homolog of HIV-1 Rev, but down-regulation of DDX1 resulted in an alternative splicing pattern of Rev-responsive element (RRE)-containing mRNA, and attenuation of Gag p24 antigen production from HLfb rev- cells rescued by exogenous Rev. Co-transfection of a DDX1 expression vector with HIV-1 significantly increased viral production. DDX1 binding to Rev, as well as to the RRE, strongly suggest that DDX1 affects Rev function through the Rev-RRE axis. Moreover, down-regulation of DDX1 altered the steady state subcellular distribution of Rev, from nuclear/nucleolar to cytoplasmic dominance. These findings indicate that DDX1 is a critical cellular co-factor for Rev function, which maintains the proper subcellular distribution of this lentiviral regulatory protein. Therefore, alterations in DDX1-Rev interactions could induce HIV-1 persistence and targeting DDX1 may lead to rationally designed and novel anti-HIV-1 strategies and therapeutics.  相似文献   

8.
OBJECTIVES: Human immunodeficiency virus type 1 (HIV-1) Rev is a nucleocytoplasmic shuttling protein with dominant localization in the cell nucleus/nucleolus. To clarify the mechanism(s) that enables such a biased subcellular localization under the co-presence of nuclear/nucleolar targeting (NOS) and nuclear export signals (NES), the properties of another functional domain, a nuclear diffusion inhibitory signal (NIS), was investigated. STUDY DESIGN: The NIS was previously shown to interfere with passive nuclear entry of small proteins. Intracellular distribution and degradation profiles of Rev mutants that harbor mutations in the NIS were analyzed biochemically and cellbiologically. RESULTS: A NIS-deficient Rev mutant, which was no longer functional as Rev, displayed a significantly more rapid degradation profile as a consequence of its dramatic leakage into the cytoplasm. Additionally, disabling the NOS/nuclear localization signal (NLS), as well as the NIS, resulted in further rapid degradation, which also supports the hypothetical role of the nucleolus as a Rev storage site. CONCLUSIONS: It was uncovered that the NIS is playing a key role in HIV-1 Rev function by maintaining the nuclear-dominant localization and the intracellular stability of Rev.  相似文献   

9.
Summary.  The contributions of the near N-terminal residues of Rev protein of HIV were investigated by analyzing N-terminal deletions of Rev in the context of a Rev/MS-C fusion protein that can bind and activate both the Rev responsive element (RRE) and the MS2 phage translational operator RNAs. Rev/MS-C fusion proteins deleted for residues 3–19 of Rev retained trans-activation potential for both RRE and MS2 targets. Coincidentally, peptides spanning residues 17–87 or 22–85 were functionally competent for trans-activation of RRE containing HIV-1 gag mRNA. Deletion of residues 18–24 of Rev in the Rev/MS-C fusion protein abolished the activation potential for both RRE and MS2 targets, although this mutant was competent for specific RNA binding, protein multimerization, and nuclear and nucleolar localization. Four mutants dominantly interfering with Rev activation of RRE were mapped near the N-terminus of Rev; (i) between residues 18 and 24, (ii) 25–34, (iii) 43–50, and (iv) 51–60. Of these, the mutant lacking residues 18–24 was a novel trans-dominant inhibitor of Rev and Rev/MS-C for activation of RRE or MS2 RNA, while the oligomerization domain mutants mapping between residues 25–34 or 51–60 inhibited the activation of RRE rather than MS2 RNA. Accepted August 9, 2000 Received April 12, 2000  相似文献   

10.

Background

Human immunodeficiency virus type 1 (HIV-1)-based gene delivery systems are popular due to their superior efficiency of transduction of primary cells. However, these systems cannot be readily used for delivery of anti-HIV-1 genes that target constituents of the packaging system itself due to inimical effects on vector titer. Here we describe HIV-1-based packaging systems containing the Rev-response element (RRE), of simian immunodeficiency virus (SIV) in place of the HIV-1 RRE. The SIV RRE-containing packaging systems were used to deliver the anti-Rev gene, Rev M10, into HIV-1 susceptible target cells.

Results

An HIV-1 based packaging system was created using either a 272- or 1045-nucleotide long RRE derived from the molecular clone SIVmac239. The 1045-nucleotide SIV RRE-containing HIV-1 packaging system provided titers comparable to that of the HIV-1 RRE-based one. Moreover, despite the use of HIV-1 Rev for production of vector stocks, this packaging system was found to be relatively refractory to the inhibitory effects of Rev M10. Correspondingly, the SIV RRE-based packaging system provided 34- to 130-fold higher titers than the HIV-1 RRE one when used for packaging a gene transfer vector encoding Rev-M10. Jurkat T-cells, gene modified with Rev M10 encoding HIV-1 vectors, upon challenge with replication defective HIV-1 in single-round infection experiments, showed diminished production of virus particles.

Conclusion

A simple modification of an HIV-1 gene delivery system, namely, replacement of HIV-1 RRE with that of SIV, allowed efficient delivery of Rev M10 transgene into T-cell lines for intracellular immunization against HIV-1 replication.  相似文献   

11.
HIV-1 replication depends on the expression of trans-regulatory genes (tat, rev) encoded in the 3' part of the retroviral genome. HIV-1 Rev trans-activator protein allows the cytoplasmic translocation of incompletely spliced retroviral mRNA which is required for the translational switch from regulatory (Tat, Rev, Nef) to structural proteins (Gag, Pol, Env). The HIV-1 Rev regulatory protein comprises an activation domain (RAD) and a RNA binding domain (RBD). Both functional domains are not well defined and the RBD appears to overlap with the nuclear localization signal (NLS). Our mutational analysis localized the Rev protein domain important for RRE (nucleotide 7781 to 8000) binding in vitro to amino acid residues 31 to 50. Mutations in this domain always resulted in exclusion from the nucleoli. Furthermore, these mutants did not support Rev-dependent p24 Gag production in vivo. Sequences immediately upstream of this domain (RevM4, RevM19) were attenuated in their in vivo activity possibly indicating a role in Rev protein oligomerization. The observed tight correlation between subcellular localization and RNA binding in vitro indicates that this short stretch of amino acids supports two essential functions required for HIV-1 replication.  相似文献   

12.
13.
The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.  相似文献   

14.
Suptawiwat O  Lee TH  Auewarakul P 《Virology》2005,342(1):111-118
In order to export intron-containing RNA from nucleus, retroviruses use either viral trans-acting factors or constitutive cellular factors interacting with cis-elements in their intron-containing RNA. We have previously identified a Cis Enhancing Sequence (CES) in HIV-1 env region that could co-operate with Rev and RRE to enhance Gag expression by promoting RNA stabilization and exportation. In this study, we found that CES could function in a Rev-independent manner by co-operating with a Constitutive Transport Element (CTE) of Mason-Pfizer monkey viruses (MPMV). RRE and CTE promote intron-containing RNA exportation through different pathways. The fact that CES could function in both pathways of RNA export suggested that CES might function at a common step either up- or downstream to Rev/RRE or CTE functions. Known hnRNP-A1-binding sites as well as other 3 highly conserved sequences in the CES were found to be required for its activity.  相似文献   

15.
The effect of Rev on cytoplasmic accumulation of the singly spliced human immunodeficiency virus type 1 (HIV-1) vif, vpr, and env/vpu RNAs was examined by using a quantitative RNA polymerase chain reaction (PCR) analysis following transfection of complete proviral molecular clones into lymphoid cells. Previously published studies using subgenomic env constructs in nonlymphoid cell types concluded that Rev was necessary for cytoplasmic accumulation of high levels of unspliced env RNA and that, by analogy, Rev must be necessary for the cytoplasmic accumulation of all HIV-1 RNAs that contain the Rev-responsive element (RRE). We confirm those results in COS cells. Unexpectedly, in lymphoid cells, we find that although Rev acts somewhat to increase the cytoplasmic level of full-length HIV-1 RNA, Rev has little or no effect on cytoplasmic accumulation of singly spliced HIV-1 RNAs. However, Env protein expression was greatly reduced in the absence of Rev. Analysis of the cytoplasmic RNA revealed that in the absence of Rev or the RRE, the cytoplasmic vif, vpr, and env/vpu 2 RNAs were not associated with polysomes but with a complex of 40S-80S in size. Consequently, efficient expression of the Vif, Vpr, Vpu, and Env proteins from these RNAs is dependent on Rev. These results exclude a mechanism whereby the sole function of Rev is simply to export RNAs from nucleus to cytoplasm. We discuss other models to take into account the dependence on Rev for efficient translation of cytoplasmic HIV-1 RNAs.  相似文献   

16.
Functional Variability of Rev Response Element in HIV-1 Primary Isolates   总被引:1,自引:0,他引:1  
We have previously studied sequence heterogeneity of HIV-1 Rev response element (RRE), and showed uneven variations in different stem–loops of both primary sequence and secondary structure. Here we studied the functional variation of RRE clones from a set of 10 primary isolates, and demonstrated a variation in the function of these RRE clones on the expression of Gag proteins from a truncated HIV-1 genome. The difference in Gag level was, in part, if not exclusively, resulted from the differential efficiency of RNA transport and enhancing of translation. These data suggested that variation of HIV-1 RRE may play a role in regulation of viral replication rate in HIV-1 primary isolates.  相似文献   

17.
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号