首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
New 4-aryl-2H-pyrido[1,2-c]pyrimidine-1,3-dione derivatives of arylpiperazine (6-18) were prepared and evaluated in vitro for their affinity for 5-HT1A, 5-HT2A, and alpha1 receptors. The influence of ortho substitution in the phenyl ring, substitution at position 4 of the pyrido[1,2-c]pyrimidine system, and its unsaturation degree were explored. The tested compounds showed high affinity for the 5-HT1A receptor (Ki = 1.3-79.2 nM) and moderate to low affinity for the 5-HT2A (Ki = 51.7-1405 nM) and alpha1 receptors (Ki = 19.7-382.3 nM). Compounds 8 and 10 showed the highest 5-HT1A receptor affinity (Ki = 1.3 and 2.2 nM, respectively) and were 37- and 35.9-fold, respectively, more selective in relation to alpha1 adrenoreceptors.  相似文献   

2.
The synthesis, physicochemical and pharmacological properties of new N-[(4-arylpiperazin-1-yl)-alkyl]-2-azaspiro[4.4]nonane- (8a-c, 10a-d) and [4.5]decane-1,3-dione (9a-c, 11a-d) derivatives were described. The antiepileptic effects of those compounds were examined by a maximal electroshock (MES) and a pentylenetetrazole (sc. PTZ) tests, and their neurotoxicity was determined using a rota-rod test. Compounds 8c, 9c, 10c, d, 11c, d with a CF(3) group at the 3-position of the 4-arylpiperazine fragment exhibited anti-seizure properties in the MES model; in contrast, their 2-CH(3) and 2-OCH(3) analogues were inactive in both the tests used. Moreover, since the investigated compounds belong to the class of long-chain arylpiperazines, their serotonin 5-HT(1A) and 5-HT(2A) receptor affinity was determined. The relationship between the length of alkylene spacer and 5-HT(1A)/5-HT(2A) receptor activity was observed. Compounds with an ethylene and a propylene bridge (10a-d and 11a-d) were 3-80-fold more potent (K(i) ranged from 3.1 to 94 nM for 5-HT(1A) and 32-465 nM for 5-HT(2A)) than their methylene analogues (8a-c and 9a-c; K(i) ranged from 81 to 370 nM for 5-HT(1A) and 126-1370 nM for 5-HT(2A)). The highest 5-HT(1A) receptor affinity was displayed by 2-OCH(3) and 3-CF(3) phenyl derivatives (10b, 11b: K(i)=6.8 and 5.7 nM, respectively, and 10c, 11c: K(i)=6.0 and 3.1 nM, respectively), while in the case of 5-HT(2A) receptor the highest affinity was observed for the 3-CF(3) phenyl derivatives 10c, d, 11c, d (K(i) ranged from 32 to 86 nM).  相似文献   

3.
This work reports the synthesis by microwave irradiation and the binding tests on the 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors of new substituted piperazines in order to identify selective ligands for 5-HT(1A) subtype receptor. Conventional heating and microwave irradiation of the reactions was compared. Synthesis by microwave irradiation gave the desired compounds in better yields than those obtained by conventional heating. The overall times for the syntheses were considerably reduced. Some resulting active compounds (29 and 39) were characterised by a good selectivity profile for the 5-HT(1A) subtype receptor. The more active compounds were selected and further evaluated for their binding affinities on D(1), D(2) dopaminergic and alpha(1), alpha(2) adrenergic receptors. The compound with higher affinity and selectivity for the 5-HT(1A) over all the considered receptors was the 3-[4-[4-(1,2,3,4-tetrahydronaphthyl)-1-piperazinyl]butan]-benzotriazinone (-)29 (5-HT(1A) K(i)=36 nM, other receptors not active).  相似文献   

4.
N'-cyanopicolinamidine derivatives, linked to an arylpiperazine moiety, were prepared and their affinity to serotonin 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors were evaluated. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine) known to be critical for affinity to 5-HT(1A) receptors and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed affinity in nanomolar and subnanomolar range at 5-HT(2A) and moderate to no affinity for other relevant receptors (5-HT(1A), 5-HT(2C), D(1), D(2), α(1) and α(2)). N'-cyano-N-(3-(4-(3-chlorophenyl)piperazin-1-yl)propyl)-picolinamidine (4l) with K(i)=0.000185nM, was the most active and selective derivative for the 5-HT(2A) receptor compared to other serotoninergic, dopaminergic and adrenergic receptors.  相似文献   

5.
6.
A number of new carboxamide derivatives were synthesized. The affinity of these compounds for the serotoninergic 5-HT(4) receptor was evaluated by use of radioligand-binding techniques. The agonistic activity was evaluated as the contractile effect of the ascending colon isolated from guinea-pigs. Among these compounds, 4-amino-5-chloro-2-methoxy-N-[1-[2-[(methylsulfonyl)amino]ethly]-4-piperidinylmethyl]benzamide (24) showed a high affinity for the 5-HT(4) receptor (Ki = 9.6 nM). Compound 24 displayed a higher affinity for 5-HT(4) receptors than the other receptors, including, 5-HT(3) and dopamine D(2) receptors. In addition, compound 24 was confirmed to be a potent 5-HT(4) receptor agonist (ED(50) = 7.0 nM). An interaction model between compound 24 and 5-HT(4) receptor was proposed.  相似文献   

7.
A series of new 3-[4-(4-arylpiperazinyl)-butyl]-beta-tetralonohydantoins (8a-13a) were synthesized. The compounds exhibited high affinity for 5-HT(1A) receptors (K(i)=6 to 55 nM) combined with moderate-to-high 5-HT(2A) receptor affinities (K(i)=45 to 213 nM). The results of in vivo studies indicated that of the compounds tested, 3-[4-(4-phenylpiperazinyl)-butyl-beta-tetralonohydantoin (8a) showed features of full (pre- and postsynaptic) 5-HT(1A) receptor agonists, whereas compounds 9a-13a behaved like antagonists of postsynaptic 5-HT(1A) receptors; additionally, compound 13a produced an effect characteristic of presynaptic 5-HT(1A) receptor agonists. Moreover, compounds 8a and 10a-13a exhibited properties of 5-HT(2A) receptor antagonists. Due to the most interesting 5-HT(1A)/5-HT(2A) functional profile compounds 8a and 13a were further tested for their potential psychotropic activity. In fact, compound 8a (but not 13a) showed diazepam-like anxiolytic activity and behaved like a weak antidepressant.  相似文献   

8.
The synthesis, structure, in vitro and in vivo pharmacological activities of 3β-acylamine derivatives of tropane (4a-n, 5a-g, 6a,b, 8a-c) are described. Among the investigated compounds, several displayed very high (in nM) affinity for the monoamine receptors 5-HT(1A), 5-HT(2A,) and D(2). The most interesting agent 6b revealed very high affinity for the 5-HT(2A) and D(2) receptors and high affinity for the 5-HT(1A) receptor. The in vivo head twitch model was used to demonstrate antagonism of the 5-HT(2A) receptor subtype by this compound. In another test, 6b caused hypothermia in mice, which was not attenuated by WAY 100635. In the climbing test, the compound did not significantly modify climbing behaviour following apomorphine administration. Moreover, 6b significantly reduced locomotor activity in mice. Molecular docking studies using a homology model of the 5-HT(1A) receptor revealed a significant role of the N-8 atom of the tropane core in stabilising the ligand-receptor complex due to strong hydrogen bonding with Asp116 located in the TMH 3 helix. Analogically, in a homology model of the 5-HT(2A) receptor, the N-8 atom formed a hydrogen bond with Gly369. In another homology model of the D(2) receptor, strong hydrogen bonding of the amide moiety in the 3β position of the tropane nucleus with Asp85 was observed. Compound 6b displayed a favourable Meltzer index (1.21) which is a feature of atypical antipsychotic agents.  相似文献   

9.
The synthesis and vascular 5-HT(1B) receptor activity of a novel series of substituted 3-amido phenylpiperazine and 4-(4-methyl-1-piperazinyl)-1-benzo[b]thiophene derivatives is described. Modifications to the amido linked sidechains of the 3-amidophenyl-piperazine derivatives and to the 2-sidechain of the 1-benzo[b]thiophene derivatives have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B) receptor of pK(B) > 7.0. From the 3-amidophenyl-piperazine series, N-(4-(4-chlorophenyl)thiazol-2-yl-3-(4-methyl-1-piperazinyl)benzamide (30) and from the benzo[b]thiophene-4-piperazine series N-(2-ethylphenyl)-4-(4-methyl-1- piperazinyl)-1-benzo[b]thiophene-2-carboxamide (38) were identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B) receptor mediated agonist activity in the rabbit femoral artery) and competitive vascular 5-HT(1B) receptor antagonist. The affinity of compounds from these two series of compounds for the vascular 5-HT(1B) receptor is discussed as well as a proposed mode of binding to the receptor pharmacophore.  相似文献   

10.
In this publication we are describing synthesis, binding properties, and receptor docking of 4-halo-6-[2-(4-arylpiperazin-1-yl)ethyl]-1H-benzimidazoles, a new compounds with potential antipsychotics properties. Affinity towards the dopamine D(1)-like and D(2)-like, and serotonin 5-HT(1A) receptors was evaluated using the radioligand binding assays. All compounds tested had affinity for the D(2)-like and 5-HT(1A) receptors, but were inactive towards the D(1)-like receptor. Halogenated 6-[2-(4-arylpiperazin-1-yl)ethyl]-1H-benzimidazoles showed higher affinity compared to their nonhalogenated congeners. In silico docking analysis of selected ligands was performed in order to explain the results of binding assays. Our analysis suggests that stabilizing interactions between the halogen atom at the benzimidazole ring and the Ser-122 of the D(2)-like and Trp-358 of the 5-HT(1A) receptor. Energy contributions for these interactions were calculated using the ab initio method.  相似文献   

11.
This work reports the synthesis and the binding tests on the 5-HT3 and 5-HT4 receptors of new thienopyrimidopiperazine and piperazinylacylaminodimethylthiophene derivatives, in order to identify potent and selective ligands for each receptor. The 3-amino-2-(4-benzyl-1-piperazinyl)-5,6-dimethyl-thieno[2,3-d]pyrimidin-4(3H)-one derivative 28 showed the highest affinity and selectivity for the 5-HT3 over the 5-HT4 receptor (5-HT3 Ki=3.92 nM, 5-HT4 not active), whereas the 2-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butanoylamino]-4,5-dimethyl-3-thiophenecarboxylic acid ethyl ester (41) showed the highest affinity and selectivity for the 5-HT4 over the 5-HT3 receptor (5-HT4 Ki=81.3 nM, 5-HT3 not active). Conformational analyses were carried out on the compounds of the piperazinylacylaminodimethylthiophene series (39-42) taking compound 41 as the template.  相似文献   

12.
The synthesis and pharmacological properties of novel conformationally restricted arylpiperazine (2b-4b) or 1,2,3,4-tetrahydroisoquinoline (5b and 6b) derivatives of the known, flexible 5-HT(1A) receptor ligands 2a-6a (K(i)=0.95-7 nM) with different intrinsic activities are reported. Replacement of a tetramethylene chain with a 1e,4e-disubstituted cyclohexane ring in the structure of flexible ligands resulted in insignificant diminution of the 5-HT(1A) receptor affinity in the case of 2b-4b (K(i)=15-52 nM), whereas derivatives 5b and 6b were practically inactive (K(i)>1354 nM). The results of in vivo behavioural tests showed that 2a and 3a acted as postsynaptic 5-HT(1A) receptor partial agonists. Like the flexible 4a, the new rigid compounds 2b-4b showed features of postsynaptic 5-HT(1A) receptor antagonists. Since all possible conformations of the constrained compounds belong to an extended family--as indicated by molecular modelling studies--our hypothesis that such conformations are responsible for the blockade of postsynaptic 5-HT(1A) receptors has been confirmed. Determination of regions explored by terminal amide, or imide and hydrocarbon groups of the restricted compounds as well as the results of in vitro and in vivo studies allowed us to discuss the bioactive conformations of flexible ligands.  相似文献   

13.
This work reports the synthesis and the binding tests on the 5-HT(3) and 5-HT(4) receptors of new thienopyrimidopiperazine and piperazinylacylaminodimethylthiophene derivatives, in order to identify potent and selective ligands for each receptor. The compound with higher affinity and selectivity for the 5-HT(3) over the 5-HT(4) receptor was the 3-amino-2-(4-benzyl-1-piperazinyl)-5,6-dimethyl-thieno[2,3-d]pyrimidin-4(3H)-one 28 (5-HT(3) K(i)=3.92 nM, 5-HT(4) not active), the compound with higher affinity and selectivity for the 5-HT(4) over the 5-HT(3) receptor was the 2-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butanoylamino]-4,5-dimethyl-3-thiophenecarboxylic acid ethyl ester 41 (5-HT(4) K(i)=81.3 nM, 5-HT(3) not active). Conformational analyses were carried out on the compounds of the piperazinylacylaminodimethylthiophene series (39-42) taking compound 41 as the template.  相似文献   

14.
5-[3-(4-Arylpiperazin-1-yl)propyl]-1H-benzimidazoles and 5-[2-(4-arylpiperazin-1-yl)ethoxy]-1H-benzimidazoles were synthesized and their affinity for the D1, D2 and 5-HT1A receptors examined. They expressed a rather high affinity for the D2 dopamine receptor. The main features of ligand-D2 receptor interactions revealed by docking analyses were: salt bridge between piperazine ring protonated N1 and Asp 86, hydrogen bonds of ligand bezimidazole part with Ser 141, Ser 122 and His 189, edge-to-face interactions of arylpiperazine aromatic ring with Phe 178, Tyr 216 and Trp 182 and hydrogen bond between ethereal oxygen in ethylenoxy ligands and hydrogen of Phe 185 or Trp 115. The most active 5-[2-[4-(2-methoxyphenyl)-piperazin-1-yl]ethoxy]-1,3-dihydro-2H-benzimidazole-2-thione (27) has a maximal number of attractive interactions. A satisfactory correlation between docking of the compounds into the D2 receptor and competition binding results was observed.  相似文献   

15.
A series of new 3-[4-(aryl)piperazin-1-yl]-1-(benzo[b]thiophen-3-yl)propane derivatives were synthesized in an attempt to find a new class of antidepressant drugs with dual activity at 5-HT1A serotonin receptors and serotonin transporter. Title compounds were evaluated for in vitro activity on 5-HT1A receptor and 5-HT transporter. They show high nanomolar affinity for both activities, and in particular, compounds 1-(5-chlorobenzo[b]thiophen-3-yl)-3-[4-(2-methoxyphenyl)piperazin-1-yl]propan-1-ol (7) and 1-(5-fluorobenzo[b]thiophen-3-yl)-3-[4-(2-methoxyphenyl)piperazin-1-yl]propan-1-ol (8) show values (nM) of K(i)=30 and 2.3 for 5-HT1A receptors and K(i)=30 and 12 for serotonin transporters, respectively. In GTPgammaS binding assays, compound 8 revealed antagonist properties to 5-HT1A receptors. Such a pharmacological profile could lead to potent antidepressant agents with new dual mechanism of action.  相似文献   

16.
New 3-benzisothiazolyl and 3-benzisoxazolylpiperazine derivatives were synthesised and their 5-HT(1A), 5-HT(2A) and D(2) receptor binding affinities evaluated. The compounds displayed high affinity for the 5-HT(2A) receptor combined with moderate to low 5-HT(1A) and D(2) affinities. Two of them, 18 and 25, have been selected for further pharmacological studies to be evaluated as potential atypical antipsychotics.  相似文献   

17.
A series of new derivatives of 4-aryl-pyrido[1,2-c]pyrimidine containing the 3-(4-piperidyl)-1H-indole residue or its 5-methoxy derivative were synthesized. They were characterized (i) in vitro by binding to 5-HT(1A) receptors and 5-HT transporter proteins in rat brain cortex membranes and (ii) in vivo in the mouse by induced hypothermia and forced swimming models for antagonist/agonist activity against the 5-HT(1A) autoreceptors and postsynaptic 5-HT(1A) receptors, respectively. Structure activity relationship evaluation indicated that the presence of the 3-(4-piperidyl)-1H-indole residue and ortho- or para-substituents with -F or -CH(3) groups in the aryl ring as well as an unsubstituted aryl in the 4-aryl-pyrido[1,2-c]pyrimidine moiety promoted low K(i) values for both receptors. In contrast, the presence of a 5-methoxy-3-(4-piperidyl)-1H-indole residue as well as -Cl or -OCH(3) substituents at the para position markedly reduced the receptor affinity.  相似文献   

18.
A series of 1-substituted pyrrolidin-2-one and pyrrolidine derivatives were synthesised and tested for electrocardiographic, antiarrhythmic, and antihypertensive activity as well as for alpha(1)- and alpha(2)-adrenoceptors binding affinities. Among the newly synthesised derivatives several compounds with 3-(4-arylpiperazin-1-yl)propyl moiety displayed strong antiarrhythmic (7a-12a) and antihypertensive (7a-11a) activities. Compound 11a, 1-[2-acetoxy-3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]pyrrolidin-2-one, was the most potent in this series. The pharmacological results and binding studies suggest that their antiarrhythmic and hypotensive effects may be related to their alpha-adrenolytic properties, and that those properties depend on the presence of the 1-phenylpiperazine moiety with a methoxy- or chloro- substituent in the ortho position in the phenyl ring.  相似文献   

19.
Serotonin (5-hydroxytryptamine, 5-HT) is one of the most important neuromediator involved in numerous physiological and pathophysiological processes. In addition it is well established that 5-HT acts as a growth factor on several types of non-tumoral and tumoral cells, and recently it was also related to oncogenes. 5-HT1A receptor expression was identified in prostatic tumor cell lines (PC3 cells) and in human hormone refractory prostate cancer tissue. Based on these observations, development of 5-HT1A antagonists could be useful in inhibiting the growth of cancer cells. In order to investigate on potential use of 5-HT1A ligands as antiproliferative agents, we have analyzed a new set of 1-naphtylpiperazine derivatives. In binding studies, several molecules showed affinity in nanomolar and subnanomolar range at 5-HT1A and moderate to no affinity for other relevant receptors (5-HT2A, 5-HT2C, D1, D2, α1 and α2). All compounds were then evaluated in order to assess their antiproliferative activity using PC3 cells and the most active compounds (1 and 2) were fully characterized to define the mechanism responsible for the observed antiproliferative effect.  相似文献   

20.
Synthesis and pharmacological activity of 1,6-diaryl-5,7(1H)dioxo-2,3-dihydroimidazo-[1,2-a][1,3,5]triazines (C) are presented. The title compounds were obtained from 1-arylimidazolinurea derivatives in cyclization reaction with difunctional carbonyl reagents--phosgene (method I) or carbonyldiimidazole (CDI) (method II). Their molecular structures were confirmed by the X-ray analysis of 1-phenyl-6-(4-chlorophenyl)-5,7(1H)-dioxo-2,3-dihydroimidazo[1,2-a][1,3,5]triazine (C2) crystals. Compounds C exhibited significant depressive action on the central nervous system (CNS) of the laboratory animals, correlated with very low acute toxicity (LD(50) > 2000 mg kg(-1) i.p.), and showed antinociceptive activity in behavioural models. Reversion of this effect by small dose of naloxone (5 mg kg(-1)) can suggest opioid-like mechanism of antinociception produced by these and other carbonyl derivatives of 1-aryl-2-iminoimidazolidine. Additionally, an effect on the serotonin neurotransmission pathway was also observed. The receptor mechanism of activity for investigated compounds was confirmed only for the opioid mu receptor in binding affinity assay test. Same tests performed for the serotonin 5-HT(2) and benzodiazepine BZD receptors showed no affinity for tested compounds. The opioid-like and serotonergic activities are similar to these described earlier for chain carbonyl 1-aryl-2-iminoimidazolidine derivatives containing urea moiety, mainly due to similar chemical structure, although compounds C are not able to adopt any of the higher energy conformations of urea derivatives. Rigid location of aromatic ring (Ar') at N6, acting as a spacer blocking any direct access to the carbonyl groups (e.g. through the hydrogen bonding), could be responsible for lack of affinity toward 5-HT(2) expressed in the binding assay test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号