首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
While delayed delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with improved tendon healing, early delivery has been associated with impaired healing. Therefore, NSAID use is appropriate only if the dose, timing, and mode of delivery relieves pain but does not impede tissue repair. Because delivery parameters can be controlled using drug-eluting nanofibrous scaffolds, our objective was to develop a scaffold for local controlled release of ibuprofen (IBP), and characterize the release profile and degradation both in vitro and in vivo. We found that when incubated in vitro in saline, scaffolds containing IBP had a linear release profile. However, when implanted subcutaneously in vivo or when incubated in vitro in serum, scaffolds showed a rapid burst release. These data demonstrate that scaffold properties are dependent on the environment in which they are placed and the importance of using serum, rather than saline, for initial in vitro evaluation of biofactor release from biodegradable scaffolds.  相似文献   

3.
Low availability of oxygen can lead to stalled wound healing processes and chronic wounds. To address local hypoxia and to better understand direct cellular benefits, a perfluorocarbon conjugated chitosan (MACF) hydrogel that delivers oxygen was created and applied for the first time to in vitro cultures of human dermal fibroblasts and human epidermal keratinocytes under both normoxic (21% O2) and hypoxic (1% O2) environments. Results revealed that local application of MACF provided 233.8 ± 9.9 mmHg oxygen partial pressure at 2 h and maintained equilibrium oxygen levels that were approximately 17 mmHg partial pressure greater than untreated controls. Cell culture experiments showed that MACF oxygenating gels improved cellular functions involved in wound healing such as cell metabolism, total DNA synthesis and cell migration under hypoxia in both fibroblasts and keratinocytes. Adenosine triphosphate (ATP) quantification also revealed that MACF treatments improved cellular ATP levels significantly over controls under both normoxia and hypoxia (p < 0.005). In total, these studies provide new data to indicate that supplying local oxygen via MACF hydrogels under hypoxic environments improves key wound healing cellular functions.  相似文献   

4.
High inflammatory AIRmax mice homozygous for Slc11a1 R and S alleles were produced. AIRmax SS mice showed faster ear tissue regeneration than AIRmax RR mice, suggesting that the S allele favored tissue restoration. Here, we investigated the gene expression profiles and the inflammatory reactions of AIRmax RR and AIRmax SS mice during the initial phase of ear tissue regeneration. We observed superior levels of analysis of wound myeloperoxidase and edema in AIRmax SS mice, although similar cell influx was verified in both lines. Of the genes, 794 were up- and 674 down-regulated in AIRmax RR , while 735 genes were found to be up- and 1616 down-regulated in AIRmax SS mice 48 h after punch. Both mouse lines showed significant over-represented genes related to cell proliferation; however AIRmax SS displayed up-regulation of inflammatory response genes. Quantitative PCR experiments showed higher expressions of Tgfb1, Dap12 and Trem1 genes in AIRmax SS mice. These results indicate that Slc11a1 gene modulated the early inflammatory events of ear tissue regeneration.  相似文献   

5.
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue–tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., boneligamentbone) are being actively investigated. Closely related is the effort to re-establish tissue–tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure–function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., boneligamentbone, muscletendonbone, cartilagebone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.  相似文献   

6.
Using whole-mount in situ hybridisation techniques, we have examined the expression of major components of the insulin-like growth factor (IGF) axis in early development of the chicken embryo, including both IGF-I and -II, the type 1 IGF receptor (IGFR), and two of the IGF binding proteins, (IGFBP)-2 and -5. We report that these genes fall into two distinct groups with respect to expression pattern, with IGFBP-2 displaying broad overlap of mRNA expression with IGFR and IGF-I during early development, whereas the expression profile of IGFBP-5 most closely resembled that of IGF-II. Comparison between different stages revealed IGFBP-2 mRNA was detected as early as stage 3, whereas IGFBP-5 was first seen at stage 4. In addition, we detected expression domains of IGFBP-5, and to a lesser extent IGFBP-2, which did not overlap with either IGFR or IGF expression patterns. This could indicate IGF independent actions of the IGFBPs during early embryonic development. A striking observation concerning the expression profiles of both IGF-II and IGFBP-5 at early stages of chick embryogenesis is that both these genes are expressed asymmetrically in a pattern similar to that of Sonic Hedgehog (Shh). Furthermore, using cyclopamine, we have demonstrated that IGFBP-5 expression in the early embryo is regulated by Shh. Taken together, these results describe an important role for the IGF system in the very early stages of the developing chicken embryo, and imply that IGFBP-2 and -5 are fundamental developmental factors, with the latter involved in Shh signalling pathways.  相似文献   

7.
Capnocytophga canimorsus and Capnocytophga cynodegmi can be transmitted from cats and dogs to humans, and can cause a wide range of infections including wound infections, sepsis, or endocarditis. We and others recently discovered two new Capnocytophaga species, C. canis and C. stomatis, mainly associated with wound infections. The first-line treatment of animal bite related infections is penicillin, and in case of allergy, doxycycline and trimethoprim/sulfamethoxazole. However, there is a lack of antibiotic susceptibility patterns for animal bite associated Capnocytophaga species. Thus, we ?set out to study the antibiotic profiles against animal bite associated Capnocytophaga species isolated from wound and blood cultures after cat and dog bites and coupled the findings to whole genome sequencing data. A total of 24 strains were included in the study. Phenotypic analysis of antibiotic resistance was performed with E-tests. The web-based tool ‘Resfinder’ was used to identify resistance genes in the whole genome dataset. Two strains of C. cynodegmi and two strains of the recently discovered C. stomatis were resistant to penicillin (MIC?> 24 mg?/L) and cephalosporins (MIC?>?24 mg/?L), and three out of these strains also exhibited resistance to imipenem (MIC?=?32 mg/?L). Genomic analysis revealed that these strains carried a class D beta-lactamase gene, which has not previously been found in Capnocytophaga spp. A class D beta lactamase with broad substrate specificity was found in animal bite associated Capnocytophaga species, which could have important implications when treating wound infections after cat and dog bites. It also suggests that pet animal bacteria can harbour resistance genes with relevance for human infections.  相似文献   

8.
To analyze complex inflammatory responses in an in vitro system, we constructed a new 3D in vitro brain tissue model that exhibits in vivo-like tissue responses (e.g. immune cell phenotypes, and molecular response) to inflammatory stimuli. Finite element modeling of oxygen diffusion and cellular oxygen consumption predicted the oxygen profile within 3D structures, consisting of Type I collagen hydrogel embedded with murine microglia. Viability and cytotoxicity analyses supported the mathematical analysis, determining optimal cell growth conditions for 3D construct development. Real-time RT-PCR and ELISA demonstrated significant up-regulation of pro-inflammatory mediators, such as TNF-α, MCP-1, IL-6 and IL-1β, in lipopolysaccharide (LPS)-stimulated in vitro cell culture (2D and 3D) and in vivo mouse model systems. Interestingly, levels of inflammatory responses from the in vitro 3D model system were more similar to in vivo than in vitro 2D. Additionally, in situ dihydroethidium (DHE) assay and immunofluorescence staining revealed that levels of LPS-stimulated reactive oxygen species (ROS) generation and microglial activation from in vitro 3D model system were closer to in vivo than in vitro 2D. These results demonstrated that an in vitro 3D model provides more physiologically relevant pro-oxidative and pro-inflammatory environments in brain than an in vitro 2D model.  相似文献   

9.
The structural features and evolutionary state of the sex chromosomes of the XX/XY species of Rumex are unknown. Here, we report a study of the meiotic behaviour of the XY bivalent in Rumex acetosella and R. suffruticosus, a new species which we describe cytogenetically for the first time in this paper, and also that of the XY1Y2 trivalent of R. acetosa by both conventional cytogenetic techniques and analysis of synaptonemal complex formation. Fluorescent in situ hybridization with satellite DNA and rDNA sequences as probes was used to analyse the degree of cytogenetic differentiation between the X and Y chromosomes in order to depict their evolutionary stage in the three species. Contrasting with the advanced state of genetic differentiation between the X and the Y chromosomes in R. acetosa, we have found that R. acetosella and R. suffruticosus represent an early stage of genetic differentiation between sex chromosomes. Our findings further demonstrate the usefulness of the genus Rumex as a model for analysing the evolution of sex chromosomes in plants, since within this genus it is now possible to study the different levels of genetic differentiation between the sex chromosomes and to analyse their evolutionary history from their origin.  相似文献   

10.
Spa typing has been shown to function as a genetic marker for Staphylococcus aureus outbreak investigations and epidemiological studies. This study was aimed to investigate biofilm formation capacity and spa gene polymorphism in methicillin resistant S. aureus (MRSA) strains isolated from clinical samples. A total of 102 S. aureus isolated during 2016, were analyzed for methicillin resistance and biofilm formation using phenotypic assays and PCR-based detection of associated genes. The polymorphic region of the spa gene was amplified by PCR using specific primers and subsequently in MRSA strains the amplified products were sequenced and spa types determined by using the spa database website. Out of 102 S. aureus, 41 isolates (40.2%) recognized as MRSA in phenotypic and genotypic investigations. In phenotypic assay, biofilm forming ability was detected in 71 isolates. The frequency of icaA and fnbA in test isolate were 53.9 and 65.7% respectively. Amplification of polymorphic region of the spa gene in all 102 tested isolates resulted in eight size fragments ranged between 168–336 bp. In MRSA strains thirteen distinct spa types with 5–12 repeats were observed. The most frequent types of spa were t030, t037, t325, t421, t937, t1814 and t084. spa types t2421, t1814, t359 and t2617 identified for the first time in Iran. The present results showed high biofilm formation capacity and great diversity of variable region of spa gene in MRSA strains and confirmed that, spa typing provides valuable information on the epidemiologic features and discrimination of this bacterium.  相似文献   

11.
ROR-1 is a member of the ROR family of tyrosine kinase like orphan receptors and is highly conserved among various species. We have isolated the chickROR-1 (cROR-1) and show that cROR-1 expression is high and restricted to the proximal limb region until HH-stage 25. At later stages, expression spreads towards the distal limb region. In order to determine the signals that control cROR-1 expression, factors known to be involved in limb patterning (FGFs, BMPs, SHH, retinoic acid) were applied to the developing limb. Whereas neither FGFs, BMPs, nor SHH affected cROR-1 expression, upregulation could be achieved by ectopic application of retinoic acid to the distal limb region. As retinoic acid also upregulated retinoic acid receptor beta (Rar-β), we assume that cROR-1 upregulation is mediated by Rar-β. We conclude that ROR-1 signaling is an independently regulated pathway, which is involved in late rather than early limb development.  相似文献   

12.
Polycaprolactone (PCL) is used as a material of choice for surgical sutures, wound dressings, contraceptives, fixation devices and dentistry in paramedical sciences. In addition, adipose-derived stem cells (ASCs) have been shown to be effective in the treatment of acute and chronic wounds. This study aimed to evaluate the effect of electrospun PCL fibers on keratinocyte differentiation of ASCs and wound healing. PCL solution was electrospun and characterized. Isolated and characterized ASCs were differentiated into keratinocyte-like cells on a tissue culture plate (TCP) and PCL matrices and compared. PCL nano-/microfibers cultured with ASCs (test group) or alone (control) were implanted as a dermal substitute for wound healing. There were significant increases in the proliferation rate and expression level of cytokeratin 14, filaggrin and involucrin in cells cultured on PCL matrices compared to TCP (p < 0.05). After histological and immunological evaluation of the reconstituted skin, a thick epidermal layer with several skin appendages was evidently observed in the ASC/PCL group, whereas no real and mature epidermis was formed, especially in the central area of the healing wound in the pure PCL group on day 14. Pure PCL, if possessing suitable properties including good adhesiveness, high proliferative capability, inductive elasticity and stiffness for migration and differentiation, could drive the keratinocyte differentiation of ASCs and act as an efficient dermal equivalent to promote wound healing.  相似文献   

13.
Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p < 0.001; superoxide/GSH: 1.76 ± 0.21 vs 1.31 ± 0.10, p = 0.007). Patients with methylated P16 and at least one methylated gene had higher peroxide levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation.  相似文献   

14.

Objective and design

We investigated the expressions of lncRNA MEG3 and PTEN in ovarian cancer tissues and their effects on cell proliferation, cycle and apoptosis of ovarian cancer.

Methods

Expression levels of MEG3 in ovarian cancer cell lines and normal ovarian cell lines were detected by qRT-PCR. Cell viability was detected by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Cell invasion capability was tested by transwell assay. Cell migration capacity was tested by wound healing. The xenograft model was constructed to explore the effect of lncRNA MEG3 on ovarian cancer in vivo.

Result

Compared with normal ovarian cells, expression levels of MEG3 and PTEN were relatively lower in ovarian cancer cells. There was a positive correlation between the expression of PTEN and the expression of MEG3. Enhanced expression level of PTEN suppressed SKOV3 cell proliferation, increased cell apoptosis rate, and decreased cell invasion and migration.

Conclusion

LncRNA MEG3 and PTEN were down-regulated in ovarian cancer cells. LncRNA MEG3 regulated the downstream gene PTEN in ovarian cancer cells to prohibit cell proliferation, promote apoptosis and block cell cycle progression.
  相似文献   

15.

Background

Bacteria within a biofilm are phenotypically more resistant to antibiotics, desiccation, and the host immune system, making it an important virulence factor for many microbes. Cranberry juice has long been used to prevent infections of the urinary tract, which are often related to biofilm formation. Recent studies have found that the A-type proanthocyanidins from cranberries have anti-biofilm properties against Escherichia coli.

Methods

Using crystal violet biofilm staining, resazurin metabolism assays, and confocal imaging, we examined the ability of A-type proanthocyanidins (PACs) to disrupt the biofilm formation of Pseudomonas aeruginosa. We used mass spectrometry to analyze the proteomic effects of PAC treatment. We also performed synergy assays and in vitro and in vivo infections to determine whether PACs, alone and in combination with gentamicin, could contribute to the killing of P. aeruginosa and the survival of cell lines and G. mellonella.

Results

Cranberry PACs reduced P. aeruginosa swarming motility. Cranberry PACs significantly disrupted the biofilm formation of P. aeruginosa. Proteomics analysis revealed significantly different proteins expressed following PAC treatment. In addition, we found that PACs potentiated the antibiotic activity of gentamicin in an in vivo model of infection using G. mellonella.

Conclusions

Results suggest that A-type proanthocyanidins may be a useful therapeutic against the biofilm-mediated infections caused by P. aeruginosa and should be further tested.
  相似文献   

16.
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.  相似文献   

17.
The purpose of this study was to investigate the clinical characteristics of hypervirulent K. pneumoniae (hvKP) induced ventilator-associated pneumonia (VAP) and the microbiological characteristics and epidemiology of the hvKP strains. A retrospective study of 49 mechanically ventilated patients with K. pneumoniae induced VAP was conducted at a university hospital in China from January 2014 to December 2014. Clinical characteristics and K. pneumoniae antimicrobial susceptibility and biofilm formation were analyzed. Genes of capsular serotypes K1, K2, K5, K20, K54 and K57 and virulence factors plasmid rmpA(p-rmpA), iroB, iucA, mrkD, entB, iutA, ybtS, kfu and allS were also evaluated. Multilocus sequence typing (MLST) and random amplified polymorphic DNA (RAPD) analyses were used to study the clonal relationship of the K. pneumoniae strains. Strains possessed p-rmpA and iroB and iucA were defined as hvKP. Of 49 patients, 14 patients (28.6 %) were infected by hvKP. Antimicrobial resistant rate was significantly higher in cKP than that in hvKP. One ST29 K54 extended-spectrum-beta-lactamase (ESBL) producing hvKP strain was detected. The prevalence of K1 and K2 in hvKP was 42.9 % and 21.4 %, respectively. The incidences of K1, K2, K20, p-rmpA, iroB, iucA, iutA, Kfu and alls were significantly higher in hvKP than those in cKP. ST23 was dominant among hvKP strains, and all the ST23 strains had identical RAPD pattern. hvKP has become a common pathogen of VAP in mechanically ventilated patients in China. Clinicians should increase awareness of hvKP induced VAP and enhance epidemiologic surveillance.  相似文献   

18.
Current knowledge about liver responses to blood-stage malaria and their modulation by vaccination is still unclear. This study investigated effects of protective vaccination on liver gene and lincRNA expression of Balb/c mice at early prepatency of Plasmodium chabaudi blood-stage malaria. When a blood-stage vaccine was used to induce >?80% survival of otherwise lethal malaria, significant differences (p?<?0.01) were detectable in global liver gene expression between vaccination-protected (potentially surviving) and non-protected non-vaccinated mice on day 1 p.i.. In the livers of protected mice, gene expression microarrays identified 224 and 419 genes, whose expression was up- and downregulated by >?3-fold, respectively. There were 24 genes upregulated by >?10-fold, including 10 IFN-inducible genes encompassing GTPases Irgm1, 2, and 3, and guanylate-binding protein Gbp11, the IL-1 decoy receptors Il1f9 and Il1ra1, the Il6 gene, and the gene for facilitated glucose transportation. Moreover, the IL-18 decoy receptor gene Il18bp, Gzmb, the genes Lif and Osmr encoding proteins of the IL-6 family, and the taurine transporter gene Slc6a6 were expressed >?3-fold in vaccinated mice. The genes Gbp10, 6, 4 were expressed by >?50% in vaccination-protected than in non-vaccinated mice. In addition, 43 lincRNA species were up- and 36 downregulated. Our data suggested novel regulatory elements of potential anti-malaria activity activated by protective vaccination in the liver, evidenced in response to early prepatent infections in vaccination-protected mice of otherwise lethal blood-stage malaria of P. chabaudi.  相似文献   

19.
Previous studies have shown that spinal cord development in direct developing frogs of the genus Eleutherodactylus, which have evolutionarily lost the tadpole stage, differs from that in biphasically developing anurans (with the larval and the adult stage separated by metamorphosis). The present study of spinal cord development in Eleutherodactylus coqui provides additional information about neurogenesis, neuronal differentiation and growth analyzed by immunostaining for proliferating cell nuclear antigen (PCNA), in situ hybridization for NeuroD, and morphometric measurements in various developmental stages. Furthermore, spinal cord development in the frogs Discoglossus pictus, Xenopus laevis, and Physalaemus pustulosus, which belong to different anuran families but all exhibit biphasic development, was similarly analyzed. This comparative analysis allows inference of the ancestral anuran pattern of spinal cord development and how it has been modified during the evolution of Eleutherodactylus. All biphasically developing frogs analyzed share a similar pattern of spinal cord development, suggesting that this is ancestral for anurans: after neural tube closure, levels of proliferation and neurogenesis in the spinal cord were low throughout embryogenesis until they were upregulated drastically at early larval stages followed by development of the lateral motor columns. In contrast, no such quiescent embryonic period exists in E. coqui, where rapid growth, high levels of proliferation and neurogenesis, and early formation of lateral motor columns occur shortly after neural tube closure, while other parts of the central nervous system develop more slowly. Thus, spinal cord development has been accelerated during the evolution of Eleutherodactylus relative to the development of other parts of the central nervous system, probably related to the precocious development of limbs in this lineage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号