首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.  相似文献   

2.
Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.  相似文献   

3.
4.
The epithelial sodium channel (ENaC) plays a major role in the regulation of sodium balance and BP by controlling Na(+) reabsorption along the renal distal tubule and collecting duct (CD). ENaC activity is affected by extracellular nucleotides acting on P2 receptors (P2R); however, there remain uncertainties over the P2R subtype(s) involved, the molecular mechanism(s) responsible, and their physiologic role. This study investigated the relationship between apical P2R and ENaC activity by assessing the effects of P2R agonists on amiloride-sensitive current in the rat CD. Using whole-cell patch clamp of principal cells of split-open CD from Na(+)-restricted rats, in combination with immunohistochemistry and real-time PCR, we found that activation of metabotropic P2R (most likely the P2Y(2) and/or (4) subtype), via phospholipase C, inhibited ENaC activity. In addition, activation of ionotropic P2R (most likely the P2X(4) and/or (4/6) subtype), via phosphatidylinositol-3 kinase, either inhibited or potentiated ENaC activity, depending on the extracellular Na(+) concentration; therefore, it is proposed that P2X(4) and/or (4/6) receptors might function as apical Na(+) sensors responsible for local regulation of ENaC activity in the CD and could thereby help to regulate Na(+) balance and systemic BP.  相似文献   

5.
It was hypothesized that dysregulation of renal epithelial sodium channel (ENaC) subunits and/or 11beta-hydroxysteroid dehydrogenase (11betaHSD2) may play a role in the increased sodium retention in liver cirrhosis (LC). Experimental LC was induced in rats by CCl(4) (1 ml/kg, intraperitoneally, twice a week) for 12 wk (protocol 1) or for 11 wk (protocol 2). In both protocols, one group of rats with cirrhosis showed significantly decreased urinary sodium excretion and urinary Na/K ratio (group A), whereas a second group exhibited normal urinary sodium excretion (group B) compared with controls, even though extensive ascites was seen in both groups of rats with cirrhosis. In group A, protein abundance of alpha-ENaC was unchanged, whereas beta-ENaC abundance was decreased in the cortex/outer stripe of outer medulla compared with controls. The gamma-ENaC underwent a complex change associated with increased abundance of the 70-kD band with a concomitant decrease in the main 85-kD band, corresponding to an aldosterone effect. In contrast, no changes in the abundance of ENaC subunit were observed in group B. Immunoperoxidase microscopy revealed an increased apical targeting of alpha-, beta-, and gamma-ENaC subunits in distal convoluted tubule (DCT2), connecting tubule (CNT), and cortical and medullary collecting duct segments in group A but not in group B. Immunolabeling intensity of 11betaHSD2 in the DCT2, CNT, and cortical collecting duct was significantly reduced in group A but not in group B, and this was confirmed by immunoblotting. In conclusion, increased apical targeting of ENaC subunits combined with diminished abundance of 11betaHSD2 in the DCT2, CNT, and cortical collecting duct is likely to play a role in the sodium retaining stage of liver cirrhosis.  相似文献   

6.
Final urinary acidification is achieved by electrogenic vacuolar H(+)-ATPases expressed in acid-secretory intercalated cells (ICs) in the connecting tubule (CNT) and the cortical (CCD) and initial medullary collecting duct (MCD), respectively. Electrogenic Na(+) reabsorption via epithelial Na(+) channels (ENaCs) in the apical membrane of the segment-specific CNT and collecting duct cells may promote H(+)-ATPases-mediated proton secretion by creating a more lumen-negative voltage. The exact localization where this supposed functional interaction takes place is unknown. We used several mouse models performing renal clearance experiments and assessed the furosemide-induced urinary acidification. Increasing Na(+) delivery to the CNT and CCD by blocking Na(+) reabsorption in the thick ascending limb with furosemide enhanced urinary acidification and net acid excretion. This effect of furosemide was abolished with amiloride or benzamil blocking ENaC action. In mice deficient for the IC-specific B1 subunit of the vacuolar H(+)-ATPase, furosemide led to only a small urinary acidification. In contrast, in mice with a kidney-specific inactivation of the alpha subunit of ENaC in the CCD and MCD, but not in the CNT, furosemide alone and in combination with hydrochlorothiazide induced normal urinary acidification. These results suggest that the B1 vacuolar H(+)-ATPase subunit is necessary for the furosemide-induced acute urinary acidification. Loss of ENaC channels in the CCD and MCD does not affect this acidification. Thus, functional expression of ENaC channels in the CNT is sufficient for furosemide-stimulated urinary acidification and identifies the CNT as a major segment in electrogenic urinary acidification.  相似文献   

7.
8.
9.
PURPOSE OF REVIEW: The epithelial sodium channel (ENaC) sets the rate of Na+ reabsorption in the collecting duct. This review describes recent advances in our understanding of ENaC function. RECENT FINDINGS: First, collecting duct-specific deletion of alphaENaC does not cause Na wasting in mice, suggesting that other regions can compensate. Second, Nedd4 and Nedd4-2 are ubiquitin ligases that reduce surface expression of ENaC and inhibit Na+ transport. Nedd4-2, but not Nedd4, is negatively regulated by serum- and glucocorticoid-inducible kinase 1, an aldosterone-induced kinase, providing an attractive mechanism for the stimulatory effect of aldosterone on Na+ transport. However, mice with germline ablation of serum- and glucocorticoid-inducible kinase 1 show only modest hypotension and are able to decrease Na+ excretion rates substantially. Third, maturation of ENaC is associated with processing at consensus furin cleavage sites and this cleavage is critical for channel activity. A separate class of serine proteases, the channel-activating proteases, also stimulates ENaC activity. SUMMARY: The connecting tubule of the kidney has abundant ENaC and Na(+)- and K(+)-transport capacity and may provide much of ENaC-mediated Na+ transport in the kidney. Aldosterone may increase Na transport, in part, by serum- and glucocorticoid-inducible kinase 1-mediated inhibition of Nedd4-2 but this has not been demonstrated in the native collecting duct or connecting tubule. The mild phenotype of the serum- and glucocorticoid-inducible kinase 1-knockout mouse points to serum- and glucocorticoid-inducible kinase 1-independent mechanisms that regulate Na+ transport. Two separate classes of protease appear to regulate Na+ transport: one is furin or furin-like and cleaves ENaC subunits to stimulate transport; the other, the channel-activating proteases, may act on ENaC or a regulatory molecule.  相似文献   

10.
BACKGROUND: Diabetes mellitus (DM) is associated with a significant polyuria and natriuesis as well as increased plasma aldosterone and anti-diuretic hormone arginine vasopressin (AVP). This study aimed to determine whether diabetic kidneys compensate for the urinary sodium and water losses by increasing apical targeting of epithelial sodium channel (ENaC) subunits and aquaporin-2 (AQP2) in the collecting duct, in addition to the previously observed changes in ENaC subunit protein expression in different kidney zones. METHODS: Female rats were investigated 2 weeks after induction of DM by streptozotocin administration. Kidneys were examined by immunohistochemisty and semiquantitative immunoblotting. RESULTS: We demonstrated that the protein expression of renal AQP2, Ser-256 phosphorylated AQP2, AQP3, beta- and gamma-ENaC (but not alpha-ENaC) increased consistently with an increased AVP response. In contrast, there were no significant changes in the relative apical targeting of beta-, gamma- and alpha-ENaC, and the shift in the molecular weight of gamma-ENaC from 85 kDa to 70 kDa was not observed despite increased plasma aldosterone levels. These results were supported by changes in the functional data showing increased solute-free water reabsorption, increased fractional excretion of sodium and an unchanged ratio of potassium to sodium in the urine. CONCLUSIONS: The data demonstrate that diabetic kidneys have a reduced sensitivity to the anti-natriuretic action of elevated plasma aldosterone levels with no relative increase in ENaC subunit apical targeting, whereas there is increased expression of beta- and gamma-ENaC, which alone may play a role in the increased sodium reabsorption in the kidney in DM.  相似文献   

11.
Sodium-sensitive hypertension is thought to be dependent on primary alterations in renal tubular sodium reabsorption. The major apical plasma membrane Na(+) transporters include the proximal tubular Na(+)-H(+) exchanger, the thick ascending limb Na(+)-K(+)-2Cl(-) cotransport system, the distal tubular Na(+)-Cl(-) cotransporter, and the collecting duct epithelial sodium channel (ENaC). This article explores the role of each transporter in the pathogenesis of hypertension. Although the contribution of the proximal tubule Na(+)-H(+) exchanger is not yet defined completely, more convincing data have been generated about the importance of the Na(+)-K(+)-2Cl(-). Indeed at least 2 forms of hypertension appear to be related to the up-regulation of the transporter: the so-called programmed hypertension induced by low-protein diet during pregnancy and the early phase of hypertension in the Milan strain of rats. With respect to the Na(+)-Cl(-) cotransporter this may be overactive caused by inactivating mutation of WNK4 as in the Gordon syndrome, although it is the main actor for the maintenance phase of the hypertension found in the Milan strain of rats. Finally, the contribution of the ENaC has been established clearly; indeed, in the Liddle syndrome the mutation of the ENaC gene leads to a longer retention of the channel on the cell surface of collecting duct principal cells, thus inducing stronger sodium reabsorption along this segment. All these examples clearly indicate that renal sodium transporters may be responsible for various types of sodium-sensitive hypertension.  相似文献   

12.
We hypothesize that dysregulation of the epithelial sodium channel (ENaC) may be responsible for the increased sodium retention in liver cirrhosis. Liver cirrhosis was induced by common bile duct ligation (CBDL). We examined the abundance of ENaC subunits and type 2 isoform of 11beta-hydroxysteroid dehydrogenase (11betaHSD2) in the kidney by immunoblotting and immunohistochemistry at 6 or 8 weeks after operation. At 6 weeks, cirrhotic rats had developed ascites and displayed a positive sodium balance. The urinary sodium excretion and fractional excretion of sodium were decreased, while plasma aldosterone was unchanged. The abundance of ENaC subunits was not changed in the cortex and outer stripe of the outer medulla (OSOM). In contrast, immunoperoxidase microscopy revealed an increased apical targeting of alpha-, beta- and gammaENaC in late distal convoluted tubule, connecting tubule and collecting duct. Moreover, 11betaHSD2 abundance was decreased in the cortex/OSOM and inner stripe of the outer medulla. At 8 weeks, urinary sodium excretion and fractional excretion of sodium were not changed, while the plasma aldosterone level was decreased. The expression of ENaC subunits was decreased in the cortex/OSOM. Immunoperoxidase microscopy confirmed decreased expression of ENaC subunits, whereas subcellular localization was not changed. These results suggest that increased apical targeting of ENaC subunits and diminished abundance of 11betaHSD2 may contribute to promote sodium retention in the sodium-retaining stage of liver cirrhosis (at 6 weeks). The subsequent decreased expression and reduced targeting of ENaC subunits may play a role in promoting sodium excretion in the later stage of liver cirrhosis (at 8 weeks).  相似文献   

13.
Physiology and pathophysiology of renal aquaporins   总被引:6,自引:0,他引:6  
The discovery of aquaporin-1 (AQP1) by Agre and associates answered the longstanding biophysical question of how water specifically crosses biological membranes. In the kidney at least 7 aquaporins are expressed at distinct sites. AQP1 is extremely abundant in the proximal tubule and descending thin limb and is essential for urinary concentration. AQP2 is exclusively expressed in the principal cells of the connecting tubule and collecting duct and is the predominant vasopressin-regulated water channel. AQP3 and AQP4 are both present in the basolateral plasma membrane of collecting duct principal cells and represent exit pathways for water reabsorbed apically via AQP2. Studies in patients and transgenic mice have shown that both AQP2 and AQP3 are essential for urinary concentration. Three additional aquaporins are present in the kidney. AQP6 is present in intracellular vesicles in collecting duct intercalated cells and AQP8 are present intracellularly at low abundance in proximal tubules and collecting duct principal cells but the physiological function of these 2 channels remain undefined. AQP7 is abundant in the brush border of proximal tubule cells and is likely to be involved in proximal tubule water reabsorption. A series of studies have underscored crucial roles of aquaporins for regulation of renal water metabolism and hence body water balance. Moreover it has become clear that dysregulation of aquaporins, and especially AQP2 is critically involved in many water balance disorders. Lack of functional AQP2 is seen in primary forms of diabetes insipidus, and reduced expression and targeting is seen in several diseases associated with urinary concentrating defects such as acquired nephrogenic diabetes insipidus, postobstructive polyuria, as well as acute and chronic renal failure. In contrast, in conditions with water retention such as severe congestive heart failure, pregnancy and SIADH both AQP2 expression levels and apical plasma membrane targetting is increased suggesting a role for AQP2 in the development of water retention. Continued analysis of the aquaporins is providing detailed molecular insight into the fundamental physiology and pathophysiology of water balance and water balance disorders.  相似文献   

14.
充血性心力衰竭时肾脏水通道蛋白mRNA表达的改变及意义   总被引:6,自引:0,他引:6  
目的 研究在不同程度的充血性心功能衰竭(心衰)时肾脏水通道蛋白2(AQP2),上皮性钠通道(ENaC)和髓襻升支粗段的Na-K-2Cl转运子(rBSC1)表达的情况。方法 将SD大鼠通过腹主动脉-下腔静脉穿刺造瘘和冠状动脉结扎的方法建成不同的心衰模型,设正常对照组,穿刺造瘘1孔组,穿刺造瘘3孔组和冠脉结扎组。用Doppler超声心动图及心脏秤重的方法比较其心功能的各项参数,并用RT-PCR的方法检测肾脏AQP,ENaCα亚单位和rBSC1mRNA表达。结果 穿刺造瘘大鼠心功能损害较轻,而冠脉结扎大鼠心功能严重失代偿。AQP2仅在冠脉结扎大鼠肾皮质表达增高,而rBSC1在造瘘1孔,3孔和结扎大鼠的肾髓质表达均显著上调。肾皮质αENaC含量3组心衰大鼠都显著增高,而在肾髓质仅冠脉结扎大鼠明显升高,造瘘大鼠虽有上升趋势,但差异无显著性意义。结论 在不同类型的充血性心力衰竭大鼠模型中存在着肾脏AQP,rBSC1和ENaC mRNA表达的上调,其中rBSC1增高可能和心脏受累早期肾脏排钠障碍有一定关系。  相似文献   

15.
Pendrin modulates ENaC function by changing luminal HCO3-   总被引:1,自引:0,他引:1  
The epithelial Na(+) channel, ENaC, and the Cl(-)/HCO(3)(-) exchanger, pendrin, mediate NaCl absorption within the cortical collecting duct and the connecting tubule. Although pendrin and ENaC localize to different cell types, ENaC subunit abundance and activity are lower in aldosterone-treated pendrin-null mice relative to wild-type mice. Because pendrin mediates HCO(3)(-) secretion, we asked if increasing distal delivery of HCO(3)(-) through a pendrin-independent mechanism "rescues" ENaC function in pendrin-null mice. We gave aldosterone and NaHCO(3) to increase pendrin-dependent HCO(3)(-) secretion within the connecting tubule and cortical collecting duct, or gave aldosterone and NaHCO(3) plus acetazolamide to increase luminal HCO(3)(-) concentration, [HCO(3)(-)], independent of pendrin. Following treatment with aldosterone and NaHCO(3), pendrin-null mice had lower urinary pH and [HCO(3)(-)] as well as lower renal ENaC abundance and function than wild-type mice. With the addition of acetazolamide, however, acid-base balance as well as ENaC subunit abundance and function was similar in pendrin-null and wild-type mice. We explored whether [HCO(3)(-)] directly alters ENaC abundance and function in cultured mouse principal cells (mpkCCD). Amiloride-sensitive current and ENaC abundance rose with increased [HCO(3)(-)] on the apical or the basolateral side, independent of the substituting anion. However, ENaC was more sensitive to changes in [HCO(3)(-)] on the basolateral side of the monolayer. Moreover, increasing [HCO(3)(-)] on the apical and basolateral side of Xenopus kidney cells increased both ENaC channel density and channel activity. We conclude that pendrin modulates ENaC abundance and function, at least in part by increasing luminal [HCO(3)(-)] and/or pH.  相似文献   

16.
17.
BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.  相似文献   

18.
The renal afferent arterioles (Af-Arts) account for most of the renal vascular resistance, which is controlled similar to other arterioles and by tubuloglomerular feedback (TGF). The latter signal is generated by sensing sodium chloride concentrations in the macula densa; this in turn results in a signal which acts through the extraglomerular mesangium leading to constriction of the Af-Art. In the outer renal cortex, the connecting tubule (CNT) returns to the glomerular hilus and contacts the Af-Art suggesting that crosstalk may exist here as well. To investigate this, we simultaneously perfused a microdissected Af-Art and adherent CNT. Increasing the sodium chloride concentration perfusing the CNT significantly dilated preconstricted Af-Arts. We called this crosstalk 'connecting tubule glomerular feedback' (CTGF) to differentiate it from TGF. We tested whether entry of Na(+) and/or CI(-) into the CNT is required to induce CTGF by replacing Na(+) with choline(+). Increasing choline chloride concentration did not dilate the Af-Art. To test whether epithelial Na channels (ENaCs) mediate CTGF, we blocked ENaC with amiloride and found that the dilatation induced by CTGF was completely blocked. Inhibiting sodium chloride cotransporters with hydrochlorothiazide failed to prevent Af-Art dilatation. Finally, we tested whether nitric oxide released by the CNT mediates CTGF by the addition of a non-selective nitric oxide synthase inhibitor to the CNT. This potentiated CTGF rather than blocking it. We suggest that crosstalk exists between CNTs and attached Af-Arts, which is initiated by sodium reabsorption through amiloride-sensitive channels and this can contribute to the regulation of renal blood flow and glomerular filtration.  相似文献   

19.
Mineralocorticoid receptor knockout mice: lessons on Na+ metabolism   总被引:4,自引:0,他引:4  
The mineralocorticoid receptor (MR) binds aldosterone and glucocorticoids with equal affinity. In aldosterone target tissues, like the epithelial cells of the distal colon and the principal cells of the collecting ducts in the kidney, the MR is protected from glucocorticoids by the action of the enzyme 11beta-hydroxysteroid-dehydrogenase type 2 (11betaOHSD2), allowing aldosterone to specifically activate the receptor. However, in MR-expressing cells, which lack 11betaOHSD2, like the neurons of the limbic system in the brain, MR is mainly activated by glucocorticoids. MR knockout mice die in the second week after birth, showing at day 8 symptoms of pseudohypoaldosteronism with hyponatremia, hyperkalemia, high renal salt wasting, and a strongly activated renin-angiotensin-aldosterone system (RAAS). The activity of the amiloride-sensitive epithelial Na+ channel (ENaC) is strongly reduced in colon and kidney, but there is no down-regulation of the mRNA abundance of the three ENaC subunits. Daily subcutaneous injections of isotonic NaCl solution until weaning and continued oral NaCl supply lead to survival of the MR knockout mice. The NaCl-rescued MR knockout mice display a strongly enhanced fractional renal excretion of Na+, hyperkalemia, and a persistently strongly activated RAAS. There is almost no renal ENaC activity. The renal mRNA abundance of alphaENaC is reduced by 30%, whereas betaENaC and gammaENaC are not altered.  相似文献   

20.
Roles of aquaporins in kidney revealed by transgenic mice   总被引:8,自引:0,他引:8  
Transgenic mouse models of aquaporin (AQP) deletion and mutation have been instructive in elucidating the role of AQPs in renal physiology. Mice lacking AQP1 are unable to concentrate their urine because of low water permeability in the proximal tubule, thin descending limb of Henle, and outer medullary descending vasa recta, resulting in defective near-isosmolar fluid absorption in the proximal tubule and defective countercurrent multiplication. Mice lacking functional AQP2, AQP3, or AQP4 manifest various degrees of nephrogenic diabetes insipidus resulting from reduced collecting duct water permeability. Mice lacking AQP7 and AQP8 can concentrate their urine fully, although AQP7 null mice manifest an interesting defect in glycerol reabsorption. Two unexpected renal phenotypes of AQP null mice have been discovered recently, including defective proximal tubule cell migration in AQP1 deficiency, and cystic renal disease in AQP11 deficiency. AQPs thus are important in several aspects of the urinary concentrating mechanism and in functions unrelated to tubular fluid transport. The mouse phenotype data suggest the renal AQPs as targets for the development of aquaretics and potentially for therapy of cystic renal disease and acute renal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号